Latent Profiles Based on Combined Risk Factors for Cognitive Decline in European Older Adults: A Retrospective Study Based on the SHARE HCAP Project
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Data Collection
2.3. Study Sample
2.4. Study Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SHARE | Survey of Health, Ageing and Retirement in Europe |
HCAP | Harmonised Cognitive Assessment Protocol |
MCI | Mild Cognitive Impairment |
SCI | Severe Cognitive Impairment |
TBI | Traumatic Brain Injury |
LDL-C | Low-Density Lipoprotein Cholesterol |
MMSE | Mini-Mental State Examination |
RF | Verbal Fluency Test (Ruff Figural Fluency Test) |
CP | Constructional Praxis Test |
LCA | Latent Class Analysis |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
OR | Odds Ratio |
CI | Confidence Interval |
ANOVA | Analysis of Variance |
ISCED | International Standard Classification of Education |
References
- Du, M.; Tao, L.; Liu, M.; Liu, J. Trajectories of health conditions and their associations with the risk of cognitive impairment among older adults: Insights from a national prospective cohort study. BMC Med. 2024, 22, 20. [Google Scholar] [CrossRef] [PubMed]
- Smid, J.; Studart-Neto, A.; César-Freitas, K.G.; Dourado, M.C.N.; Kochhann, R.; Barbosa, B.J.A.P.; Porcello Schilling, L.; Figueiredo Balthazar, M.L.; Ferreira Frota, N.A.; Cruz de Souza, L.; et al. Declínio cognitivo subjetivo, comprometimento cognitivo leve e demência-diagnóstico sindrômico: Recomendações do Departamento Científico de Neurologia Cognitiva e do Envelhecimento da Academia Brasileira de Neurologia. Dement. Neuropsychol. 2022, 16 (Suppl. 1), 1–24. [Google Scholar] [PubMed]
- An, R.; Gao, Y.; Huang, X.; Yang, Y.; Yang, C.; Wan, Q. Predictors of progression from subjective cognitive decline to objective cognitive impairment: A systematic review and meta-analysis of longitudinal studies. Int. J. Nurs. Stud. 2024, 149, 104629. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Li, C.; Mahajan, A.; Spat-Lemus, J.; Durape, S.; Chen, J.; Gurnani, A.S.; Devine, S.; Auerbach, S.H.; Ang, T.F.A.; et al. Subjective Cognitive Decline Plus and Longitudinal Assessment and Risk for Cognitive Impairment. JAMA Psychiatry 2024, 02118, 993–1002. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Xu, W.; Zhang, W.; Wang, H.F.; Ou, Y.N.; Qu, Y.; Shen, X.-N.; Chen, S.-D.; Wu, K.-M.; Zhao, Q.-H.; et al. Modifiable risk factors for incident dementia and cognitive impairment: An umbrella review of evidence. J. Affect. Disord. 2022, 314, 160–167. [Google Scholar] [CrossRef]
- Stephan, Y.; Sutin, A.R.; Luchetti, M.; Aschwanden, D.; Terracciano, A. Self-rated health and incident dementia over two decades: Replication across two cohorts. J. Psychiatr. Res. 2021, 143, 462–466. [Google Scholar] [CrossRef]
- Valletta, M.; Vetrano, D.L.; Xia, X.; Rizzuto, D.; Roso-Llorach, A.; Calderón-Larrañaga, A.; Marengoni, A.; Laukka, E.J.; Canevelli, M.; Bruno, G.; et al. Multimorbidity patterns and 18-year transitions from normal cognition to dementia and death: A population-based study. J. Intern. Med. 2023, 294, 326–335. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Jones, R.N.; Manly, J.J.; Langa, K.M.; Ryan, L.H.; Levine, D.A.; McCammon, R.; Weir, D. Factor structure of the Harmonized Cognitive Assessment Protocol neuropsychological battery in the Health and Retirement Study. J. Int. Neuropsychol. Soc. 2023, 30, 47. [Google Scholar] [CrossRef]
- Gottesman, R.T.; Stern, Y. Behavioral and Psychiatric Symptoms of Dementia and Rate of Decline in Alzheimer’s Disease. Front. Pharmacol. 2019, 10, 1062. [Google Scholar] [CrossRef]
- Brain, J.; Kafadar, A.H.; Errington, L.; Kirkley, R.; Tang, E.Y.; Akyea, R.K.; Bains, M.; Brayne, C.; Figueredo, G.; Greene, L.; et al. What’s New in Dementia Risk Prediction Modelling? An Updated Systematic Review. Extra 2024, 14, 49–74. [Google Scholar]
- Kivimäki, M.; Livingston, G.; Singh-Manoux, A.; Mars, N.; Lindbohm, J.V.; Pentti, J.; Nyberg, S.T.; Pirinen, M.; Anderson, E.L.; Hingorani, A.D.; et al. Estimating Dementia Risk Using Multifactorial Prediction Models. JAMA Netw. Open 2023, 6, e2318132. [Google Scholar] [CrossRef] [PubMed]
- Moored, K.D.; Bandeen-Roche, K.; E Snitz, B.; DeKosky, S.T.; Williamson, J.D.; Fitzpatrick, A.L.; Carlson, M.C. Risk of Dementia Differs Across Lifestyle Engagement Subgroups: A Latent Class and Time-to-Event Analysis in Community-Dwelling Older Adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2022, 77, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Snead, R.; Dumenci, L.; Jones, R.M. A latent class analysis of cognitive decline in US adults, BRFSS 2015-2020. BMC Public. Health 2022, 22, 1560. [Google Scholar] [CrossRef]
- Mouchet, J.; Betts, K.A.; Georgieva, M.V.; Ionescu-Ittu, R.; Butler, L.M.; Teitsma, X.; Delmar, P.; Kulalert, T.; Zhu, J.; Lema, N.; et al. Classification, Prediction, and Concordance of Cognitive and Functional Progression in Patients with Mild Cognitive Impairment in the United States: A Latent Class Analysis. J. Alzheimer’s Dis. 2021, 82, 1667–1682. [Google Scholar] [CrossRef]
- Li, R.; Li, R.; Xie, J.; Chen, J.; Liu, S.; Pan, A.; Liu, G. Associations of socioeconomic status and healthy lifestyle with incident early-onset and late-onset dementia: A prospective cohort study. Lancet Health Longev. 2023, 4, e693–e702. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, Y.; Huang, L.; Xu, X.; Yuan, C. Multimorbidity burden and developmental trajectory in relation to later-life dementia: A prospective study. Alzheimer’s Dement. 2022, 19, 2024–2033. [Google Scholar] [CrossRef]
- Golinelli, D.; Pecoraro, V.; Tedesco, D.; Negro, A.; Berti, E.; Camerlingo, M.D.; Alberghini, L.; Bruni, M.L.; Rolli, M.; Grilli, R. Population risk stratification tools and interventions for chronic disease management in primary care: A systematic literature review. BMC Health Serv. Res. 2025, 25, 526. [Google Scholar] [CrossRef]
- Börsch-supan, A.; Douhou, S.; Tawiah, B.B. Discussion Paper Cognitive Impairment and the Long Arm of Childhood Education: Evidence from Europe. 2025. Available online: https://www.mea-share.eu/wp-content/uploads/2025/01/01-2025.pdf (accessed on 12 October 2025).
- Bergmann, M.; Wagner, M.; Börsch-Supan, A. SHARE Wave 9 Methodology: From the SHARE Corona Survey 2 to the SHARE Main Wave 9 Interview. SHARE-ERIC: Munich, Germany, 2024. [Google Scholar]
- Börsch-supan, A.; Douhou, S.; Fernández, I.; Otero, M.C. Release Note 1.1 to SHARE-HCAP data. 2025. Available online: https://www.mea-share.eu/wp-content/uploads/2025/04/02-2025-1.pdf (accessed on 12 October 2025).
- O’Donovan, M.R.; Cornally, N.; O’Caoimh, R. Validation of a Harmonised, Three-Item Cognitive Screening Instrument for the Survey of Health, Ageing and Retirement in Europe (SHARE-Cog). Int. J. Environ. Res. Public. Health 2023, 20, 6869. [Google Scholar] [CrossRef]
- Schreiber, J.B. Latent Class Analysis: An example for reporting results. Res. Soc. Adm. Pharm. 2017, 13, 1196–1201. [Google Scholar] [CrossRef]
- Bakk, Z.; Di Mari, R.; Oser, J.; Kuha, J. Two-stage Multilevel Latent Class Analysis with Covariates in the Presence of Direct Effects. Struct. Equ. Model. 2022, 29, 267–277. [Google Scholar] [CrossRef]
- Sinha, P.; Calfee, C.S.; Delucchi, K.L. Practitioner’s Guide to Latent Class Analysis: Methodological Considerations and Common Pitfalls. Crit. Care Med. 2022, 49, 15–17. [Google Scholar]
- Pappalettera, C.; Carrarini, C.; Miraglia, F.; Vecchio, F.; Rossini, P.M. Cognitive resilience/reserve: Myth or reality? A review of definitions and measurement methods. Alzheimer’s Dement. 2024, 20, 3567–3586. [Google Scholar]
- Ward, D.D.; Ranson, J.M.; Wallace, L.M.K.; Llewellyn, D.J.; Rockwood, K. Frailty, lifestyle, genetics and dementia risk. J. Neurol. Neurosurg. Psychiatry 2022, 93, 343–350. [Google Scholar] [PubMed]
- Sittichokkananon, A.; Garfield, V.; Chiesa, S.T. Genetic and Lifestyle Risks for Coronary Artery Disease and Long-Term Risk of Incident Dementia Subtypes. Circulation 2025, 151, 1235–1247. [Google Scholar] [CrossRef]
- Martin, S.; Kelly, S.; Khan, A.; Cullum, S.; Dening, T.; Rait, G.; Fox, C.; Katona, C.; Cosco, T.; Brayne, C.; et al. Attitudes and preferences towards screening for dementia: A systematic review of the literature. BMC Geriatr. 2015, 15, 66. [Google Scholar] [CrossRef]
- Skou, S.T.; Mair, F.S.; Fortin, M.; Guthrie, B.; Nunes, B.P.; Miranda, J.J.; Boyd, C.; Pati, S.; Mtenga, S.; Smith, S.M. Multimorbidity. Nat. Rev. Dis. Prim. 2022, 8, 48. [Google Scholar]
- Calderón-Larrañaga, A.; Vetrano, D.L.; Ferrucci, L.; Mercer, S.W.; Marengoni, A.; Onder, G.; Eriksdotter, M.; Fratiglioni, L. Multimorbidity and functional impairment–bidirectional interplay, synergistic effects and common pathways. J. Intern. Med. 2019, 285, 255–271. [Google Scholar]
- Mclaughlin, M.; Sanal-Hayes, N.E.M. Exploring the Role of Physical Activity in Individuals with Comorbid Cancer and Dementia: A Scoping Review. Dement. Geriatr. Cogn. Dis. Extra 2025, 15, 132–139. [Google Scholar] [CrossRef]
- Nakada, K.; Shimo, K.; Ohga, S.; Matsubara, T. Characteristic Behaviors of Pain During Movement in the Older Individuals with Dementia. J. Pain Res. 2024, 17, 865–871. [Google Scholar] [CrossRef]
- Spiteri, K.; Broom, D.; Bekhet, A.H.; De Caro, J.X.; Laventure, B.; Grafton, K. Barriers and Motivators of Physical Activity Participation in Middle-Aged and Older Adults—A Systematic Review. J. Aging Phys. Act. 2019, 27, 929–944. [Google Scholar]
- Reparaz-Escudero, I.; Izquierdo, M.; Bischoff-Ferrari, H.A.; Martínez-Lage, P.; Sáez de Asteasu, M.L. Effect of long-term physical exercise and multidomain interventions on cognitive function and the risk of mild cognitive impairment and dementia in older adults: A systematic review with meta-analysis. Ageing Res. Rev. 2024, 100, 102463. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Iso-Markku, P.; Aaltonen, S.; Kujala, U.M.; Halme, H.L.; Phipps, D.; Knittle, K.; Vuoksimaa, E.; Waller, K. Physical Activity and Cognitive Decline Among Older Adults A Systematic Review and Meta-Analysis. JAMA Netw. Open. 2024, 7, e2354285. [Google Scholar] [PubMed]
- Iso-Markku, P.; Kujala, U.M.; Knittle, K.; Polet, J.; Vuoksimaa, E.; Waller, K. Physical activity as a protective factor for dementia and Alzheimer’s disease: Systematic review, meta-analysis and quality assessment of cohort and case-control studies. Br. J. Sports Med. 2022, 56, 701–709. [Google Scholar]
- Raji, C.A.; Meysami, S.; Hashemi, S.; Garg, S.; Akbari, N.; Gouda, A.; Chodakiewitz, Y.G.; Nguyen, T.D.; Niotis, K.; Merrill, D.A.; et al. Exercise-Related Physical Activity Relates to Brain Volumes in 10,125 Individuals. J. Alzheimer’s Dis. 2024, 97, 829–839. [Google Scholar]
- Heissel, A.; Heinen, D.; Brokmeier, L.L.; Skarabis, N.; Kangas, M.; Vancampfort, D.; Stubbs, B.; Firth, J.; Ward, P.B.; Rosenbaum, S.; et al. Exercise as medicine for depressive symptoms? A systematic review and meta-analysis with meta-regression. Br. J. Sports Med. 2023, 57, 1049–1057. [Google Scholar] [CrossRef]
- Singh, B.; Olds, T.; Curtis, R.; Dumuid, D.; Virgara, R.; Watson, A.; Szeto, K.; O’Connor, E.; Ferguson, T.; Eglitis, E.; et al. Effectiveness of physical activity interventions for improving depression, anxiety and distress: An overview of systematic reviews. Br. J. Sports Med. 2023, 57, 1203–1209. [Google Scholar] [CrossRef]
- Wood, G.; Taylor, E.; Ng, V.; Murrell, A.; Patil, A.; Van Der Touw, T.; Sigal, R.; Wolden, M.; Smart, N. Determining the effect size of aerobic exercise training on the standard lipid profile in sedentary adults with three or more metabolic syndrome factors: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2022, 56, 1032–1041. [Google Scholar]
- Poon, E.T.C.; Wongpipit, W.; Li, H.Y.; Wong, S.H.S.; Siu, P.M.; Kong, A.P.S.; Johnson, N.A. High-intensity interval training for cardiometabolic health in adults with metabolic syndrome: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2024, 58, 1267–1284. [Google Scholar]
- Pacholko, A.; Iadecola, C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024, 81, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Jan Biessels, G.; Despa, F. Cognitive Decline and Dementia in Diabetes Mellitus: Mechanisms and Clinical Implications. Available online: www.nature.com/nrendo (accessed on 23 August 2025).
- Ungvari, Z.; Toth, P.; Tarantini, S.; Prodan, C.I.; Sorond, F.; Merkely, B.; Csiszar, A. Hypertension-induced cognitive impairment: From pathophysiology to public health. Nat. Rev. Nephrol. 2021, 17, 639. [Google Scholar] [CrossRef] [PubMed]
- Corbo, I.; Casagrande, M. Higher-Level Executive Functions in Healthy Elderly and Mild Cognitive Impairment: A Systematic Review. J. Clin. Med. 2022, 11, 1204. [Google Scholar] [CrossRef] [PubMed]
- Berezuk, C.; Scott, S.C.; Black, S.E.; Zakzanis, K.K. Cognitive reserve, cognition, and real-world functioning in MCI: A systematic review and meta-analysis. J. Clin. Exp. Neuropsychol. 2021, 43, 991–1005. [Google Scholar] [CrossRef]
- Lü, W.; Zhang, M.; Yu, W.; Kuang, W.; Chen, L.; Zhang, W.; Yu, J.; Lü, Y. Differentiating Alzheimer’s disease from mild cognitive impairment: A quick screening tool based on machine learning. BMJ Open 2023, 13, e073011. [Google Scholar] [CrossRef]
- Song, S.; Stern, Y.; Gu, Y. Modifiable lifestyle factors and cognitive reserve: A systematice review of current evidence. Ageing Res. Rev. 2022, 74, 101551. [Google Scholar] [CrossRef]
- Safiri, S.; Jolfayi, A.G.; Fazlollahi, A.; Morsali, S.; Sarkesh, A.; Sorkhabi, A.D.; Golabi, B.; Aletaha, R.; Asghari, K.M.; Hamidi, S.; et al. Alzheimer’s disease: A comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front. Med. 2024, 16, 1474043. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, S.; Zhang, J.; Wang, Q.; Hou, F.; Han, X.; Shen, G.; Zhang, Y. Risk assessment and stratification of mild cognitive impairment among the Chinese elderly: Attention to modifiable risk factors. J. Epidemiol. Community Health 2023, 77, 521–526. [Google Scholar] [CrossRef]
- Bosetti, C.; Rognoni, M.; Ciampichini, R.; Paroni, L.; Scala, M.; d’Oro, L.C.; Zucchi, A.; Amerio, A.; Iacoviello, L.; Ghislandi, S.; et al. Lost in Lombardia Project Investigators. A real world analysis of COVID-19 impact on hospitalizations in older adults with chronic conditions from an Italian region. Sci. Rep. 2022, 12, 13704. [Google Scholar] [CrossRef]
- Blandi, L.; Bertuccio, P.; Signorelli, C.; Brand, H.; Clemens, T.; Renzi, C.; Odone, A. Herpes zoster as risk factor for dementia: A matched cohort study over 20 years in a 10-million population in Italy. J. Prev. Alzheimers Dis. 2025, 12, 100167. [Google Scholar] [CrossRef]
- Signorelli, C.; Odone, A.; Gianfredi, V.; Bossi, E.; Bucci, D.; Oradini-Alacreu, A.; Frascella, B.; Capraro, M.; Chiappa, F.; Blandi, L.; et al. The spread of COVID-19 in six western metropolitan regions: A false myth on the excess of mortality in Lombardy and the defense of the city of Milan. Acta Biomed. 2020, 91, 23–30. [Google Scholar]
Cognitive Status | |||||
---|---|---|---|---|---|
Normal N = 1524 (65.5%) | Mild N = 583 (25.1%) | Severe N = 219 (9.4%) | Total N = 2326 | p-Value * | |
Country | <0.01 | ||||
Germany | 364 (77.7) | 114 (19.4) | 25 (2.7) | 503 (21.6) | |
Italy | 230 (68.8) | 143 (23.1) | 72 (7.9) | 445 (19.1) | |
France | 307 (76.7) | 97 (19.5) | 39 (3.7) | 443 (19.0) | |
Denmark | 395 (80.2) | 90 (15.6) | 27 (4.1) | 512 (22.0) | |
Czech Republic | 228 (74.3) | 139 (19.5) | 56 (6.1) | 423 (18.1) | |
Sex | 0.41 | ||||
Men | 684 (71.8) | 283 (23.0) | 101 (5.1) | 1068 (45.9) | |
Women | 840 (73.8) | 300 (19.7) | 118 (6.4) | 1258 (54.1) | |
Age | 0.01 | ||||
<65 years | 564 (74.8) | 180 (23.1) | 20 (0.1) | 818 (39.8) | |
65–74 years | 612 (75.5) | 229 (18.5) | 78 (6.0) | 1010 (41.3) | |
75–84 years | 234 (65.3) | 131 (24.2) | 81 (10.5) | 485 (16.8) | |
85+ | 29 (43.2) | 11 (40.2) | 13 (16.6) | 57 (0.1) | |
Rural area | 0.71 | ||||
No | 903 (71.9) | 332 (22.5) | 119 (5.6) | 1354 (63.9) | |
Yes | 493 (74.8) | 199 (19.9) | 71 (5.3) | 763 (36.1) | |
Education level | <0.01 | ||||
<Secondary education | 437 (64.7) | 255 (25.8) | 122 (9.5) | 814 (35.0) | |
≥Secondary education | 1087 (79.4) | 328 (17.7) | 97 (2.9) | 1512 (65.0) | |
Loneliness | <0.01 | ||||
No | 1186 (75.5) | 412 (21.3) | 118 (3.20) | 1716 (78.3) | |
Yes | 254 (62.3) | 141 (23.0) | 83 (14.54) | 478 (21.7) | |
Multimorbidity | <0.01 | ||||
No | 881 (78.5) | 237 (19.2) | 68 (2.3) | 1186 (53.7) | |
Yes | 565 (64.4) | 320 (25.2) | 136 (10.4) | 1021 (46.3) | |
Hearing loss | 0.01 | ||||
No | 1189 (74.8) | 427 (20.5) | 138 (4.7) | 1754 (79.) | |
Yes | 257 (62.4) | 130 (27.3) | 66 (10.3) | 453 (20.6) | |
Vision loss | <0.01 | ||||
No | 1233 (76.8) | 419 (19.7) | 128 (3.5) | 1780 (80.65) | |
Yes | 213 (57.5) | 138 (29.0) | 76 (13.5) | 427 (19.35) | |
Hypertension | <0.01 | ||||
No | 706 (73.7) | 217 (23.0) | 68 (3.2) | 991 (47.5) | |
Yes | 740 (71.6) | 340 (20.7) | 136 (7.6) | 1096 (52.5) | |
Diabetes | 0.50 | ||||
No | 1252 (73.2) | 444 (21.3) | 161 (5.5) | 1728 (83.2) | |
Yes | 194 (68.7) | 113 (24.1) | 43 (7.2) | 350 (16.8) | |
Hypercholesterolemia | 0.24 | ||||
No | 1098 (73.6) | 406 (20.5) | 158 (5.9) | 1662 (75.3) | |
Yes | 348 (68.4) | 151 (26.7) | 46 (4.9) | 545 (24.7) | |
Depression | <0.01 | ||||
No | 906 (77.9) | 312 (18.3) | 94 (3.8) | 1312 (59.8) | |
Yes | 533 (65.2) | 241 (26.3) | 109 (8.5) | 883 (40.2) | |
Psychiatric disorders | 0.53 | ||||
No | 1370 (73.7) | 524 (21.5) | 194 (5.8) | 2268 (96.6) | |
Yes | 69 (74.7) | 29 (22.1) | 9 (3.2) | 120 (3.4) | |
Obese | 0.64 | ||||
No | 1132 (72.9) | 415 (21.6) | 149 (5.5) | 1696 (77.6) | |
Yes | 303 (71.3) | 134 (21.8) | 50 (6.9) | 487 (22.4) | |
Alcohol abuse | 0.68 | ||||
No | 1089 (72.2) | 451 (22.2) | 168 (5.6) | 1708 (77.3) | |
Yes | 357 (74.5) | 106 (19.3) | 36 (6.2) | 499 (22.6) | |
Smoke habits | 0.72 | ||||
No | 741 (71.5) | 296 (22.3) | 121 (6.2) | 1158 (52.8) | |
Yes | 697 (73.5) | 255 (21.3) | 82 (5.2) | 1034 (47.2) | |
Sedentarism | 0.08 | ||||
No | 680 (76.3) | 189 (19.6) | 64 (3.9) | 933 (42.2) | |
Yes | 766 (69.8) | 368 (23.1) | 140 (6.9) | 1274 (57.7) | |
Limited activity | <0.01 | ||||
No Limited | 896 (77.8) | 267 (18.4) | 85 (3.8) | 1248 (56.5) | |
Limited | 550 (64.8) | 290 (26.7) | 119 (8.5) | 959 (43.5) | |
Poor self-rated health | <0.01 | ||||
Adequate | 1077 (79.3) | 323 (18.2) | 81 (2.5) | 1481 (65.8) | |
Poor | 369 (59.4) | 234 (28.7) | 123 (11.9) | 726 (34.2) |
Low Risk | Combined Cluster | Inactive Behaviour | Cardiometabolic Risk | |
---|---|---|---|---|
Sample distribution (%) | 30.4 | 30.3 | 23.9 | 15.3 |
Hypertension | 0.27 | 0.69 | 0.44 | 0.98 |
Diabetes | 0.03 | 0.24 | 0.07 | 0.38 |
Hypercholesterolemia | 0.12 | 0.29 | 0.15 | 0.55 |
Hearing loss | 0.15 | 0.31 | 0.13 | 0.22 |
Visual loss | 0.05 | 0.38 | 0.19 | 0.13 |
Depression | 0.31 | 0.63 | 0.30 | 0.34 |
Psychiatric disorders | 0.04 | 0.04 | 0.06 | 0.05 |
Obesity | 0.26 | 0.23 | 0.15 | 0.25 |
Low education | 0.09 | 0.51 | 0.50 | 0.32 |
Loneliness | 0.07 | 0.42 | 0.22 | 0.11 |
Sedentarism | 0.29 | 0.78 | 0.70 | 0.57 |
Alcohol abuse | 0.35 | 0.15 | 0.10 | 0.31 |
Smoking | 0.55 | 0.43 | 0.33 | 0.61 |
Limited activity | 0.23 | 0.85 | 0.14 | 0.44 |
Low self-rated health | 0.07 | 0.84 | 0.09 | 0.24 |
Total | Normal (Ref.) | MCI | SCI | |||
---|---|---|---|---|---|---|
N (% Col) | N (% Row) | N (% Row) | OR * (95% CI) | N (% Row) | OR * (95% CI) | |
Low Risk | 761 (32.7) | 592 (77.8) | 139 (18.3) | 1.00 | 30 (3.9) | 1.00 |
Inactive behaviour | 327 (14.1) | 225 (68.8) | 80 (24.5) | 1.38 (0.99–1.96) | 22 (6.7) | 1.87 (1.01–3.48) |
Cardiometabolic Risk | 487 (20.9) | 342 (70.2) | 109 (22.4) | 1.44 (1.07–1.93) | 36 (7.4) | 2.31 (1.31–4.05) |
Combined cluster | 751 (32.3) | 365 (48.6) | 255 (34.0) | 3.11 (2.38–4.06) | 131 (17.4) | 7.30 (4.47–11.92) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, J.M.; Bertuccio, P.; Vecchio, R.; Vigezzi, G.P.; Blandi, L.; Odone, A. Latent Profiles Based on Combined Risk Factors for Cognitive Decline in European Older Adults: A Retrospective Study Based on the SHARE HCAP Project. Neurol. Int. 2025, 17, 172. https://doi.org/10.3390/neurolint17100172
Lopes JM, Bertuccio P, Vecchio R, Vigezzi GP, Blandi L, Odone A. Latent Profiles Based on Combined Risk Factors for Cognitive Decline in European Older Adults: A Retrospective Study Based on the SHARE HCAP Project. Neurology International. 2025; 17(10):172. https://doi.org/10.3390/neurolint17100172
Chicago/Turabian StyleLopes, Johnnatas Mikael, Paola Bertuccio, Riccardo Vecchio, Giacomo Pietro Vigezzi, Lorenzo Blandi, and Anna Odone. 2025. "Latent Profiles Based on Combined Risk Factors for Cognitive Decline in European Older Adults: A Retrospective Study Based on the SHARE HCAP Project" Neurology International 17, no. 10: 172. https://doi.org/10.3390/neurolint17100172
APA StyleLopes, J. M., Bertuccio, P., Vecchio, R., Vigezzi, G. P., Blandi, L., & Odone, A. (2025). Latent Profiles Based on Combined Risk Factors for Cognitive Decline in European Older Adults: A Retrospective Study Based on the SHARE HCAP Project. Neurology International, 17(10), 172. https://doi.org/10.3390/neurolint17100172