Topic Issue: “Translational Advances in Neurodegenerative Dementias”
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Thompson, J.C.; Levis Rabi, M.; Novoa, M.; Nash, K.R.; Joly-Amado, A. Evaluating the Efficacy of Levetiracetam on Non-Cognitive Symptoms and Pathology in a Tau Mouse Model. Biomedicines 2024, 12, 2891. https://doi.org/10.3390/biomedicines12122891.
- Klimenko, M.O.; Mishchenko, T.A.; Mitaeva, Y.I.; Kondakova, E.V.; Mitroshina, E.V.; Vedunova, M.V. Contribution of Chronic Sleep Deprivation to Age-Related Neurodegeneration in a Mouse Model of Familial Alzheimer’s Disease (5xFAD). Neurol. Int. 2023, 15, 778–791. https://doi.org/10.3390/neurolint15030049.
- Lee, Y.-J.; Lim, C.; Lim, S.; Cho, S. Tooth-Cutting-Induced Maxillary Malocclusion Exacerbates Cognitive Deficit in a Mouse Model of Vascular Dementia. Brain Sci. 2023, 13, 781. https://doi.org/10.3390/brainsci13050781.
- Gandla, K.; Babu, A.K.; Unnisa, A.; Sharma, I.; Singh, L.P.; Haque, M.A.; Dashputre, N.L.; Baig, S.; Siddiqui, F.A.; Khandaker, M.U.; et al. Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sci. 2023, 13, 457. https://doi.org/10.3390/brainsci13030457.
- Mohamed-Mohamed, H.; García-Morales, V.; Sánchez Lara, E.M.; González-Acedo, A.; Pardo-Moreno, T.; Tovar-Gálvez, M.I.; Melguizo-Rodríguez, L.; Ramos-Rodríguez, J.J. Physiological Mechanisms Inherent to Diabetes Involved in the Development of Dementia: Alzheimer’s Disease. Neurol. Int. 2023, 15, 1253–1272. https://doi.org/10.3390/neurolint15040079.
- Gholampour, S. Why Intracranial Compliance Is Not Utilized as a Common Practical Tool in Clinical Practice. Biomedicines 2023, 11, 3083. https://doi.org/10.3390/biomedicines11113083.
- Lin, C.-L.; Chen, W.-M.; Jao, A.-T.; Shia, B.-C.; Wu, S.-Y. The Protective Effect of Vitamin D on Dementia Risk in Hemodialysis Patients. Life 2023, 13, 1741. https://doi.org/10.3390/life13081741.
- Pirani, A. The Implementation of Infant Anoesis and Adult Autonoesis in the Retrogenesis and Staging System of the Neurocognitive Disorders: A Proposal for a Multidimensional Person-Centered Model. Geriatrics 2025, 10, 20. https://doi.org/10.3390/geriatrics10010020
- Montoya-Pedrón, A.; Ocaña Montoya, C.M.; Santos Toural, J.E.; Acosta Lee, T.; Sánchez-Hechavarría, M.E.; López-Galán, E.; Muñoz-Bustos, G.A. Contingent Negative Variation in the Evaluation of Neurocognitive Disorders Due to Possible Alzheimer’s Disease. Neurol. Int. 2024, 16, 126–138. https://doi.org/10.3390/neurolint16010008.
- Cai, J.; Hu, W.; Ma, J.; Si, A.; Chen, S.; Gong, L.; Zhang, Y.; Yan, H.; Chen, F.; for the Alzheimer’s Disease Neuroimaging Initiative. Explainable Machine Learning with Pairwise Interactions for Predicting Conversion from Mild Cognitive Impairment to Alzheimer’s Disease Utilizing Multi-Modalities Data. Brain Sci. 2023, 13, 1535. https://doi.org/10.3390/brainsci13111535.
- Wang, Y.; Gu, X.; Hou, W.; Zhao, M.; Sun, L.; Guo, C. Dual Semi-Supervised Learning for Classification of Alzheimer’s Disease and Mild Cognitive Impairment Based on Neuropsychological Data. Brain Sci. 2023, 13, 306. https://doi.org/10.3390/brainsci13020306.
References
- Aranda, M.P.; Kremer, I.N.; Hinton, L.; Zissimopoulos, J.; Whitmer, R.A.; Hummel, C.H.; Trejo, L.; Fabius, C. Impact of Dementia: Health Disparities, Population Trends, Care Interventions, and Economic Costs. J. Am. Geriatr. Soc. 2021, 69, 1774–1783. [Google Scholar] [CrossRef] [PubMed]
- Wallace, L.; Brayne, C. The Need for a Better Global Dementia Response. Lancet Neurol. 2022, 21, 115–116. [Google Scholar] [CrossRef]
- Pedroza, P.; Miller-Petrie, M.K.; Chen, C.; Chakrabarti, S.; Chapin, A.; Hay, S.; Tsakalos, G.; Wimo, A.; Dieleman, J.L. Global and Regional Spending on Dementia Care from 2000–2019 and Expected Future Health Spending Scenarios from 2020–2050: An Economic Modelling Exercise. eClinicalMedicine 2022, 45, 101337. [Google Scholar] [CrossRef]
- Desai, U.; Chandler, J.; Kirson, N.; Georgieva, M.; Cheung, H.C.; Westermeyer, B.; Lane, H.; Biglan, K. Epidemiology and Economic Burden of Lewy Body Dementia in the United States. Curr. Med. Res. Opin. 2022, 38, 1177–1188. [Google Scholar] [CrossRef]
- Dubois, B.; Villain, N.; Frisoni, G.B.; Rabinovici, G.D.; Sabbagh, M.; Cappa, S.; Bejanin, A.; Bombois, S.; Epelbaum, S.; Teichmann, M.; et al. Clinical Diagnosis of Alzheimer’s Disease: Recommendations of the International Working Group. Lancet Neurol. 2021, 20, 484–496. [Google Scholar] [CrossRef]
- Logroscino, G.; Piccininni, M.; Graff, C.; Hardiman, O.; Ludolph, A.C.; Moreno, F.; Otto, M.; Remes, A.M.; Rowe, J.B.; Seelaar, H.; et al. Incidence of Syndromes Associated With Frontotemporal Lobar Degeneration in 9 European Countries. JAMA Neurol. 2023, 80, 279–286. [Google Scholar] [CrossRef]
- Ryan, J.; Fransquet, P.; Wrigglesworth, J.; Lacaze, P. Phenotypic Heterogeneity in Dementia: A Challenge for Epidemiology and Biomarker Studies. Front. Public Health 2018, 6, 181. [Google Scholar] [CrossRef]
- Ibsen, T.L.; Eriksen, S. Interdisciplinary Research: An Important Contribution to Dementia Care. J. Multidiscip. Healthc. 2022, 15, 317–321. [Google Scholar] [CrossRef]
- Götz, J.; Ittner, L.M. Animal Models of Alzheimer’s Disease and Frontotemporal Dementia. Nat. Rev. Neurosci. 2008, 9, 532–544. [Google Scholar] [CrossRef]
- Neha; Sodhi, R.K.; Jaggi, A.S.; Singh, N. Animal Models of Dementia and Cognitive Dysfunction. Life Sci. 2014, 109, 73–86. [Google Scholar] [CrossRef]
- Scearce-Levie, K.; Sanchez, P.E.; Lewcock, J.W. Leveraging Preclinical Models for the Development of Alzheimer Disease Therapeutics. Nat. Rev. Drug Discov. 2020, 19, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, C.; Mak, M.S.; Lu, J.; Wu, Z.; Chen, Q.; Han, Y.; Li, Y.; Pi, R. Advance of Sporadic Alzheimer’s Disease Animal Models. Med. Res. Rev. 2020, 40, 431–458. [Google Scholar] [CrossRef]
- Sethi, P.; Bhaskar, R.; Singh, K.K.; Gupta, S.; Han, S.S.; Avinash, D.; Abomughaid, M.M.; Koul, A.; Rani, B.; Ghosh, S.; et al. Exploring Advancements in Early Detection of Alzheimer’s Disease with Molecular Assays and Animal Models. Ageing Res. Rev. 2024, 100, 102411. [Google Scholar] [CrossRef]
- Bisceglia, P.; Lo Vecchio, F.; Latino, R.R.; Gravina, C.; Urbano, M.; la Torre, A.; Desina, G.; Greco, A.; Leone, M.; Antonioni, A. Italian Case Report with a Double Mutation in PSEN1 (K311R and E318G). Neurol. Int. 2022, 14, 417–422. [Google Scholar] [CrossRef]
- Kabir, M.T.; Uddin, M.S.; Setu, J.R.; Ashraf, G.M.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Exploring the Role of PSEN Mutations in the Pathogenesis of Alzheimer’s Disease. Neurotox. Res. 2020, 38, 833–849. [Google Scholar] [CrossRef]
- Thompson, J.C.; Levis Rabi, M.; Novoa, M.; Nash, K.R.; Joly-Amado, A. Evaluating the Efficacy of Levetiracetam on Non-Cognitive Symptoms and Pathology in a Tau Mouse Model. Biomedicines 2024, 12, 2891. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lim, C.; Lim, S.; Cho, S. Tooth-Cutting-Induced Maxillary Malocclusion Exacerbates Cognitive Deficit in a Mouse Model of Vascular Dementia. Brain Sci. 2023, 13, 781. [Google Scholar] [CrossRef]
- Kang, Y.; Toyoda, H.; Saito, M. Search for Unknown Neural Link between the Masticatory and Cognitive Brain Systems to Clarify the Involvement of Its Impairment in the Pathogenesis of Alzheimer’s Disease. Front. Cell. Neurosci. 2024, 18, 1425645. [Google Scholar] [CrossRef]
- Musiek, E.S.; Holtzman, D.M. Mechanisms Linking Circadian Clocks, Sleep, and Neurodegeneration. Science 2016, 354, 1004–1008. [Google Scholar] [CrossRef]
- Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv. Ther. 2020, 37, 113–139. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 10, 572–628. [Google Scholar] [CrossRef]
- Antonioni, A.; Raho, E.M.; Manzoli, L.; Koch, G.; Flacco, M.E.; Di Lorenzo, F. Blood Phosphorylated Tau181 Reliably Differentiates Amyloid-Positive from Amyloid-Negative Subjects in the Alzheimer’s Disease Continuum: A Systematic Review and Meta-Analysis. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2025, 17, e70068. [Google Scholar] [CrossRef]
- Antonioni, A.; Raho, E.M.; Di Lorenzo, F. Is Blood pTau a Reliable Indicator of the CSF Status? A Narrative Review. Neurol. Sci. 2023, 45, 2471–2487. [Google Scholar] [CrossRef]
- Hansson, O. Biomarkers for Neurodegenerative Diseases. Nat. Med. 2021, 27, 954–963. [Google Scholar] [CrossRef]
- Antonioni, A.; Galluccio, M.; Baroni, A.; Fregna, G.; Pozzo, T.; Koch, G.; Manfredini, F.; Fadiga, L.; Malerba, P.; Straudi, S. Event-Related Desynchronization during Action Observation Is an Early Predictor of Recovery in Subcortical Stroke: An EEG Study. Ann. Phys. Rehabil. Med. 2024, 67, 101817. [Google Scholar] [CrossRef]
- Antonioni, A.; Galluccio, M.; Toselli, R.; Baroni, A.; Fregna, G.; Schincaglia, N.; Milani, G.; Cosma, M.; Ferraresi, G.; Morelli, M.; et al. A Multimodal Analysis to Explore Upper Limb Motor Recovery at 4 Weeks After Stroke: Insights From EEG and Kinematics Measures. Clin. EEG Neurosci. 2023, 55, 465–476. [Google Scholar] [CrossRef]
- Passaretti, M.; Cilia, R.; Rinaldo, S.; Rossi Sebastiano, D.; Orunesu, E.; Devigili, G.; Braccia, A.; Paparella, G.; De Riggi, M.; van Eimeren, T.; et al. Neurophysiological Markers of Motor Compensatory Mechanisms in Early Parkinson’s Disease. Brain 2024, 147, 3714–3726. [Google Scholar] [CrossRef]
- Vinny, P.W.; Vishnu, V.Y.; Padma Srivastava, M.V. Artificial Intelligence Shaping the Future of Neurology Practice. Med. J. Armed Forces India 2021, 77, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Schirinzi, T.; Di Lorenzo, F.; Ponzo, V.; Palmieri, M.G.; Bentivoglio, A.R.; Schillaci, O.; Pisani, A.; Koch, G. Mild Cerebello-Thalamo-Cortical Impairment in Patients with Normal Dopaminergic Scans (SWEDD). Park. Relat. Disord. 2016, 28, 23–28. [Google Scholar] [CrossRef]
- Montoya-Pedrón, A.; Ocaña Montoya, C.M.; Santos Toural, J.E.; Acosta Lee, T.; Sánchez-Hechavarría, M.E.; López-Galán, E.; Muñoz-Bustos, G.A. Contingent Negative Variation in the Evaluation of Neurocognitive Disorders Due to Possible Alzheimer’s Disease. Neurol. Int. 2024, 16, 126–138. [Google Scholar] [CrossRef]
- Askin, S.; Burkhalter, D.; Calado, G.; El Dakrouni, S. Artificial Intelligence Applied to Clinical Trials: Opportunities and Challenges. Health Technol. 2023, 13, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Grassi, M.; Palluzzi, F.; Cantoni, V.; Cotelli, M.S.; Premi, E.; Di Lorenzo, F.; Pellicciari, M.C.; Ranieri, F.; Musumeci, G.; et al. Classification Accuracy of TMS for the Diagnosis of Mild Cognitive Impairment. Brain Stimul. 2021, 14, 241–249. [Google Scholar] [CrossRef]
- Koch, G.; Altomare, D.; Benussi, A.; Bréchet, L.; Casula, E.P.; Dodich, A.; Pievani, M.; Santarnecchi, E.; Frisoni, G.B. The Emerging Field of Non-Invasive Brain Stimulation in Alzheimer’s Disease. Brain 2024, 147, 4003–4016. [Google Scholar] [CrossRef] [PubMed]
- Martorana, A.; Esposito, Z.; Di Lorenzo, F.; Giacobbe, V.; Sancesario, G.M.; Bucchi, G.; Bonnì, S.; Bernardini, S.; Sorge, R.; Sancesario, G.; et al. Cerebrospinal Fluid Levels of Aβ42 Relationship with Cholinergic Cortical Activity in Alzheimer’s Disease Patients. J. Neural. Transm. 2012, 119, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.; Finardi, A.; Toniolo, S.; Di Lorenzo, F.; Scaricamazza, E.; Loizzo, S.; Mercuri, N.B.; Furlan, R.; Koch, G.; Martorana, A. Protective Role of Cerebrospinal Fluid Inflammatory Cytokines in Patients with Amnestic Mild Cognitive Impairment and Early Alzheimer’s Disease Carrying Apolipoprotein E4 Genotype. J. Alzheimers Dis. 2020, 76, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Astell, A.J.; Bouranis, N.; Hoey, J.; Lindauer, A.; Mihailidis, A.; Nugent, C.; Robillard, J.M.; Technology and Dementia Professional Interest Area. Technology and Dementia: The Future Is Now. Dement. Geriatr. Cogn. Disord. 2019, 47, 131–139. [Google Scholar] [CrossRef]
- Wolff, J.L.; Benge, J.F.; Cassel, C.K.; Monin, J.K.; Reuben, D.B. Emerging Topics in Dementia Care and Services. J. Am. Geriatr. Soc. 2021, 69, 1763–1773. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonioni, A.; Di Lorenzo, F. Topic Issue: “Translational Advances in Neurodegenerative Dementias”. Neurol. Int. 2025, 17, 31. https://doi.org/10.3390/neurolint17020031
Antonioni A, Di Lorenzo F. Topic Issue: “Translational Advances in Neurodegenerative Dementias”. Neurology International. 2025; 17(2):31. https://doi.org/10.3390/neurolint17020031
Chicago/Turabian StyleAntonioni, Annibale, and Francesco Di Lorenzo. 2025. "Topic Issue: “Translational Advances in Neurodegenerative Dementias”" Neurology International 17, no. 2: 31. https://doi.org/10.3390/neurolint17020031
APA StyleAntonioni, A., & Di Lorenzo, F. (2025). Topic Issue: “Translational Advances in Neurodegenerative Dementias”. Neurology International, 17(2), 31. https://doi.org/10.3390/neurolint17020031