The Role of Tau in Neuronal Function and Neurodegeneration
Abstract
1. Tau Expression
2. Localization of Tau mRNA
3. Tau and Neurodegenerative Diseases
3.1. Alzheimer’s Disease
3.2. Progressive Supranuclear Palsy (PSP)
3.3. Tau and Its Role in CBD
3.4. Frontotemporal Dementia with Parkinsonism Linked to Chromosome 17 (FTDP-17) and Its Relationship with Tau
3.5. Pick’s Disease and Its Relationship with Tau
3.6. Astroglial Tauopathies and Tau
3.7. Frontotemporal Dementia and Tau
3.8. Tau Involvement in Lysosomal Storage Diseases (LSDs)
3.9. Tau-Targeted Therapeutic Strategies
- Antisense Oligonucleotides (ASOs): ASOs are short, synthetic nucleic acid sequences that bind to Tau mRNA to reduce its translation. BIIB080 is a notable example that has shown effectiveness in lowering Tau protein levels in both preclinical and early clinical trials [76].
- Tau Aggregation Inhibitors: These small molecules prevent the formation of neurofibrillary tangles by inhibiting Tau aggregation. LMTX (a derivative of methylene blue) has been evaluated for this purpose, although results have been mixed in terms of clinical benefit [96].
- Kinase Inhibitors: Targeting kinases such as GSK-3β, which phosphorylate Tau, is another strategy. GSK-3β inhibitors aim to reduce Tau hyperphosphorylation and subsequent aggregation, but toxicity and specificity remain significant challenges [61].
- Splicing Modulators: These therapies aim to correct the imbalance between 3R and 4R Tau isoforms by modulating alternative splicing of the MAPT gene. Such modulation may be particularly relevant in disorders like PSP, CBD, and Pick’s disease [97].
- Neuroinflammation Modulators: Since inflammation contributes to Tau pathology, drugs that reduce microglial activation or cytokine release may have protective effects. Anti-inflammatory approaches may be used in combination with other Tau-targeted therapies [98].
- Chaperone-Mediated Therapy: Molecular chaperones that assist in protein folding may help prevent Tau misfolding and aggregation. Enhancing the function of these chaperones is being explored as a potential therapeutic strategy [99].
4. Conclusions
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
ALS | Axonal Localization Sequences |
AQP | Aquaporin |
ARE | AU-rich Elements |
AU | Adenine-Uracil |
BDNF | Brain-Derived Neurotrophic Factor |
CBD | Corticobasal Degeneration |
CNS | Central Nervous System |
CREB | cAMP Response Element-Binding Protein |
CSF | Cerebrospinal Fluid |
CTE | Chronic Traumatic Encephalopathy |
ELAV | Embryonic Lethal Abnormal Vision |
ELISA | Enzyme-Linked Immunosorbent Assay |
FAB | Frontal Assessment Battery |
FDG | Fluorodeoxyglucose |
FL | Frontal Lobe |
FMRP | Fragile X Mental Retardation Protein |
FTD | Frontotemporal Dementia |
FTDP | Frontotemporal Dementia with Parkinsonism |
FTLD | Frontotemporal Lobar Degeneration |
GABA | Gamma-Aminobutyric Acid |
GC | Guanine-Cytosine (GC-rich region) |
GFAP | Glial Fibrillary Acidic Protein |
GFTT | Glial Fibrillary Tangle Tauopathy |
GLT | Glutamate Transporter (possibly GLT-1) |
GSK | Glycogen Synthase Kinase |
HC | Hippocampus |
HnRNP | Heterogeneous Nuclear Ribonucleoprotein |
HuD | Human antigen D (ELAVL4) |
LMTX | Leucomethylthioninium (Tau aggregation inhibitor) |
MAP | Microtubule-Associated Protein |
MAPT | Microtubule-Associated Protein Tau (gene) |
MCI | Mild Cognitive Impairment |
References
- Black, M.M.; Baas, P.W. The Basis of Polarity in Neurons. Trends Neurosci. 1989, 12, 211–214. [Google Scholar] [CrossRef]
- Hirokawa, N.; Funakoshi, T.; Sato-Harada, R.; Kanai, Y. Selective Stabilization of Tau in Axons and Microtubu-le-Associated Protein 2C in Cell Bodies and Dendrites Contributes to Polarized Localization of Cytoskeletal Proteins in Mature Neurons. J. Cell Biol. 1996, 132, 667–679. [Google Scholar] [CrossRef]
- Stone, M.C.; Roegiers, F.; Rolls, M.M. Microtubules Have Opposite Orientation in Axons and Dendrites of Dro-sophila Neurons. Mol. Biol. Cell 2008, 19, 4122–4129. [Google Scholar] [CrossRef] [PubMed]
- Binder, L.I.; Frankfurter, A.; Rebhun, L.I. Differential Localization of MAP-2 and Tau in Mammalian Neurons in Situ. Ann. N. Y. Acad. Sci. 1986, 466, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Corsi, A.; Bombieri, C.; Valenti, M.T.; Romanelli, M.G. Tau Isoforms: Gaining Insight into MAPT Alternative Splicing. Int. J. Mol. Sci. 2022, 23, 15383. [Google Scholar] [CrossRef]
- Buchholz, S.; Zempel, H. The Six Brain-Specific TAU Isoforms and Their Role in Alzheimer’s Disease and Rela-ted Neurodegenerative Dementia Syndromes. Alzheimer.s Dement. 2024, 20, 3606–3628. [Google Scholar] [CrossRef] [PubMed]
- Fischer, I. Big Tau: What We Know, and We Need to Know. eNeuro 2023, 10, ENEURO.0052-23.2023. [Google Scholar] [CrossRef]
- Caillet-Boudin, M.-L.; Buée, L.; Sergeant, N.; Lefebvre, B. Regulation of Human MAPT Gene Expression. Mol. Neurodegener. 2015, 10, 28. [Google Scholar] [CrossRef]
- Heicklen-Klein, A.; Ginzburg, I. Tau Promoter Confers Neuronal Specificity and Binds Sp1 and AP-2. J. Neurochem. 2000, 75, 1408–1418. [Google Scholar] [CrossRef]
- Sadot, E.; Heicklen-Klein, A.; Barg, J.; Lazarovici, P.; Ginzburg, I. Identification of a Tau Promoter Region Me-diating Tissue-Specific-Regulated Expression in PC12 Cells. J. Mol. Biol. 1996, 256, 805–812. [Google Scholar] [CrossRef]
- Brackhan, M.; Arribas-Blazquez, M.; Lastres-Becker, I. Aging, NRF2, and TAU: A Perfect Match for Neurode-generation? Antioxidants 2023, 12, 1564. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Karelina, K.; Obrietan, K. CREB: A Multifaceted Regulator of Neuronal Plasticity and Protection. J. Neurochem. 2011, 116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Litman, P.; Barg, J.; Ginzburg, I. Microtubules Are Involved in the Localization of Tau MRNA in Primary Neu-ronal Cell Cultures. Neuron 1994, 13, 1463–1474. [Google Scholar] [CrossRef]
- Aronov, S.; Marx, R.; Ginzburg, I. Identification of 3’UTR Region Implicated in Tau MRNA Stabilization in Neuronal Cells. J. Mol. Neurosci. 1999, 12, 131–145. [Google Scholar] [CrossRef]
- Hirokawa, N.; Noda, Y. Intracellular Transport and Kinesin Superfamily Proteins, KIFs: Structure, Function, and Dynamics. Physiol. Rev. 2008, 88, 1089–1118. [Google Scholar] [CrossRef]
- Turner-Bridger, B.; Caterino, C.; Cioni, J.-M. Molecular Mechanisms behind MRNA Localization in Axons. Open Biol. 2020, 10, 200177. [Google Scholar] [CrossRef]
- Kavanagh, T.; Halder, A.; Drummond, E. Tau Interactome and RNA Binding Proteins in Neurodegenerative Diseases. Mol. Neurodegener. 2022, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.; Valdez-Sinon, A.N.; Bassell, G.J. Regulation of RNA Granules by FMRP and Implications for Neurolo-gical Diseases. Traffic 2020, 21, 454–462. [Google Scholar] [CrossRef]
- Villacé, P.; Marión, R.M.; Ortín, J. The Composition of Staufen-Containing RNA Granules from Human Cells Indicates Their Role in the Regulated Transport and Translation of Messenger RNAs. Nucleic Acids Res. 2004, 32, 2411–2420. [Google Scholar] [CrossRef]
- Almasi, S.; Jasmin, B.J. The Multifunctional RNA-Binding Protein Staufen1: An Emerging Regulator of Oncoge-nesis through Its Various Roles in Key Cellular Events. Cell. Mol. Life Sci. 2021, 78, 7145–7160. [Google Scholar] [CrossRef]
- Dixit, R.; Ross, J.L.; Goldman, Y.E.; Holzbaur, E.L.F. Differential Regulation of Dynein and Kinesin Motor Pro-teins by Tau. Science 2008, 319, 1086–1089. [Google Scholar] [CrossRef] [PubMed]
- Fukao, A.; Tomohiro, T.; Fujiwara, T. Translation Initiation Regulated by RNA-Binding Protein in Mammals: The Modulation of Translation Initiation Complex by Trans-Acting Factors. Cells 2021, 10, 1711. [Google Scholar] [CrossRef] [PubMed]
- Mignone, F.; Gissi, C.; Liuni, S.; Pesole, G. Untranslated Regions of MRNAs. Genome Biol. 2002, 3, REVIEWS0004. [Google Scholar] [CrossRef]
- Lee, S.J.; Oses-Prieto, J.A.; Kawaguchi, R.; Sahoo, P.K.; Kar, A.N.; Rozenbaum, M.; Oliver, D.; Chand, S.; Ji, H.; Shtutman, M.; et al. HnRNPs Interacting with MRNA Localization Motifs Define Axonal RNA Regulons. Mol. Cell. Proteom. 2018, 17, 2091–2106. [Google Scholar] [CrossRef] [PubMed]
- El Fatimy, R.; Li, S.; Chen, Z.; Mushannen, T.; Gongala, S.; Wei, Z.; Balu, D.T.; Rabinovsky, R.; Cantlon, A.; Elkhal, A.; et al. MicroRNA-132 Provides Neuroprotection for Tauopathies via Multiple Signaling Pathways. Acta Neuropathol. 2018, 136, 537–555. [Google Scholar] [CrossRef]
- Behar, L.; Marx, R.; Sadot, E.; Barg, J.; Ginzburg, I. Cis-Acting Signals and Trans-Acting Proteins Are Involved in Tau MRNA Targeting into Neurites of Differentiating Neuronal Cells. Int. J. Dev. Neurosci. 1995, 13, 113–127. [Google Scholar] [CrossRef]
- Passmore, L.A.; Coller, J. Roles of MRNA Poly(A) Tails in Regulation of Eukaryotic Gene Expression. Nat. Rev. Mol. Cell Biol. 2022, 23, 93–106. [Google Scholar] [CrossRef]
- Aranda-Abreu, G.E.; Behar, L.; Chung, S.; Furneaux, H.; Ginzburg, I. Embryonic Lethal Abnormal Vision-like RNA-Binding Proteins Regulate Neurite Outgrowth and Tau Expression in PC12 Cells. J. Neurosci. 1999, 19, 6907–6917. [Google Scholar] [CrossRef]
- Silvestri, B.; Mochi, M.; Garone, M.G.; Rosa, A. Emerging Roles for the RNA-Binding Protein HuD (ELAVL4) in Nervous System Diseases. Int. J. Mol. Sci. 2022, 23, 14606. [Google Scholar] [CrossRef]
- Wang, X.; Tanaka Hall, T.M. Structural Basis for Recognition of AU-Rich Element RNA by the HuD Protein. Nat. Struct. Biol. 2001, 8, 141–145. [Google Scholar] [CrossRef]
- Wei, L.; Lee, S.; Majumdar, S.; Zhang, B.; Sanfilippo, P.; Joseph, B.; Miura, P.; Soller, M.; Lai, E.C. Overlapping Activities of ELAV/Hu Family RNA Binding Proteins Specify the Extended Neuronal 3’ UTR Landscape in Drosophila. Mol. Cell 2020, 80, 140–155.e6. [Google Scholar] [CrossRef]
- Di Liegro, C.M.; Schiera, G.; Di Liegro, I. Regulation of MRNA Transport, Localization and Translation in the Nervous System of Mammals (Review). Int. J. Mol. Med. 2014, 33, 747–762. [Google Scholar] [CrossRef]
- Park, S.; Myszka, D.G.; Yu, M.; Littler, S.J.; Laird-Offringa, I.A. HuD RNA Recognition Motifs Play Distinct Ro-les in the Formation of a Stable Complex with AU-Rich RNA. Mol. Cell. Biol. 2000, 20, 4765–4772. [Google Scholar] [CrossRef] [PubMed]
- Aronov, S.; Aranda, G.; Behar, L.; Ginzburg, I. Visualization of Translated Tau Protein in the Axons of Neuronal P19 Cells and Characterization of Tau RNP Granules. J. Cell Sci. 2002, 115, 3817–3827. [Google Scholar] [CrossRef] [PubMed]
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, Diagnostics, and Therapeutics for Alzhei-mer’s Disease: Breaking the Memory Barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef]
- Adams, J.N.; Maass, A.; Harrison, T.M.; Baker, S.L.; Jagust, W.J. Cortical Tau Deposition Follows Patterns of Entorhinal Functional Connectivity in Aging. eLife 2019, 8, e49132. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Alafuzoff, I.; Arzberger, T.; Kretzschmar, H.; Del Tredici, K. Staging of Alzheimer Disease-Associated Neurofibrillary Pathology Using Paraffin Sections and Immunocytochemistry. Acta Neuropathol. 2006, 112, 389–404. [Google Scholar] [CrossRef]
- Timmers, T.; Ossenkoppele, R.; Wolters, E.E.; Verfaillie, S.C.J.; Visser, D.; Golla, S.S.V.; Barkhof, F.; Scheltens, P.; Boellaard, R.; van der Flier, W.M.; et al. Associations between Quantitative [18F]Flortaucipir Tau PET and Atro-phy across the Alzheimer’s Disease Spectrum. Alzheimer’s Res. Ther. 2019, 11, 60. [Google Scholar] [CrossRef]
- Marks, S.M.; Lockhart, S.N.; Baker, S.L.; Jagust, W.J. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging. J. Neurosci. 2017, 37, 3192–3201. [Google Scholar] [CrossRef]
- Vogel, J.W.; Iturria-Medina, Y.; Strandberg, O.T.; Smith, R.; Levitis, E.; Evans, A.C.; Hansson, O.; Alzheimer’s Disease Neuroimaging Initiative. Swedish BioFinder Study Spread of Pathological Tau Proteins through Com-municating Neurons in Human Alzheimer’s Disease. Nat. Commun. 2020, 11, 2612. [Google Scholar] [CrossRef]
- Younes, K.; Smith, V.; Johns, E.; Carlson, M.L.; Winer, J.; He, Z.; Henderson, V.W.; Greicius, M.D.; Young, C.B.; Mormino, E.C.; et al. Temporal Tau Asymmetry Spectrum Influences Divergent Behavior and Language Pat-terns in Alzheimer’s Disease. Brain Behav. Immun. 2024, 119, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, S.; Wisse, L.E.M.; Lim, S.; Ittyerah, R.; Xie, L.; Bedard, M.L.; Das, S.R.; Lee, E.B.; Tisdall, M.D.; Prabhakaran, K.; et al. Ex Vivo MRI Atlas of the Human Medial Temporal Lobe: Characterizing Neurodegene-ration Due to Tau Pathology. Acta Neuropathol. Commun. 2021, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Denning, A.E.; Ittyerah, R.; Levorse, L.M.; Sadeghpour, N.; Athalye, C.; Chung, E.; Ravikumar, S.; Dong, M.; Duong, M.T.; Li, Y.; et al. Association of Quantitative Histopathology Measurements with Antemortem Medial Temporal Lobe Cortical Thickness in the Alzheimer’s Disease Continuum. Acta Neuropathol. 2024, 148, 37. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, S.; Denning, A.E.; Lim, S.; Chung, E.; Sadeghpour, N.; Ittyerah, R.; Wisse, L.E.M.; Das, S.R.; Xie, L.; Robinson, J.L.; et al. Postmortem Imaging Reveals Patterns of Medial Temporal Lobe Vulnerability to Tau Pathology in Alzheimer’s Disease. Nat. Commun. 2024, 15, 4803. [Google Scholar] [CrossRef]
- Lowe, V.J.; Lundt, E.S.; Albertson, S.M.; Min, H.-K.; Fang, P.; Przybelski, S.A.; Senjem, M.L.; Schwarz, C.G.; Kantarci, K.; Boeve, B.; et al. Tau-Positron Emission Tomography Correlates with Neuropathology Findings. Alzheimer’s Dement. 2020, 16, 561–571. [Google Scholar] [CrossRef]
- Halaas, N.B.; Henjum, K.; Blennow, K.; Dakhil, S.; Idland, A.-V.; Nilsson, L.N.; Sederevicius, D.; Vidal-Piñeiro, D.; Walhovd, K.B.; Wyller, T.B.; et al. CSF STREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults. Cereb. Cortex 2020, 30, 2295–2306. [Google Scholar] [CrossRef]
- Liu, H.; Tan, A.Y.S.; Mehrabi, N.F.; Turner, C.P.; Curtis, M.A.; Faull, R.L.M.; Dragunow, M.; Singh-Bains, M.K.; Smith, A.M. Astrocytic Proteins Involved in Regulation of the Extracellular Environment Are Increased in the Alzheimer’s Disease Middle Temporal Gyrus. Neurobiol. Dis. 2025, 204, 106749. [Google Scholar] [CrossRef]
- Guadagna, S.; Esiri, M.M.; Williams, R.J.; Francis, P.T. Tau Phosphorylation in Human Brain: Relationship to Behavioral Disturbance in Dementia. Neurobiol. Aging 2012, 33, 2798–2806. [Google Scholar] [CrossRef]
- Hamsafar, Y.; Chen, Q.; Borowsky, A.D.; Beach, T.G.; Serrano, G.E.; Sue, L.I.; Adler, C.H.; Walker, D.G.; Dugger, B.N. Biochemical Analyses of Tau and Other Neuronal Markers in the Submandibular Gland and Frontal Cortex across Stages of Alzheimer Disease. Neurosci. Lett. 2023, 810, 137330. [Google Scholar] [CrossRef]
- Terada, T.; Kubota, M.; Miyata, J.; Obi, T.; Takashima, H.; Matsudaira, T.; Bunai, T.; Ouchi, Y.; Murai, T. Frontal Neurodegeneration Associated with Frontal Assessment Battery in Early Alzheimer’s Disease. J. Neurol. Sci. 2024, 467, 123327. [Google Scholar] [CrossRef]
- Fukumoto, H.; Kao, T.-H.; Tai, C.-Y.; Jang, M.-K.; Miyamoto, M. High-Molecular-Weight Oligomer Tau (HMWoTau) Species Are Dramatically Increased in Braak-Stage Dependent Manner in the Frontal Lobe of Hu-man Brains, Demonstrated by a Novel Oligomer Tau ELISA with a Mouse Monoclonal Antibody (APNmAb005). FASEB J. 2024, 38, e70160. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ferreira, R.; García-Santos, R.A.; Rodríguez-Violante, M.; López-Martínez, C.; Becerra-Laparra, I.K.; Torres-Pérez, M.E. Progressive Supranuclear Palsy as Differential Diagnosis of Parkinson’s Disease in the El-derly. Rev. Esp. Geriatr. Gerontol. 2019, 54, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Shoeibi, A.; Olfati, N.; Litvan, I. Frontrunner in Translation: Progressive Supranuclear Palsy. Front. Neurol. 2019, 10, 1125. [Google Scholar] [CrossRef]
- Liscic, R.M.; Srulijes, K.; Gröger, A.; Maetzler, W.; Berg, D. Differentiation of Progressive Supranuclear Palsy: Clinical, Imaging and Laboratory Tools. Acta Neurol. Scand. 2013, 127, 362–370. [Google Scholar] [CrossRef]
- Martínez-Maldonado, A.; Ontiveros-Torres, M.Á.; Harrington, C.R.; Montiel-Sosa, J.F.; Prandiz, R.G.-T.; Boca-negra-López, P.; Sorsby-Vargas, A.M.; Bravo-Muñoz, M.; Florán-Garduño, B.; Villanueva-Fierro, I.; et al. Mole-cular Processing of Tau Protein in Progressive Supranuclear Palsy: Neuronal and Glial Degeneration. J. Alzheimer’s Dis. 2021, 79, 1517–1531. [Google Scholar] [CrossRef]
- Di Lorenzo, D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024, 19, e202400180. [Google Scholar] [CrossRef] [PubMed]
- Stamelou, M. Sensitivity and Specificity of Diagnostic Criteria for Progressive Supranuclear Palsy. Mov. Disord. 2019, 34, 1087–1088. [Google Scholar] [CrossRef]
- Goldman, J.G.; Holden, S.K. Cognitive Syndromes Associated With Movement Disorders. Continuum 2022, 28, 726–749. [Google Scholar] [CrossRef]
- Rowe, J.B.; Holland, N.; Rittman, T. Progressive Supranuclear Palsy: Diagnosis and Management. Pract. Neurol. 2021, 21, 376–383. [Google Scholar] [CrossRef]
- Höglinger, G.U.; Litvan, I.; Mendonca, N.; Wang, D.; Zheng, H.; Rendenbach-Mueller, B.; Lon, H.-K.; Jin, Z.; Fisseha, N.; Budur, K.; et al. Safety and Efficacy of Tilavonemab in Progressive Supranuclear Palsy: A Phase 2, Randomised, Placebo-Controlled Trial. Lancet Neurol. 2021, 20, 182–192. [Google Scholar] [CrossRef]
- Yang, J.; Zhi, W.; Wang, L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024, 29, 2812. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, V.C.; Paraskevas, G.P.; Paraskevas, P.G.; Stefanis, L.; Kapaki, E. Corticobasal Degeneration and Corticobasal Syndrome: A Review. Clin. Park. Relat. Disord. 2019, 1, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Vanek, Z.; Jankovic, J. Dystonia in Corticobasal Degeneration. Mov. Disord. 2001, 16, 252–257. [Google Scholar] [CrossRef]
- Kouri, N.; Whitwell, J.L.; Josephs, K.A.; Rademakers, R.; Dickson, D.W. Corticobasal Degeneration: A Patholo-gically Distinct 4R Tauopathy. Nat. Rev. Neurol. 2011, 7, 263–272. [Google Scholar] [CrossRef]
- Zareba-Paslawska, J.; Patra, K.; Kluzer, L.; Revesz, T.; Svenningsson, P. Tau Isoform-Driven CBD Pathology Transmission in Oligodendrocytes in Humanized Tau Mice. Front. Neurol. 2020, 11, 589471. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Litvan, I.; Lang, A.E.; Bak, T.H.; Bhatia, K.P.; Borroni, B.; Boxer, A.L.; Dickson, D.W.; Grossman, M.; Hallett, M.; et al. Criteria for the Diagnosis of Corticobasal Degeneration. Neurology 2013, 80, 496–503. [Google Scholar] [CrossRef]
- McFarland, N.R. Diagnostic Approach to Atypical Parkinsonian Syndromes. Continuum 2016, 22, 1117–1142. [Google Scholar] [CrossRef]
- Jadhav, S.; Avila, J.; Schöll, M.; Kovacs, G.G.; Kövari, E.; Skrabana, R.; Evans, L.D.; Kontsekova, E.; Malawska, B.; de Silva, R.; et al. A Walk through Tau Therapeutic Strategies. Acta Neuropathol. Commun. 2019, 7, 22. [Google Scholar] [CrossRef]
- Siuda, J.; Fujioka, S.; Wszolek, Z.K. Parkinsonian Syndrome in Familial Frontotemporal Dementia. Park. Relat. Disord. 2014, 20, 957–964. [Google Scholar] [CrossRef]
- Pottier, C.; Ravenscroft, T.A.; Sanchez-Contreras, M.; Rademakers, R. Genetics of FTLD: Overview and What Else We Can Expect from Genetic Studies. J. Neurochem. 2016, 138 (Suppl. S1), 32–53. [Google Scholar] [CrossRef]
- Ghetti, B.; Oblak, A.L.; Boeve, B.F.; Johnson, K.A.; Dickerson, B.C.; Goedert, M. Invited Review: Frontotemporal Dementia Caused by Microtubule-Associated Protein Tau Gene (MAPT) Mutations: A Chameleon for Neuro-pathology and Neuroimaging. Neuropathol. Appl. Neurobiol. 2015, 41, 24–46. [Google Scholar] [CrossRef] [PubMed]
- Bunker, J.M.; Kamath, K.; Wilson, L.; Jordan, M.A.; Feinstein, S.C. FTDP-17 Mutations Compromise the Ability of Tau to Regulate Microtubule Dynamics in Cells. J. Biol. Chem. 2006, 281, 11856–11863. [Google Scholar] [CrossRef]
- Forrest, S.L.; Kril, J.J.; Halliday, G.M. Cellular and Regional Vulnerability in Frontotemporal Tauopathies. Acta Neuropathol. 2019, 138, 705–727. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Litvan, I. Parkinsonism and Frontotemporal Dementia: The Clinical Overlap. J. Mol. Neurosci. 2011, 45, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Gao, H.; Xie, H.; Jia, Z.; Chen, Q. Molecular Imaging Biomarkers in Familial Frontotemporal Lobar Degeneration: Progress and Prospects. Front. Neurol. 2022, 13, 933217. [Google Scholar] [CrossRef]
- Harris, G.A.; Hirschfeld, L.R. Antisense Oligonucleotides Provide Optimism to the Therapeutic Landscape for Tauopathies. Neural Regen. Res. 2025, 20, 803–804. [Google Scholar] [CrossRef]
- Tamvaka, N.; Manne, S.; Kondru, N.; Ross, O.A. Pick’s Disease, Seeding an Answer to the Clinical Diagnosis Conundrum. Biomedicines 2023, 11, 1646. [Google Scholar] [CrossRef]
- Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2022, 23, 12841. [Google Scholar] [CrossRef]
- Irwin, D.J.; Brettschneider, J.; McMillan, C.T.; Cooper, F.; Olm, C.; Arnold, S.E.; Van Deerlin, V.M.; Seeley, W.W.; Miller, B.L.; Lee, E.B.; et al. Deep Clinical and Neuropathological Phenotyping of Pick Disease. Ann. Neurol. 2016, 79, 272–287. [Google Scholar] [CrossRef]
- Dos Santos Mendes, R.; do Valle, D.A.; Dos Santos Bara, T.; Furlin, V.; da Silva Zeny, M.; Schmitz Ferreira Santos, M.L.; Cordeiro, M.L. Clinical, Genotypic, and Neuropsychological Profile in a Series of Patients with Nie-mann-Pick Type C Disease. Front. Neurol. 2025, 16, 1542310. [Google Scholar] [CrossRef]
- Reid, M.J.; Beltran-Lobo, P.; Johnson, L.; Perez-Nievas, B.G.; Noble, W. Astrocytes in Tauopathies. Front. Neurol. 2020, 11, 572850. [Google Scholar] [CrossRef]
- Kovacs, G.G.; Robinson, J.L.; Xie, S.X.; Lee, E.B.; Grossman, M.; Wolk, D.A.; Irwin, D.J.; Weintraub, D.; Kim, C.F.; Schuck, T.; et al. Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases. J. Neuropathol. Exp. Neurol. 2017, 76, 270–288. [Google Scholar] [CrossRef]
- Xia, Y.; Prokop, S.; Gorion, K.-M.M.; Kim, J.D.; Sorrentino, Z.A.; Bell, B.M.; Manaois, A.N.; Chakrabarty, P.; Da-vies, P.; Giasson, B.I. Tau Ser208 Phosphorylation Promotes Aggregation and Reveals Neuropathologic Diver-sity in Alzheimer’s Disease and Other Tauopathies. Acta Neuropathol. Commun. 2020, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.J.; Melloni, A.; Fykstra, D.P.; Serrano-Pozo, A.; Shinobu, L.; Hyman, B.T. Astrocyte Tau Deposition in Progressive Supranuclear Palsy Is Associated with Dysregulation of MAPT Transcription. Acta Neuropathol. Commun. 2024, 12, 132. [Google Scholar] [CrossRef]
- Kovacs, G.G.; Ferrer, I.; Grinberg, L.T.; Alafuzoff, I.; Attems, J.; Budka, H.; Cairns, N.J.; Crary, J.F.; Duyckaerts, C.; Ghetti, B.; et al. Aging-Related Tau Astrogliopathy (ARTAG): Harmonized Evaluation Strategy. Acta Neuropathol 2016, 131, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Tau-Positive Glial Inclusions in Progressive Supranuclear Palsy, Corticobasal Degeneration and Pick’s Disease. Brain Pathol. 1999, 9, 663–679. [Google Scholar] [CrossRef]
- Ferrer, I.; López-González, I.; Carmona, M.; Arregui, L.; Dalfó, E.; Torrejón-Escribano, B.; Diehl, R.; Kovacs, G.G. Glial and Neuronal Tau Pathology in Tauopathies: Characterization of Disease-Specific Phenotypes and Tau Pathology Progression. J. Neuropathol. Exp. Neurol. 2014, 73, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Antonioni, A.; Raho, E.M.; Lopriore, P.; Pace, A.P.; Latino, R.R.; Assogna, M.; Mancuso, M.; Gragnaniello, D.; Granieri, E.; Pugliatti, M.; et al. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. Int. J. Mol. Sci. 2023, 24, 11732. [Google Scholar] [CrossRef] [PubMed]
- Ljubenkov, P.A.; Miller, B.L. A Clinical Guide to Frontotemporal Dementias. Focus 2016, 14, 448–464. [Google Scholar] [CrossRef]
- Langerscheidt, F.; Wied, T.; Al Kabbani, M.A.; van Eimeren, T.; Wunderlich, G.; Zempel, H. Genetic Forms of Tauopathies: Inherited Causes and Implications of Alzheimer’s Disease-like TAU Pathology in Primary and Se-condary Tauopathies. J. Neurol. 2024, 271, 2992–3018. [Google Scholar] [CrossRef]
- Ward, J.; Ly, M.; Raji, C.A. Brain PET Imaging: Frontotemporal Dementia. PET Clin. 2023, 18, 123–133. [Google Scholar] [CrossRef]
- Tsai, R.M.; Boxer, A.L. Treatment of Frontotemporal Dementia. Curr. Treat. Options Neurol. 2014, 16, 319. [Google Scholar] [CrossRef]
- Mazzulli, J.R.; Xu, Y.-H.; Sun, Y.; Knight, A.L.; McLean, P.J.; Caldwell, G.A.; Sidransky, E.; Grabowski, G.A.; Krainc, D. Gaucher Disease Glucocerebrosidase and α-Synuclein Form a Bidirectional Pathogenic Loop in Synucleinopathies. Cell 2011, 146, 37–52. [Google Scholar] [CrossRef]
- Rocha, E.M.; Smith, G.A.; Park, E.; Cao, H.; Brown, E.; Hayes, M.A.; Beagan, J.; McLean, J.R.; Izen, S.C.; Pe-rez-Torres, E.; et al. Glucocerebrosidase Gene Therapy Prevents α-Synucleinopathy of Midbrain Dopamine Neurons. Neurobiol. Dis. 2015, 82, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Scerra, G.; De Pasquale, V.; Scarcella, M.; Caporaso, M.G.; Pavone, L.M.; D’Agostino, M. Lysosomal Positioning Diseases: Beyond Substrate Storage. Open Biol. 2022, 12, 220155. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Götz, J. Tau-Based Therapies in Neurodegeneration: Opportunities and Challenges. Nat. Rev. Drug Discov. 2017, 16, 863–883. [Google Scholar] [CrossRef] [PubMed]
- Muñiz, J.A.; Facal, C.L.; Urrutia, L.; Clerici-Delville, R.; Damianich, A.; Ferrario, J.E.; Falasco, G.; Avale, M.E. SMaRT Modulation of Tau Isoforms Rescues Cognitive and Motor Impairments in a Preclinical Model of Tauopathy. Front. Bioeng. Biotechnol. 2022, 10, 951384. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Y. Tau and Neuroinflammation in Alzheimer’s Disease: Interplay Mechanisms and Clinical Translation. J. Neuroinflamm. 2023, 20, 165. [Google Scholar] [CrossRef]
- Rani, S.; Tuteja, M. Chaperones as Potential Pharmacological Targets for Treating Protein Aggregation Illness. Curr. Protein Pept. Sci. 2025, 26, 451–466. [Google Scholar] [CrossRef]
Tau Isoform | Exon Composition | Repeat Type | Molecular Weight | Main Localization | Reference |
---|---|---|---|---|---|
0N3R | Lacks exons 2, 3, and 10 | 3R | ~37 kDa | Fetal brain, adult cortex | [5] |
1N3R | Includes exon 2 only | 3R | ~39 kDa | Fetal and adult brain (low levels) | [5] |
2N3R | Includes exons 2 and 3 | 3R | ~45 kDa | Adult cortex | [5] |
0N4R | Includes exon 10 only | 4R | ~62 kDa | Adult brain (basal ganglia, brainstem) | [5] |
1N4R | Includes exons 2 and 10 | 4R | ~64 kDa | Adult cortex and subcortical regions | [5] |
2N4R | Includes exons 2, 3, and 10 | 4R | ~70 kDa | Adult brain, especially hippocampus | [5] |
Big Tau | Includes exon 4A | 4R | ~110 kDa | Peripheral nervous system | [7] |
Tauopathy | Key Characteristics | Dominant Tau Isoform | Main Affected Regions | Reference(s) |
---|---|---|---|---|
Alzheimer’s Disease (AD) | Most common tauopathy associated with memory loss, cognitive decline | Mixed (3R/4R) | Temporal and frontal lobes | [35,40] |
Progressive Supranuclear Palsy (PSP) | Vertical gaze palsy, postural instability, axial rigidity | 4R | Midbrain, basal ganglia, frontal cortex | [55,56] |
Corticobasal Degeneration (CBD) | Asymmetric parkinsonism, ‘alien hand’ syndrome | 4R | Frontal/parietal cortex, basal ganglia | [64,65] |
Frontotemporal Dementia with Parkinsonism (FTDP-17) | Genetic, behavioral and motor symptoms | 3R/4R (variable) | Frontal cortex, basal ganglia | [71,74] |
Pick’s Disease | Behavioral changes, language impairment, Pick bodies | 3R | Frontal and temporal lobes | [77,78] |
Astroglial Tauopathies | Tau in astrocytes, linked with neuroinflammation | Mainly 4R | Frontal cortex, basal ganglia, cortex | [81,82] |
Lysosomal Storage Disorders (e.g., Gaucher) | Secondary tauopathy, Tau aggregation with lysosomal dysfunction | Variable | Temporal and cortical regions | [93,94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Abreu, G.E.; Rojas-Durán, F.; Hernández-Aguilar, M.E.; Herrera-Covarrubias, D.; García-Hernández, L.I.; Toledo-Cárdenas, M.R.; Chi-Castañeda, D. The Role of Tau in Neuronal Function and Neurodegeneration. Neurol. Int. 2025, 17, 75. https://doi.org/10.3390/neurolint17050075
Aranda-Abreu GE, Rojas-Durán F, Hernández-Aguilar ME, Herrera-Covarrubias D, García-Hernández LI, Toledo-Cárdenas MR, Chi-Castañeda D. The Role of Tau in Neuronal Function and Neurodegeneration. Neurology International. 2025; 17(5):75. https://doi.org/10.3390/neurolint17050075
Chicago/Turabian StyleAranda-Abreu, Gonzalo Emiliano, Fausto Rojas-Durán, María Elena Hernández-Aguilar, Deissy Herrera-Covarrubias, Luis Isauro García-Hernández, María Rebeca Toledo-Cárdenas, and Donají Chi-Castañeda. 2025. "The Role of Tau in Neuronal Function and Neurodegeneration" Neurology International 17, no. 5: 75. https://doi.org/10.3390/neurolint17050075
APA StyleAranda-Abreu, G. E., Rojas-Durán, F., Hernández-Aguilar, M. E., Herrera-Covarrubias, D., García-Hernández, L. I., Toledo-Cárdenas, M. R., & Chi-Castañeda, D. (2025). The Role of Tau in Neuronal Function and Neurodegeneration. Neurology International, 17(5), 75. https://doi.org/10.3390/neurolint17050075