Left Ventricular Diastolic Dysfunction Defined Using the 2016 ASE Criteria and Mortality after a Liver Transplant in Patients with End-Stage Liver Disease: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol Registration and Guidelines
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategy
2.4. Data Management and Selection Process
2.5. Data Collection Process
2.6. Outcomes
2.7. Risk of Bias in Individual Studies
2.8. Data Synthesis
3. Results
3.1. Study Characteristics
3.2. Post-Transplant Mortality
3.3. Prevalence of LVDD
3.4. Immediate Postoperative Outcomes
3.5. LVDD and Postoperative Cardiovascular Complications
3.6. LVDD and Length of Hospital Stay
3.7. LVDD and MELD Score
3.8. Echocardiographic Changes after LT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Complete Search Strategy Employed in the Medical Databases
References
- Wiese, S.; Hove, J.D.; Bendtsen, F.; Møller, S. Cirrhotic Cardiomyopathy: Pathogenesis and Clinical Relevance. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Møller, S.; Danielsen, K.V.; Wiese, S.; Hove, J.D.; Bendtsen, F. An Update on Cirrhotic Cardiomyopathy. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Møller, S.; Henriksen, J.H. Cardiovascular Complications of Cirrhosis. Gut 2008, 57, 268–278. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelisa, A. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2009, 10, 165–193. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Izzy, M.; VanWagner, L.B.; Lin, G.; Altieri, M.; Findlay, J.Y.; Oh, J.K.; Watt, K.D.; Lee, S.S.; on behalf of The Cirrhotic Cardiomyopathy Consortium. Redefining Cirrhotic Cardiomyopathy for the Modern Era. Hepatology 2020, 71, 334–345. [Google Scholar] [CrossRef]
- Stundiene, I.; Sarnelyte, J.; Norkute, A.; Aidietiene, S.; Liakina, V.; Masalaite, L.; Valantinas, J. Liver Cirrhosis and Left Ventricle Diastolic Dysfunction: Systematic Review. World J. Gastroenterol. 2019, 25, 4779–4795. [Google Scholar] [CrossRef]
- Karagiannakis, D.S.; Vlachogiannakos, J.; Anastasiadis, G.; Vafiadis-Zouboulis, I.; Ladas, S.D. Diastolic Cardiac Dysfunction Is a Predictor of Dismal Prognosis in Patients with Liver Cirrhosis. Hepatol. Int. 2014, 8, 588–594. [Google Scholar] [CrossRef]
- Lee, S.K.; Song, M.J.; Kim, S.H.; Ahn, H.J. Cardiac Diastolic Dysfunction Predicts Poor Prognosis in Patients with Decompensated Liver Cirrhosis. Clin. Mol. Hepatol. 2018, 24, 409–416. [Google Scholar] [CrossRef]
- Premkumar, M.; Devurgowda, D.; Vyas, T.; Shasthry, S.M.; Khumuckham, J.S.; Goyal, R.; Thomas, S.S.; Kumar, G. Left Ventricular Diastolic Dysfunction Is Associated with Renal Dysfunction, Poor Survival and Low Health Related Quality of Life in Cirrhosis. J. Clin. Exp. Hepatol. 2019, 9, 324–333. [Google Scholar] [CrossRef]
- Ruíz-del-Árbol, L.; Achécar, L.; Serradilla, R.; Rodríguez-Gandía, M.Á.; Rivero, M.; Garrido, E.; Natcher, J.J. Diastolic Dysfunction Is a Predictor of Poor Outcomes in Patients with Cirrhosis, Portal Hypertension, and a Normal Creatinine. Hepatology 2013, 58, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Frigo, A.C.; Tonon, M.; Angeli, P. Cardiovascular Predictors of Death in Patients with Cirrhosis. Hepatology 2018, 68, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jayakumar, S.; Traboulsi, M.; Lee, S.S. Cirrhotic Cardiomyopathy: Implications for Liver Transplantation: Liu et Al. Liver Transpl. 2017, 23, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lee, S.S. Predicting Cardiovascular Complications after Liver Transplantation: 007 to the Rescue? Liver Transpl. 2011, 17, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Dowsley, T.F.; Bayne, D.B.; Langnas, A.N.; Dumitru, I.; Windle, J.R.; Porter, T.R.; Raichlin, E. Diastolic Dysfunction in Patients with End-Stage Liver Disease Is Associated with Development of Heart Failure Early after Liver Transplantation. Transplantation 2012, 94, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Raevens, S.; De Pauw, M.; Geerts, A.; Berrevoet, F.; Rogiers, X.; Troisi, R.I.; Van Vlierberghe, H.; Colle, I. Prevalence and Outcome of Diastolic Dysfunction in Liver Transplantation Recipients. Acta Cardiol. 2014, 69, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Carvalheiro, F.; Rodrigues, C.; Adrego, T.; Viana, J.; Vieira, H.; Seco, C.; Pereira, L.; Pinto, F.; Eufrásio, A.; Bento, C.; et al. Diastolic Dysfunction in Liver Cirrhosis: Prognostic Predictor in Liver Transplantation? Transplant. Proc. 2016, 48, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Reprint—Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical Methods for Incorporating Summary Time-to-Event Data into Meta-Analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef]
- Bushyhead, D.; Kirkpatrick, J.N.; Goldberg, D. Pretransplant Echocardiographic Parameters as Markers of Posttransplant Outcomes in Liver Transplant Recipients: Echocardiographic Parameters and Outcomes. Liver Transpl. 2016, 22, 316–323. [Google Scholar] [CrossRef]
- Xu, Z.-D.; Xu, H.-T.; Li, W.-W.; Zou, Z.; Shi, X.-Y. Influence of Preoperative Diastolic Dysfunction on Hemodynamics and Outcomes of Patients Undergoing Orthotopic Liver Transplantation. Int. J. Clin. Exp. Med. 2013, 6, 351–357. [Google Scholar] [PubMed]
- Izzy, M.; Soldatova, A.; Sun, X.; Angirekula, M.; Mara, K.; Lin, G.; Watt, K.D. Cirrhotic Cardiomyopathy Predicts Posttransplant Cardiovascular Disease: Revelations of the New Diagnostic Criteria. Liver Transpl. 2021, 27, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Marella, H.; Yedlapati, N.; Kothadia, J.P.; Mupparaju, V.K.; Marella, S.; Nair, S. Impact of Left Ventricular Diastolic Dysfunction on Liver Transplantation Outcomes Based on the Latest American Society of Echocardiography/European Association of Cardiovascular Imaging Recommendations. Clin. Exp. Hepatol. 2021, 7, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Marella, H.K.; Kamal, F.; Peravali, R.; Jacob, J.; Nair, S.P. Left Ventricular Diastolic Dysfunction in Liver Transplantation: A Stronger Association with Non-Alcoholic Steatohepatitis. Clin. Exp. Hepatol. 2020, 6, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Mittal, C.; Qureshi, W.; Singla, S.; Ahmad, U.; Huang, M.A. Pre-Transplant Left Ventricular Diastolic Dysfunction Is Associated with Post Transplant Acute Graft Rejection and Graft Failure. Dig. Dis. Sci. 2014, 59, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, W.; Mittal, C.; Ahmad, U.; Alirhayim, Z.; Hassan, S.; Qureshi, S.; Khalid, F. Clinical Predictors of Post-Liver Transplant New-Onset Heart Failure: New-Onset Heart Failure after Liver Transplantation. Liver Transpl. 2013, 19, 701–710. [Google Scholar] [CrossRef]
- Singh, A.D.; Ford, A.; Lyu, R.; Layoun, H.; Harb, S.C.; Fares, M.; Carey, W.D. Impact of Cirrhotic Cardiomyopathy Diagnosed According to Different Criteria on Patients with Cirrhosis Awaiting Liver Transplantation: A Retrospective Cohort Study. Dig Dis Sci. 2022, 67, 5315–5326. [Google Scholar] [CrossRef]
- Sonny, A.; Ibrahim, A.; Schuster, A.; Jaber, W.A.; Cywinski, J.B. Impact and Persistence of Cirrhotic Cardiomyopathy after Liver Transplantation. Clin. Transplant. 2016, 30, 986–993. [Google Scholar] [CrossRef]
- Vetrugno, L.; Cherchi, V.; Zanini, V.; Cotrozzi, S.; Ventin, M.; Terrosu, G.; Baccarani, U.; Bove, T. Association between Preoperative Diastolic Dysfunction and Early Allograft Dysfunction after Orthotopic Liver Transplantation: An Observational Study. Echocardiography 2022, 39, 561–567. [Google Scholar] [CrossRef]
- Enache, I.; Oswald-Mammosser, M.; Woehl-Jaegle, M.-L.; Habersetzer, F.; Di Marco, P.; Charloux, A.; Doutreleau, S. Cirrhotic Cardiomyopathy and Hepatopulmonary Syndrome: Prevalence and Prognosis in a Series of Patients. Respir. Med. 2013, 107, 1030–1036. [Google Scholar] [CrossRef]
- Ershoff, B.D.; Gordin, J.S.; Vorobiof, G.; Elashoff, D.; Steadman, R.H.; Scovotti, J.C.; Wray, C.L. Improving the Prediction of Mortality in the High Model for End-Stage Liver Disease Score Liver Transplant Recipient: A Role for the Left Atrial Volume Index. Transplant. Proc. 2018, 50, 1407–1412. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, J.; Kwon, A.; Choi, H.J.; Chung, H.S.; Hong, S.H.; Park, C.S.; Choi, J.H.; Chae, M.S. The 2016 ASE/EACVI Recommendations May Be Able to More Accurately Identify Patients at Risk for Diastolic Dysfunction in Living Donor Liver Transplantation. PLoS ONE 2019, 14, e0215603. [Google Scholar] [CrossRef] [PubMed]
- Spann, A.; Coe, C.; Ajayi, T.; Montgomery, G.; Shwetar, M.; Oje, A.; Annis, J.; Slaughter, J.C.; Alexopoulos, S.; Brittain, E.; et al. Cirrhotic Cardiomyopathy: Appraisal of the Original and Revised Criteria in Predicting Posttransplant Cardiac Outcomes. Liver Transpl. 2022, 28, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Kia, L.; Shah, S.J.; Wang, E.; Sharma, D.; Selvaraj, S.; Medina, C.; Cahan, J.; Mahon, H.; Levitsky, J. Role of Pretransplant Echocardiographic Evaluation in Predicting Outcomes Following Liver Transplantation: Echocardiography and Liver Transplant. Am. J. Transplant. 2013, 13, 2395–2401. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Middleton, K.J.; Kopelen, H.A.; Zoghbi, W.A.; Quiñones, M.A. Doppler Tissue Imaging: A Noninvasive Technique for Evaluation of Left Ventricular Relaxation and Estimation of Filling Pressures. J. Am. Coll. Cardiol. 1997, 30, 1527–1533. [Google Scholar] [CrossRef]
Author, Year | Study Design | Country | Follow-Up Time | Total, N | Age (Years) | Male, n (%) | LVDD Criteria | MELD | HCV, n (%) | HBV, n (%) | ALD, n (%) | NASH, n (%) | Hypertension, n (%) | Diabetes, n (%) | Dyslipidemias, n (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bushyhead, 2016 [20] | Retrospective cohort | USA | 5 years | 397 | 56 (51–61) * | 291 (73.29) * | Other criteria | 21 (14–30) * | 105 (26.4) | 10 (2.5) | 64 (16.1) | 31 (7.8) | 95 (23.9) | 73 (18.4) | 32 (8.1) |
Xu, 2013 [21] | Retrospective cohort | China | 5 years | 306 | 47 (41–53) * | 45 (14.7) * | Other criteria | 10.6 ± 5.0 | NR | NR | NR | NR | NR | NR | NR |
Dowsley, 2012 [15] | Retrospective cohort | USA | 5 years | 107 | NR | NR | Other criteria | NR | NR | NR | NR | NR | NR | NR | NR |
Izzy, 2021 [22] | Prospective cohort | USA | 4.5 ± 2.8 years | 141 | 57.8 (7.6) | 82 (58.2) | Other criteria | 18.6 (8.1) | NR | NR | 47 (33.3) | 47 (33.3) | 45 (32.6) | 49 (34.8) | NR |
Marella, 2021 [23] | Retrospective cohort | USA | 5 years | 266 | NR | NR | ASE 2016 | NR | NR | NR | NR | NR | NR | NR | NR |
Marella, 2020 [24] | Retrospective cohort | USA | 30 days | 100 | NR | NR | ASE 2016 | NR | NR | NR | NR | NR | NR | NR | NR |
Mittal, 2013 [25] | Retrospective cohort | USA | 5.3 ± 3.4 years | 970 | 53.2 ± 10.0 | 634 (65.35) * | Other criteria | 21 ± 9.5 | 444 (45.8) | 27 (2.8) | 167 (17.2) | 43 (4.4) | 585 (60.3) | 459 (47.3) | 189 (19.5) |
Qureshi, 2013 [26] | Prospective cohort | USA | 5.3 ± 3.4 years | 970 | NR | NR | Other criteria | NR | NR | NR | NR | NR | NR | NR | NR |
Raevens, 2014 [16] | Retrospective cohort | Belgium | - | 173 | 57 ± 11 | 111 (64) | Other criteria | 17 ± 7 | 23 (13%) | 10 (6%) | 69 (40%) | 12 (7%) | NR | NR | NR |
Singh, 2022 [27] | Retrospective cohort | USA | 44.0 ± 25.1 months | 278 | NR | NR | ASE 2016 | NR | NR | NR | NR | NR | NR | NR | NR |
Sonny, 2016 [28] | Retrospective cohort | USA | 5.2 years | 243 | 55 ± 9 | 175 (72) * | ASE 2009 | 17 ± 8 | 103 (42%) | NR | 44 (18%) | 25 (10%) | 81 (33%) | 76 (31%) | NR |
Vetrugno, 2022 [29] | Retrospective cohort | Italy | 90 days | 83 | NR | NR | ASE 2016 | NR | NR | NR | NR | NR | NR | NR | NR |
Enache, 2013 [30] | Retrospective cohort | France | 30 days | 83 | NR 52.1 ± 10.0 | 64 (77) * | Other criteria | NR | NR | NR | NR | NR | NR | NR | NR |
Ershoff, 2018 [31] | Retrospective cohort | USA | 17.5 months | 254 | 58.5 (51–63) | 156 (61.4) | Other criteria | 33 (15–39) | 98 (38.6) | NR | NR | NR | NR | 65 (25.6%) | NR |
Park, 2019 [32] | Retrospective cohort | Korea | 5 years | 312 | 54 (49–59) | 213 (68.3%) | ASE 2009/2016 | 12 (6–22) | 29 (9.3%) | 170 (54.5) | 65 (20.8%) | NR | 61 (19.6%) | 78 (25.0%) | NR |
Spann, 2022 [33] | Retrospective cohort | USA | 3.2 years | 210 | NR | NR | ASE 2016 | NR | NR | NR | NR | NR | NR | NR | NR |
Author, Year | Study Design | LVDD Criteria or Diastolic Parameters | Follow-Up | LVDD, n (%) | All-Cause Mortality, n (%) | Cardiovascular Outcomes | Use of Vasopressors | Use of Mechanical Ventilation | Early Allograft Dysfunction | Acute Cellular Rejection | Graft Failure | CRRT | Acute Kidney Injury | Length of Hospital Stay, Days | Length of ICU Stay, Days | Comment |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Park 2019 [32] | single-center retrospective cohort | ASE 2016 | 5 years | LVDD: 12 (3.8%) | 46% | HFrEF: 33% | NR | use in ICU: 100% | 1 week: 16.7% | NR | NR | 25% | 16.70% | 29 (23–42) | 8 (7–9) | Poor agreement between LVDD criteria (kappa 0.103; 95% CI = 0.019–0.188). Includes patients with indeterminate diastolic function. Worse survival in the LVDD group at 5-year follow-up with both criteria, and a greater difference with the 2016 criteria (9% vs. 46% mortality at 5 years, p = 0.007). Longer stay in ICU, mechanical ventilation, and RRT in LVDD 2016. |
Indeterminate: 40 (12.8%) | 30% | HFrEF: 2.5% | use in ICU: 50% | 1 week: 7.5% | 17.50% | 10% | 22 (21–36) | 7 (6–7) | ||||||||
Normal: 260 (83.3%) | 9% | HFrEF: 0 | use in ICU: 40.8% | 1 week: 10% | 6.20% | 10% | 25 (21–36) | 7 (6–7) | ||||||||
ASE 2009 | 5 years | LVDD: 51 (16.3%) | 38% | HFrEF: 5.9% | use in ICU: 56.9% | 1 week: 11.8% | 13.70% | 13.70% | 27 (21–36) | 7 (6–8) | ||||||
Indeterminate: 155 (49.7%) | 13% | HFrEF: 1.3% | use in ICU: 42.6% | 1 week: 12.9% | 8.40% | 8.40% | 25 (21–36) | 7 (6–7) | ||||||||
Normal: 206 (34%) | 17% | HFrEF: 0 | use in ICU: 40.6% | 1 week: 4.7% | 5.70% | 11.30% | 24 (21–37) | 7 (6–7) | ||||||||
Marella 2021 [23] | single-center retrospective cohort | ASE 2016 | 5 years | LVDD: 50 (18.7%) | 8 (16%) | Cardiac adverse events: 2 (4%) | days on vasopressors: 0.2 ± 0.91 | days on mechanical ventilation: 1.41 ± 1.23 | NR | NR | NR | NR | NR | 14.2 ± 9.11 | 3.82 ± 2.37 | No difference in 5-year mortality or immediate postoperative outcomes. |
Normal: 216 (81.3%) | 37 (17%) | Cardiac adverse events: 10 (5%) | days on vasopressors: 0.47 ± 2.28 | days on mechanical ventilation: 2.31 ± 5.9 | 14.6 ± 12.8 | 4.66 ± 6.61 | ||||||||||
Marella 2020 [24] | single-center retrospective cohort | ASE 2016 | 30 days | LVDD: 21 (21.2%) | 1 (4.7%) | Cardiac arrhythmias: 1 | days on vasopressors: 1.4 ± 5.8 | days on mechanical ventilation: 2.4 ± 5.3 | NR | NR | NR | NR | NR | 13.3 ± 9.55 | 4.5 ± 5.7 | No difference in 30-day mortality or postoperative outcomes. NASH and female sex predictors of LVDD. |
No LVDD: 78 (78.8%) | 7 (8.9%) | Cardiac arrhythmias: 6 | days on vasopressors: 0.196 ± 0.75 | days on mechanical ventilation: 1.6 ± 4.6 | 19.9 ± 43.6 | 5.3 ± 7.2 | ||||||||||
Vetrugno 2022 [29] | single-center retrospective cohort | ASE 2016 | 90 days | LVDD grade I: 43 (51.8%) | NR | CAD: p = 0.8 | NR | p = 0.06 | NR | NR | NR | NR | NR | p = 0.5 | Only provides p values in their association analysis of different grades of LVDD. CAD and EAD were the only significant associations. TR values were only available in 7 patients | |
LVDD grade II: 20 (24.1%) | CAD: p = 0.04 | p = 0.04 | p = 0.98 | |||||||||||||
Indeterminate/absent LVDD: 20 (24.1%) | CAD: p = 0.8 | p = 0.2 | p = 0.23 | |||||||||||||
Sonny 2016 [28] | single-center retrospective cohort | ASE 2009 | 5.2 years +0.6 | LVDD: 129 (53.1%) | Mortality, graft failure, and MACE composite outcome: 32 (24.8%) | NR | NR | NR | NR | NR | NR | NR | 16 ± 13 | NR | Higher length of hospital stay in LVDD group. Primary outcome was a composite of death, graft failure, and MACE. LVDD was not significantly associated with its incidence. | |
No LVDD: 114 (46.9%) | Mortality, graft failure, and MACE composite outcome: 19 (16.7%) | 12 ± 9 | ||||||||||||||
Izzy 2021 [22] | single-center retrospective cohort | CCMC | 4.5 ± 2.8 years | CCM: 49 (34.8%) (47 LVDD and 2 LVSD) | NR | 13 (59.5%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | CCM group largely defined by patients with LVDD (96%). CCM significantly associated with post-LT CVD (HR 2.57, 95% CI 1.19–5.54, and p = 0.016), and CCM was not associated with all-cause mortality p = 0.9. |
No CCM: 92 (65.2%) | 14 (17.8%) | |||||||||||||||
Mittal 2013 [25] | single-center retrospective cohort | defined by study authors with E/A and E/e’ | 5.3 ± 3.4 years | LVDD: 145 (15%) | 44 (30%) | NR | NR | NR | NR | 85 (58.6%) | 29 (20%) | NR | NR | NR | NR | LVDD was significantly associated with all-cause mortality (p = 0.0001). Patients with LVDD were significantly more likely to develop ACR (HR 3.38, 95% CI 2.64–4.33, and p ≤ 0.0001) and graft failure (HR 2.26, 95% CI 1.46–3.51, and p ≤ 0.0001). |
No LVDD: 825 (85%) | 226 (27%) | 259 (31%) | 82 (9.9%) | |||||||||||||
Reavens 2014 [16] | single-center retrospective cohort | WCG criteria | NR | LVDD: 74 (43%) | 13 (18%) | 5 (7%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | No differences between patients with and without LVDD on mortality and other outcomes. Found TR severity to be predictive of post-LT mortality (p = 0.02). |
No LVDD: 99 (57%) | 15 (15.1%) | 5 (5%) | ||||||||||||||
Quereshi 2013 [26] | single-center retrospective cohort | defined by study authors with E/A and E/e’ | 5.3 ± 3.4 years | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | Divided patients according to post-LT heart failure. Grade 3 LVDD was found to be predictive of HFrEF (p = 0.02). |
Xu 2013 [21] | retrospective | European study group on diastolic heart failure | in-hospital stay | LVDD: 100 (32.6%) | 13 (13%) | NR | 33% | hours: 4.0 (2.3–6.0) | NR | NR | NR | NR | 14 | 35.8 ± 17.3 | 7.3 ± 6.1 | Higher incidence of post-reperfusion syndrome and epinephrin requirements in patients with LVDD (p ≤ 0.01). No differences in post-LT outcomes and mortality. |
No LVDD: 206 (67.4%) | 30 (14.5%) | 15% | hours: 3.5 (2.0–6.0) | 17 | 38.6 ± 16.8 | 7.8 ± 5.3 | ||||||||||
Bushyhead 2016 [20] | single-center retrospective cohort | TR | 5 years | TR greater than mild: 37 (9.3%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | TR greater than mild predicted mortality (HR 1.68, 95% CI 1.03–2.75, and p = 0.04); no variable associated with EAD. |
No TR: 345 (86.9%) | ||||||||||||||||
Dowsley 2012 [15] | single-center retrospective cohort | LAVI | 3.2 [3.0] years | LAVI > 40: 24 (22.4%) | 12 (50%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | LAVI > 40 mL/m2 associated with worse survival; 50% vs. 71% (p = 0.01) increased LAVI also predicted post-LT HF. |
LAVI <40: 83 (77.6%) | 24 (29%) | |||||||||||||||
Ershoff 2018 [31] | single-center retrospective cohort | LAVI | 17.5 months | LAVI > 27: 124 (48.8%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | Increased LAVI (>27) was associated with worse survival, but only in patients with increased MELD (>33) (p = 0.06). |
LAVI < 27: 130 (51.2%) | NR | |||||||||||||||
Spann 2022 [33] | single-center retrospective cohort | CCMC | 3.2 years | CCM: 64 (30%) | 12 (19%) | MACE: 25 (17%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | CCMC criteria increased risk of MACE after adjusting for relevant cofactors (HR, 1.93, 95% CI, 1.05–3.56, and p = 0.04). All patients with CCM by 2020 criteria had LVDD, and none had systolic dysfunction, but GLS could not be assessed. |
No CCM: 146 (70%) | 19 (13%) | MACE: 19 (30%) | ||||||||||||||
WCG criteria | CCM: 162 (77.1%) | 25 (15%) | MACE: 38 (23%) | |||||||||||||
No CCM: 48 (22.9%) | 6 (12%) | MACE: 6 (12%) | ||||||||||||||
Singh 2022 [27] | single-center retrospective cohort | CCMC | 3.6 ± 2.09 years | CCM: 171 (85%) | 23 (13.5%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | No differences on post-LT mortality; no differences between criteria. Majority of patients classified according to the CCMC 2020 criteria had systolic dysfunction (GLS < 18%: 98.3%); marked difference from the rest of the studies. |
No CCM: 30 (15%) | 7 (23%) | |||||||||||||||
WCG criteria | CCM: 146 (72.6%) | 20 (13.7%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | ||||
No CCM: 55 (27.4%) | 10 (18%) | |||||||||||||||
Enache 2013 [30] | single-center prospective cohort | WCG criteria | 30 days | CCM: 15 (23.4%) | 3 (20%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | CCM not associated with post-LT mortality or complications. |
No CCM: 49 (76.6%) | 9 (18.4%) |
Studies | Selection | Comparability | Outcome | |||||
---|---|---|---|---|---|---|---|---|
Representativeness of the exposed cohort | Selection of non-exposed cohort | Ascertainment of exposure | Demonstration that outcome was not present at start of study | Comparability of cohorts on the basis of the design or analysis | Assessment of outcome | Length of follow-up | Adequacy of follow up | |
Marella et al., 2020 [24] | * | * | * | * | - | * | * | * |
Marella et al., 2021 [23] | * | * | * | * | * | * | * | * |
Izzy et al., 2021 [22] | * | * | * | * | ** | * | * | * |
Park et al., 2019 [32] | * | * | * | * | * | * | * | * |
Ershoff et al., 2018 [31] | * | * | * | * | * | * | * | * |
Mittal et al., 2013 [25] | * | * | * | * | ** | * | * | * |
Raevens et al., 2014 [16] | * | * | * | * | * | * | * | * |
Qureshi et al., 2013 [26] | * | * | * | * | * | * | * | * |
Enache et al., 2013 [30] | * | * | * | * | * | * | - | * |
Xu et al., 2013 [21] | * | * | * | * | * | * | * | * |
Dowsley et al., 2012 [15] | * | * | * | * | * | * | * | * |
Bushyhead et al., 2016 [20] | * | * | * | * | ** | * | * | * |
Sonny et al., 2016 [28] | * | * | * | * | - | * | * | * |
Singh et al., 2022 [27] | * | * | * | * | - | * | * | * |
Spann et al., 2022 [33] | * | * | * | * | ** | * | * | * |
Vetrugno et al., 2022 [29] | * | * | * | * | - | * | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Martínez, C.E.; Regalado-Ceballos, D.; Medrano-Juárez, S.; Regalado-Ceballos, A.; Hernández-Padilla, I.E.; Azpiri-López, J.R.; Nañez-Terreros, H.; Muñoz-Espinosa, L.E. Left Ventricular Diastolic Dysfunction Defined Using the 2016 ASE Criteria and Mortality after a Liver Transplant in Patients with End-Stage Liver Disease: A Systematic Review. Gastroenterol. Insights 2023, 14, 653-670. https://doi.org/10.3390/gastroent14040044
González-Martínez CE, Regalado-Ceballos D, Medrano-Juárez S, Regalado-Ceballos A, Hernández-Padilla IE, Azpiri-López JR, Nañez-Terreros H, Muñoz-Espinosa LE. Left Ventricular Diastolic Dysfunction Defined Using the 2016 ASE Criteria and Mortality after a Liver Transplant in Patients with End-Stage Liver Disease: A Systematic Review. Gastroenterology Insights. 2023; 14(4):653-670. https://doi.org/10.3390/gastroent14040044
Chicago/Turabian StyleGonzález-Martínez, Carlos E., Diego Regalado-Ceballos, Samantha Medrano-Juárez, Airam Regalado-Ceballos, Isaí E. Hernández-Padilla, José R. Azpiri-López, Homero Nañez-Terreros, and Linda E. Muñoz-Espinosa. 2023. "Left Ventricular Diastolic Dysfunction Defined Using the 2016 ASE Criteria and Mortality after a Liver Transplant in Patients with End-Stage Liver Disease: A Systematic Review" Gastroenterology Insights 14, no. 4: 653-670. https://doi.org/10.3390/gastroent14040044
APA StyleGonzález-Martínez, C. E., Regalado-Ceballos, D., Medrano-Juárez, S., Regalado-Ceballos, A., Hernández-Padilla, I. E., Azpiri-López, J. R., Nañez-Terreros, H., & Muñoz-Espinosa, L. E. (2023). Left Ventricular Diastolic Dysfunction Defined Using the 2016 ASE Criteria and Mortality after a Liver Transplant in Patients with End-Stage Liver Disease: A Systematic Review. Gastroenterology Insights, 14(4), 653-670. https://doi.org/10.3390/gastroent14040044