COVID-19 and the Gastrointestinal Tract
Abstract
:1. Introduction
- In a report from the Chinese Center for Disease Control and Prevention (CDC) including about 44,500 confirmed infections, mild disease was reported in 81% of patients. Severe disease (e.g., dyspnea, hypoxia, or >50 percent lung involvement) was reported in 14%. Critical disease was reported in 5%, and the overall case fatality rate was 2.3%, with no deaths among noncritical patients [12].
- Out of 1.3 million cases reported to the United States Centers for Disease Control and Prevention (CDC) through the end of May 2020, 14% of patients were hospitalized, 2% were admitted to the intensive care unit, and 5% died [13].
2. Upper Gastrointestinal Tract
3. Pancreatic Involvement
4. Gallbladder and Biliary
5. Liver Involvement
- Moderate microvesicular steatosis.
- Mild inflammatory infiltrates in the hepatic lobule and portal tract.
- Mild sinusoidal dilatation.
- Focal macrovesicular steatosis.
- Mild lobular lymphocytic infiltration, which was not significant in portal areas.
- A significant increasing trend in COVID-19 mortality rates by HAV susceptibility has been described. The immunity of children against HAV (a virus with similar taxonomy to coronaviruses), acquired either by vaccination in developed countries or by infection in underdeveloped countries, may have contributed to this protection. The loss of immunity to HAV as the result of aging may have led to an increased COVID-19 morbidity in the elderly [38].HAV replication occurs in hepatocyte cytoplasm, thus hepatocellular damage is mediated by direct cytotoxicity. Interferon-gamma (IFN-γ) has a key role in the clearance of HAV of infected hepatocytes. On the other hand, the HAV vaccine is highly immunogenic, inducing seropositivity in 97% of adults after the second dose. The HAV vaccine causes specific proliferation of mononuclear cells in peripheral blood and the release of IFN-γ, thus making it possible that the immune response caused by the HAV vaccine might be protective against COVID-19 infection by an adaptive immunity cross-reaction [39].
- As HBV infection can alter innate immune responses, and uncontrolled innate responses and impaired adaptive immune responses caused by the COVID-19 disease may generate tissue damage, it is plausible that co-infection of SARS-CoV-2 and HBV may synergistically cause disturbances of the immune function and that of the liver.In a retrospective study, Lin et al. reported higher rates of abnormal liver function test in tCOVID-19 positive- HBV inactive carriers compared to their non-HBV carriers counterparts [40]. Similarly, Zou reported higher incidences of liver function test abnormalities among chronic HBV carriers with COVID-19 disease. Among HBV- COVID19 coinfected hospitalized patients, 13.33% developed liver injury; 71.43% recovered after eight days and 28.57% rapidly progressed to acute-on-chronic liver failure; patients with liver injury are more likely to have severe illness, higher incidence of complications and mortality [41].On the other hand, among patients with chronic HBV infection, Liu et al. reported no statistically significant differences in the median time to SARS-CoV2 clearance or progression to severe COVID-19 disease, but three out of 19 patients presented HBV reactivation. Diffuse ballooning degeneration, necrosis of isolated hepatocytes, periportal fibrosis, few inflammatory cells infiltrating the portal tract, positive HBsA and negative hepatitis B core antigen immunohistochemistry were the main histopathological findings [42].
- In a retrospective analysis of the Electronically Retrieved Cohort of HCV Infected Veterans (ERCHIVES), testing rates for SARS-CoV-2 among HCV positive patients was found to be only 8.3%, with 6.2% of tests being positive.HCV positive persons with SARS-CoV-2 coinfection were more likely to be black, have a higher body mass index, diabetes or stroke, with no apparent association between liver fibrosis and infection rate [43].
6. Gut Involvement
- Ileal epithelial cells have high ACE2 expression rates (~30% ACE2-positive cells). [17] COVID-19 leads to the infection of ileal cells followed by expression of the viral nucleocapsid protein, meaning SARS-CoV-2 may spread from infected to uninfected cells in the GI tract, generating mucosal immune cell activation.
- Viraemia following lung infection may occur in approximately 1% of cases, leading to a secondary attack of SARS-CoV2 on ACE2 target organs, including the gut and kidney [46].
- Crosstalk between gut microbiota and the lungs contribute to maintain host homeostasis and disease development in association with the immune system, where the distal (gut) immune modulation during respiratory illness is mediated by gut microbiota. Similarly, lung microbiota influences both respiratory and gastrointestinal health [47]. This gut-lung interaction (gut-lung axis) may influence COVID-19 severity [48,49].On the luminal surface of intestinal epithelial cells, ACE2 associates with the neutral amino acid transporter B0AT1 and regulates intestinal microflora. SARS-CoV-2 infection of the GI tract itself alters the levels of ACE2 at the brush border, leading to dysbiosis and inflammation [50].
7. Vaccine-Related Gastrointestinal Symptoms
- Among patients who received COVID-19 mRNA vaccines, gastrointestinal adverse events were the third most common type of adverse events after immunization, being reported in 25.54% of patients. Among the gastrointestinal symptoms, nausea represented 56.41% of symptoms, followed by vomiting (14.7%) and diarrhea (14.13%) [70].
- Regarding the Ad26.COV2.S vaccine, nausea was the third most common systemic adverse effect, being present in 14.2% of patients [71].
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019. |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2. |
SARS | Severe Acute Respiratory Syndrome. |
ACE2 | Angiotensin-converting enzyme 2. |
TMPRSS2 | Transmembrane protease, serine 2. |
KIM1 | kidney injury molecule-1. |
RBD | Receptor-binding domain. |
CDC | Center for Disease Control and Prevention. |
Ig | Immunoglobulin. |
IgV | Immunoglobulin variable. |
ALT | Alanine Aminotransferase. |
AST | Aspartate Aminotransferase. |
GI | Gastrointestinal. |
PPIs | proton pump inhibitors. |
H2Ras | H2 receptor antagonists. |
AIH | autoimmune hepatitis. |
CLD | chronic liver disease. |
ICU | intensive care unit. |
HAV | Hepatitis A virus. |
HBV | Hepatitis B virus. |
HCV | Hepatitis C virus. |
IFN-γ | Interferon-gamma |
IBD | Inflammatory Bowel Disease. |
ARDS | Acute respiratory distress syndrome. |
TNF | Tumoral necrosis factor. |
References
- Majumder, J.; Minko, T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J. 2021, 23, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://coronavirus.jhu.edu/map.html (accessed on 23 October 2021).
- Stringhini, S.; Wisniak, A.; Piumatti, G.; Azman, A.S.; Lauer, S.A.; Baysson, H.; De Ridder, D.; Petrovic, D.; Schrempft, S.; Marcus, K.; et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): A population-based study. Lancet 2020, 396, 313–319. [Google Scholar] [CrossRef]
- Havers, F.P.; Reed, C.; Lim, T.; Montgomery, J.M.; Klena, J.D.; Hall, A.J.; Fry, A.M.; Cannon, D.L.; Chiang, C.-F.; Gibbons, A.; et al. Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23–May 12, 2020. JAMA Intern. Med. 2020, 180, 1576. [Google Scholar] [CrossRef] [PubMed]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; De Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Y.; Zeng, X.; Chen, H.; Chen, Y.; Yang, D.; Shen, Z.; Wang, X.; Liu, X.; Xiong, M.; et al. Kidney injury molecule-1 is a potential receptor for SARS-CoV-2. J. Mol. Cell Biol. 2021, 13, 185–196. [Google Scholar] [CrossRef]
- Wan, C.; Zhang, C. Kidney injury molecule-1: A novel entry factor for SARS-CoV-2. J. Mol. Cell Biol. 2021, 13, 159–160. [Google Scholar] [CrossRef]
- Kerget, B.; Kerget, F.; Aksakal, A.; Aşkın, S.; Uçar, E.Y.; Sağlam, L. Evaluation of the relationship between KIM-1 and suPAR levels and clinical severity in COVID-19 patients: A different perspective on suPAR. J. Med. Virol. 2021, 93, 5568–5573. [Google Scholar] [CrossRef]
- Oran, A.D.P.; Topol, E.J. The Proportion of SARS-CoV-2 Infections That Are Asymptomatic: A Systematic Review. Ann. Intern. Med. 2021, 174, 655–662. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239. [Google Scholar] [CrossRef] [PubMed]
- Stokes, E.K.; Zambrano, L.D.; Anderson, K.N.; Marder, E.P.; Raz, K.M.; Felix, S.E.B.; Tie, Y.; Fullerton, K.E. Coronavirus Disease 2019 Case Surveillance—United States, January 22–May 30, 2020. Morbidity and mortality weekly report. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Lian, J.-S.; Hu, J.-H.; Gao, J.; Zheng, L.; Zhang, Y.-M.; Hao, S.-R.; Jia, H.-Y.; Cai, H.; Zhang, X.-L.; et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020, 69, 1002–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parasa, S.; Desai, M.; Chandrasekar, V.T.; Patel, H.K.; Kennedy, K.F.; Roesch, T.; Spadaccini, M.; Colombo, M.; Gabbiadini, R.; Artifon, E.L.A.; et al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients with Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e2011335. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 2020, 14, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Sarver, D.C.; Wong, G.W. Obesity alters Ace2 and Tmprss2 expression in lung, trachea, and esophagus in a sex-dependent manner: Implications for COVID-19. Biochem. Biophys. Res. Commun. 2020, 538, 92–96. [Google Scholar] [CrossRef]
- Janowitz, T.; Gablenz, E.; Pattinson, D.; Wang, T.C.; Conigliaro, J.; Tracey, K.; Tuveson, D. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: A case series. Gut 2020, 69, 1592–1597. [Google Scholar] [CrossRef]
- Almario, C.V.; Chey, W.D.; Spiegel, B.M. Increased Risk of COVID-19 Among Users of Proton Pump Inhibitors. Am. J. Gastroenterol. 2020, 115, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Landecho, M.M.F.; Frühbeck, G. Benefits of Bariatric Surgery Prior to SARS-CoV-2 Infection in Modulating the Response to COVID-19. Obesity 2020, 29, 19. [Google Scholar] [CrossRef]
- Lassen, P.B.; Poitou, C.; Genser, L.; Marchelli, F.; Aron-Wisnewsky, J.; Ciangura, C.; Jacques, F.; Moreau, P.; Oppert, J.; Clément, K.; et al. COVID-19 and its Severity in Bariatric Surgery-Operated Patients. Obesity 2020, 29, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.P.; Patel, P.A.; Vunnam, R.R.; Hewlett, A.T.; Jain, R.; Jing, R.; Vunnam, S.R. Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19. J. Clin. Virol. 2020, 128, 104386. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, H.; Fan, J.; Zhang, Y.; Wang, H.; Zhao, Q. Pancreatic Injury Patterns in Patients with Coronavirus Disease 19 Pneumonia. Gastroenterology 2020, 159, 367–370. [Google Scholar] [CrossRef]
- Xu, L.; Liu, J.; Lu, M.; Yang, D.; Zheng, X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020, 40, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruni, A.; Garofalo, E.; Zuccalà, V.; Currò, G.; Torti, C.; Navarra, G.; De Sarro, G.; Navalesi, P.; Longhini, F.; Ammendola, M. Histopathological findings in a COVID-19 patient affected by ischemic gangrenous cholecystitis. World J. Emerg. Surg. WJES 2020, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ying, M.; Lu, B.; Pan, J.; Lu, G.; Zhou, S.; Wang, D.; Li, L.; Shen, J.; Shu, J. COVID-19 with acute cholecystitis: A case report. BMC Infect. Dis. 2020, 20, 1–4. [Google Scholar] [CrossRef]
- Jothimani, D.; Venugopal, R.; Abedin, M.F.; Kaliamoorthy, I.; Rela, M. COVID-19 and the liver. J. Hepatol. 2020, 73, 1231–1240. [Google Scholar] [CrossRef]
- Tian, S.; Xiong, Y.; Liu, H.; Niu, L.; Guo, J.; Liao, M.; Xiao, S.-Y. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 2020, 33, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Shi, L.; Wang, Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Chau, T.N.; Lee, K.C.; Yao, H.; Tsang, T.Y.; Chow, T.C.; Yeung, Y.C.; Choi, K.W.; Tso, Y.K.; Lau, T.; Lai, S.T.; et al. SARS-associated viral hepatitis caused by a novel coronavirus: Report of three cases. Hepatology 2004, 39, 302–310. [Google Scholar] [CrossRef]
- Velasco, J.V.-R.; García-Jiménez, E.; Remes-Troche, J. Manifestaciones hepáticas y repercusión en el paciente cirrótico de COVID-19. Rev. Gastroenterol. Mex. 2020, 85, 303–311. [Google Scholar] [CrossRef]
- Xu, L.; Ying, S.; Hu, J.; Wang, Y.; Yang, M.; Ge, T.; Huang, C.; Xu, Q.; Zhu, H.; Chen, Z.; et al. Pneumonia in patients with cirrhosis: Risk factors associated with mortality and predictive value of prognostic models. Respir. Res. 2018, 19, 242. [Google Scholar] [CrossRef]
- Zou, B.; Yeo, Y.H.; Jeong, D.; Sheen, E.; Park, H.; Nguyen, P.; Hsu, Y.-C.; Garcia, G.; Nguyen, M.H. Higher mortality and hospital charges in patients with cirrhosis and acute respiratory illness: A population-based study. Sci. Rep. 2018, 8, 9969. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Moon, A.M.; Cook, J.A.; Abd-Elsalam, S.; Aloman, C.; Armstrong, M.J.; Pose, E.; Brenner, E.J.; Cargill, T.; Catana, M.A.; et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J. Hepatol. 2021, 74, 567–577. [Google Scholar] [CrossRef]
- Marjot, T.; Buescher, G.; Sebode, M.; Barnes, E.; Barritt, A.S.; Armstrong, M.J.; Baldelli, L.; Kennedy, J.; Mercer, C.; Ozga, A.-K.; et al. SARS-CoV-2 infection in patients with autoimmune hepatitis. J. Hepatol. 2021, 74, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Webb, G.J.; Marjot, T.; Cook, J.A.; Aloman, C.; Armstrong, M.J.; Brenner, E.J.; Catana, M.A.; Cargill, T.; Dhanasekaran, R.; García-Juárez, I.; et al. Outcomes following SARS-CoV-2 infection in liver transplant recipients: An international registry study. Lancet Gastroenterol. Hepatol. 2020, 5, 1008–1016. [Google Scholar] [CrossRef]
- Sarialioğlu, F.; Belen, F.B.; Hayran, K.M. Hepatitis A susceptibility parallels high COVID-19 mortality. Turk. J. Med. Sci. 2021, 51, 382–384. [Google Scholar] [CrossRef]
- Sarialioglu, F.; Apak, F.B.B.; Haberal, M. Can Hepatitis A Vaccine Provide Protection Against COVID-19? Exp. Clin. Transplant. 2020, 18, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yuan, J.; Long, Q.; Hu, J.; Deng, H.; Zhao, Z.; Chen, J.; Lu, M.; Huang, A. Patients with SARS-CoV-2 and HBV co-infection are at risk of greater liver injury. Genes Dis. 2020, 8, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Fang, M.; Li, S.; Wu, L.; Gao, B.; Gao, H.; Ran, X.; Bian, Y.; Li, R.; Ling, J.; et al. Characteristics of Liver Function in Patients With SARS-CoV-2 and Chronic HBV Coinfection. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2021, 19, 597–603. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Cai, Q.; Sun, L.; Huang, D.; Zhou, G.; He, Q.; Wang, F.; Liu, L.; Chen, J. Longitudinal changes of liver function and hepatitis B reactivation in COVID-19 patients with pre-existing chronic hepatitis B virus infection. Hepatol. Res. Off. J. Jpn. Soc. Hepatol. 2020, 50, 1211–1221. [Google Scholar] [CrossRef]
- Butt, A.A.; Yan, P. Rates and characteristics of SARS-CoV-2 infection in persons with hepatitis C virus infection. Liver Int. Off. J. Int. Assoc. Study Liver 2020, 41, 76–80. [Google Scholar] [CrossRef]
- Villar, L.M.; de Paula, V.S.; Pinto, L.C.M.; Marques, B.C.L.; da Costa, V.D.; da Silva, L.L.; Santos, A.C.; Nascimento, G.P.D.; Miguel, J.C.; Mendonça, A.C.D.F.; et al. Clinical and laboratory characteristics of hepatitis C and COVID-19 coinfection: Prolonged RNA shedding in nonhospitalized case. Clin. Case Rep. 2021, 9. [Google Scholar] [CrossRef]
- Butt, A.A.; Yan, P.; Chotani, R.A.; Shaikh, O.S. Mortality is not increased in SARS-CoV-2 infected persons with hepatitis C virus infection. Liver Int. Off. J. Int. Assoc. Study Liver 2021, 41, 1824–1831. [Google Scholar] [CrossRef]
- Neurath, M.F. COVID-19 and immunomodulation in IBD. Gut 2020, 69, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Dumas, A.; Bernard-Raichon, L.; Poquet, Y.; Lugo, G.; Neyrolles, O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018, 20, e12966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktas, B.; Aslim, B. Gut-lung axis and dysbiosis in COVID-19. Turk. J. Boil. 2020, 44, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Zeppa, S.D.; Agostini, D.; Piccoli, G.; Stocchi, V.; Sestili, P. Gut Microbiota Status in COVID-19: An Unrecognized Player? Front. Cell Infect. Microbiol. 2020, 10, 576551. [Google Scholar] [CrossRef]
- Stevens, B.R.; Ellory, J.C.; Preston, R.L. B0AT1 Amino Acid Transporter Complexed with SARS-CoV-2 Receptor ACE2 Forms a Heterodimer Functional Unit: In Situ Conformation Using Radiation Inactivation Analysis. Function 2021, 2, zqab027. [Google Scholar] [CrossRef]
- Baud, D.; Dimopoulou Agri, V.; Gibson, G.R.; Reid, G.; Giannoni, E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front. Public Health 2020, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Brito, M.B.; Diaz, J.P.; Muñoz-Quezada, S.; Llorente, C.G.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- de Oliveira, G.L.V.; Oliveira, C.N.S.; Pinzan, C.F.; de Salis, L.V.V.; Cardoso, C.R.D.B. Microbiota Modulation of the Gut-Lung Axis in COVID-19. Front. Immunol. 2021, 12, 635471. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Fatima, R.; Haghbin, H.; Lee-Smith, W.; Nawras, A. The Incidence and Outcomes of COVID-19 in IBD Patients: A Rapid Review and Meta-analysis. Inflamm. Bowel Dis. 2020, 26, e132–e133. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, A.; Prentice, R.; Rentsch, C.; Johnson, D.; Ardalan, Z.; Heerasing, N.; Garg, M.; Campbell, S.; Sasadeusz, J.; Macrae, F.; et al. Review article: Prevention, diagnosis and management of COVID-19 in the IBD patient. Aliment. Pharmacol. Ther. 2020, 52, 54–72. [Google Scholar] [CrossRef]
- Brenner, E.J.; Ungaro, R.; Colombel, J.F.; Kappelman, M.D. Secure-IBD Database Public Data Update 2020. Available online: www.covidibd.org/current-data (accessed on 31 August 2021).
- Burgueño, J.F.; Reich, A.; Hazime, H.; Quintero, M.A.; Fernandez, I.; Fritsch, J.; Santander, A.M.; Brito, N.; Damas, O.M.; Deshpande, A.; et al. Expression of SARS-CoV-2 Entry Molecules ACE2 and TMPRSS2 in the Gut of Patients With IBD. Inflamm. Bowel Dis. 2020, 26, 797–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungaro, R.C.; Brenner, E.J.; Gearry, R.B.; Kaplan, G.G.; Kissous-Hunt, M.; Lewis, J.D.; Ng, S.C.; Rahier, J.-F.; Reinisch, W.; Steinwurz, F.; et al. Effect of IBD medications on COVID-19 outcomes: Results from an international registry. Gut 2020, 70, 725–732. [Google Scholar] [CrossRef]
- Lees, C.W.; Irving, P.M.; Beaugerie, L. COVID-19 and IBD drugs: Should we change anything at the moment? Gut 2020, 70, 632–634. [Google Scholar] [CrossRef]
- Ahmed, A.O.E.; Badawi, M.; Ahmed, K.; Mohamed, M.F.H. Case Report: COVID-19 Masquerading as an Acute Surgical Abdomen. Am. J. Trop. Med. Hyg. 2020, 103, 841–843. [Google Scholar] [CrossRef]
- Kecler-Pietrzyk, A.; Orsi, G.; Carthy, J.; Torreggiani, W.C. Enteritis and Severe Abdominal Pain as the First Presentation of Covid-19. Ir. Med. J. 2020, 113, 102. [Google Scholar] [PubMed]
- Suwanwongse, K.; Shabarek, N. Pseudo-Appendicitis in an Adolescent with COVID-19. Cureus 2020, 12. [Google Scholar] [CrossRef]
- Malbul, K.; Katwal, S.; Maharjan, S.; Shrestha, S.; Dhital, R.; Rajbhandari, A.P. Appendicitis as a presentation of COVID-19: A case report. Ann. Med. Surg. 2021, 69, 102719. [Google Scholar] [CrossRef] [PubMed]
- Pirola, L.; Palermo, A.; Mulinacci, G.; Ratti, L.; Fichera, M.; Invernizzi, P.; Viganò, C.; Massironi, S. Acute mesenteric ischemia and small bowel imaging findings in COVID-19: A comprehensive review of the literature. World J. Gastrointest. Surg. 2021, 13, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Giovanni, J.E.; Hrapcak, S.; Melgar, M.; Godfred-Cato, S. Global Reports of Intussusception in Infants With SARS-CoV-2 Infection. Pediatr. Infect. Dis. J. 2020, 40, e35–e36. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Hartman, L.; Navarro, Y.J.S.; Rossini, C.J.; Burdett, C.; Pennell, C. Pediatric Covid-19 mesenteric lymphoid hyperplasia associated intussusception: A case report and literature review. J. Pediatr. Surg. Case Rep. 2021, 73, 101988. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.M.; Sabbota, A.L. Right hemicolectomy for ileocolonic intussusception in an adult with active COVID-19 infection: A case report. J. Surg. Case Rep. 2021, 2021, rjab205. [Google Scholar] [CrossRef] [PubMed]
- Siegel, A.; Chang, P.J.; Jarou, Z.J.; Paushter, D.M.; Harmath, C.B.; Ben Arevalo, J.; Dachman, A. Lung Base Findings of Coronavirus Disease (COVID-19) on Abdominal CT in Patients with Predominant Gastrointestinal Symptoms. Am. J. Roentgenol. 2020, 215, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Pautrat, K.; Chergui, N. SARS-CoV-2 infection may result in appendicular syndrome: Chest CT scan before appendectomy. J. Visc. Surg. 2020, 157, S63–S64. [Google Scholar] [CrossRef]
- Mauro, A.; De Grazia, F.; Lenti, M.V.; Penagini, R.; Frego, R.; Ardizzone, S.; Savarino, E.; Radaelli, F.; Bosani, M.; Orlando, S.; et al. Upper gastrointestinal bleeding in COVID-19 inpatients: Incidence and management in a multicenter experience from Northern Italy. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101521. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Sun, M.; Zhou, Y.; Yin, M.; Zhao, B.; Li, X. COVID-19 mRNA Vaccines Are Generally Safe in the Short Term: A Vaccine Vigilance Real-World Study Says. Front. Immunol. 2021, 12, 669010. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, X.; Zhang, Z. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020, 69, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.-S.; Hung, I.F.; Chan, P.P.; Lung, K.; Tso, E.; Liu, R.; Ng, Y.; Chu, M.Y.; Chung, T.W.; Tam, A.R.; et al. Gastrointestinal manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology 2020, 159, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S.; Siddique, S.; Singh, S.; Altayar, O.; Caliendo, A.M.; Davitkov, P.; Feuerstein, J.D.; Kaul, V.; Lim, J.K.; Mustafa, R.A.; et al. AGA Rapid Review and Guideline for SARS-CoV2 Testing and Endoscopy Post-Vaccination: 2021 Update. Gastroenterology 2021, 161, 1011–1029.e11. [Google Scholar] [CrossRef]
- Perisetti, A.; Gajendran, M.; Boregowda, U.; Bansal, P.; Goyal, H. COVID-19 and gastrointestinal endoscopies: Current insights and emergent strategies. Dig. Endosc. Off. J. Jpn. Gastroenterol. Endosc. Soc. 2020, 32, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Hunt, R.H.; East, J.E.; Lanas, A.; Malfertheiner, P.; Satsangi, J.; Scarpignato, C.; Webb, G.J. COVID-19 and Gastrointestinal Disease. Implications for the Gastroenterologist. Dig. Dis. 2020, 39, 119–139. [Google Scholar] [CrossRef] [PubMed]
Epidemiological risk. | Questions remain regarding fecal-oral transmission. SARS-CoV-2 RNA can be detected in the endoscopic specimens from the oesophagus, stomach, duodenum and rectum [72]. Substantial amounts of SARS-CoV-2 RNA can be detected in stool specimens from COVID-19 patients [73]. SARS-CoV-2 RNA has been detected in the sewage of hospitals treating patients with SACOVID-19 disease and the virus remained infectious up to 2 weeks in sewage water [74]. |
Diagnostic procedures | COVID-19 could possibly be transmitted by endoscopes; theoretically due to contact with mucous membranes and body fluids. GI societies have advocate for rescheduling non-urgent procedures and perform only emergent or urgent ones. Pre-endoscopy screening was initially recommended; upgraded guidelines state that, with widespread vaccination of health care workers and the general population, pre-endoscopy screening may not always be necessary, and placed a high value on minimizing additional delays in patient care [74,75]. |
Current medication history | Plausible clinical benefit with famotidine in COVID-19 cases [19]. Impact of acid suppression on risk for COVID-19 is unknown so far [20]. Immunosupression schedule in patients with IBD must be reassessed on a personalized basis [55]. |
Expected clinical course among patients with known comorbidities. | Among patients with bariatric surgery history and COVID-19 disease 1.6% fatality rate. Persistent type 2 diabetes and higher percent weight loss since bariatric surgery are associated with severe COVID-19 [22]. Mortality among patients with COVID-19 and cirrhosis has been reported to be 32%, being older age, higher Child-Pugh and alcohol related liver disease the main factors associated with death [35]/ Similar hospitalization rates, ICU admission and death between patients with AIH and non-AIH CLD [36]. Among persons living with chronic HBV infection, it has been reported that there is no statistically significant differences in the median time to SARS-CoV2 clearance or progression to severe COVID-19 disease [42]. COVID-19-HCV coinfected patients have been reported to have higher hospitalization rates, but ICU admission and mortality are similar between those with and without HCV infection [45]. No current evidence of increased infection rates or worse disease severity of COVID-19 in IBD patients [54]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mucino-Bermejo, M.-J. COVID-19 and the Gastrointestinal Tract. Gastroenterol. Insights 2021, 12, 394-404. https://doi.org/10.3390/gastroent12040038
Mucino-Bermejo M-J. COVID-19 and the Gastrointestinal Tract. Gastroenterology Insights. 2021; 12(4):394-404. https://doi.org/10.3390/gastroent12040038
Chicago/Turabian StyleMucino-Bermejo, María-Jimena. 2021. "COVID-19 and the Gastrointestinal Tract" Gastroenterology Insights 12, no. 4: 394-404. https://doi.org/10.3390/gastroent12040038
APA StyleMucino-Bermejo, M. -J. (2021). COVID-19 and the Gastrointestinal Tract. Gastroenterology Insights, 12(4), 394-404. https://doi.org/10.3390/gastroent12040038