Histological and Functional Breakdown of the Blood−Brain Barrier in Alzheimer’s Disease: A Multifactorial Intersection
Abstract
1. Introduction
2. Method
3. Association Between Blood–Brain Barrier Dysfunction and Alzheimer’s Disease
3.1. Structure of the Blond-Brain Barrier (BBB)
3.1.1. Blood–Brain Barrier (BBB) in the Neurovascular Unit
3.1.2. Endothelial Cells
3.1.3. Astrocytes
3.1.4. Pericytes
3.1.5. Tight Junctions
3.1.6. Basement Membranes
3.1.7. Adherens Junctions
3.2. Function of the Blood–Brain Barrier
3.3. Transport Mechanisms Through the Blood–Brain Barrier
3.3.1. Passive Diffusion
3.3.2. Carrier-Mediated Transport
3.3.3. Active Efflux Mechanisms
3.3.4. Receptor-Mediated Transcytosis (RMT)
3.3.5. Adsorptive-Mediated Transcytosis (AMT)
3.3.6. Cell-Mediated Transcytosis (CMT)
3.4. Circumventricular Organs and the BBB
3.5. Mechanisms of Blood–Brain Barrier Breakdown
3.6. Blood–Brain Barrier Disruption and Its Role in Neurological Disorders
3.7. The Blood–Brain Barrier and Alzheimer’s Disease
4. Comparison Between the Causes of Alzheimer’s Disease and Blood–Brain Barrier Impairment
4.1. Function of Microglia
4.1.1. Blood–Brain Barrier
4.1.2. Alzheimer’s Disease
4.2. Inflammation
4.2.1. Blood–Brain Barrier
4.2.2. Alzheimer’s Disease
4.3. Vascular Damage
4.3.1. Blood–Brain Barrier
4.3.2. Alzheimer’s Disease
4.4. Oxidative Stress
4.4.1. Blood–Brain Barrier
4.4.2. Alzheimer’s Disease
- -
- Pericyte degeneration: Pericytes are perivascular cells crucial for the stability and function of the blood–brain barrier (BBB). Their degeneration, observed in the early stages of AD, contributes to the loss of the blood–brain barrier, cerebral hypoperfusion, and impaired neuronal homeostasis [8,28]. Murine models have demonstrated that pericyte loss is directly associated with white matter damage and cognitive deficits [48].
- -
- Nutrient transport dysfunction: The glucose transporter GLUT1, which is essential for brain energy supply, is decreased in the blood–brain barrier (BBB) of patients with AD [27]. This metabolic dysfunction compromises neuronal viability, facilitates the accumulation of pathological proteins, and accelerates neurodegeneration [4,22,23]. The dysfunction of GLUT1 in AD not only impairs glucose transport but may also indirectly affect Aβ clearance. Reduced energy availability can compromise the function of ATP-dependent efflux transporters such as P-glycoprotein (P-gp), which is essential for Aβ removal. Moreover, GLUT1 deficiency may alter endothelial cell homeostasis and reduce the expression or activity of LRP1, another key transporter involved in Aβ transcytosis across the BBB. Therefore, GLUT1 impairment may exacerbate Aβ accumulation by both limiting metabolic support and impairing clearance mechanisms [7,33].
- -
- Loss of polarity in astrocytes: Astrocytes normally regulate metabolic exchange and blood–brain barrier (BBB) integrity through their perivascular terminals. In AD, the loss of polarity in astrocytes alters their supportive functions, increasing vascular permeability and exacerbating neuroinflammation [2,20].
- -
- -
- Endothelial epigenetic modifications: Epigenetic alterations in brain endothelial cells, driven by chronic inflammation and aging, reduce the expression of essential tight junction proteins and transporters and promote the disruption of the blood–brain barrier (BBB) [33]. These modifications could represent an early link between environmental risk factors and susceptibility to AD [57].
- -
- Dysregulation of the Wnt/β-catenin pathway: The Wnt/β-catenin signaling pathway is crucial for the maintenance of the blood–brain barrier (BBB). Its inhibition, observed in AD, leads to decreased expression of tight junction proteins and structural weakening of the barrier [29].
- -
- Hormonal stress: Mild stress, chronically experienced, aggravates and accelerates the main features of the disease in people with a genetic predisposition to develop Alzheimer’s disease. Many studies have shown that stress can cause cognitive impairments. In addition, patients with depression experience episodes of memory loss, and stress is a factor associated with depression [14,34,52]. Stress and hormones released during stress exposure can also alter the normal functioning of the BBB, since most cells involved in BBB formation (endothelial cells, astrocytes, and microglia) have receptors for glucocorticoids, corticotropin-releasing hormone, and adrenaline. In adult mammals, acute stress modifies BBB permeability to circulating molecules in the blood, and several studies have reported an increase in BBB permeability after acute stress [7].
4.5. What Starts Outside the Organism (Parabiosis)
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heneka, M.T.; Golenbock, D.T.; Latz, E. Innate immunity in Alzheimer’s disease. Nat. Immunol. 2015, 16, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 2011, 12, 723–738. [Google Scholar] [CrossRef]
- Deane, R.; Sagare, A.; Zlokovic, B.V. The role of the cell surface LRP and soluble LRP in blood–brain barrier Aβ clearance in Alzheimer’s disease. Curr. Pharm. Des. 2008, 14, 1601–1605. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Kalaria, R.N. The pathology and pathophysiology of vascular dementia. Neuropharmacology 2018, 134, 226–239. [Google Scholar] [CrossRef]
- Sultana, R.; Perluigi, M.; Butterfield, D.A. Oxidatively modified proteins in Alzheimer’s disease and mild cognitive impairment. Acta Neuropathol. 2009, 118, 131–150. [Google Scholar] [CrossRef]
- Erickson, M.A.; Banks, W.A. Blood–brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J. Cereb. Blood Flow Metab. 2013, 33, 1500–1513. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci. 2016, 19, 771–783. [Google Scholar] [CrossRef]
- Storck, S.E.; Hartz, A.M.S.; Pietrzik, C.U. The Blood-Brain Barrier in Alzheimer’s Disease. Handb. Exp. Pharmacol. 2022, 273, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Meng, Z.; Hu, Y.; Jiang, B.; Yang, J.; Chen, Y.; Zhou, J.; Li, M.; Wang, H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia–reperfusion, vascular dementia, and Alzheimer’s disease. Front. Mol. Neurosci. 2024, 17, 1394932. [Google Scholar] [CrossRef]
- Lehner, C.; Gehwolf, R.; Tempfer, H.; Krizbai, I.; Hennig, B.; Bauer, H.-C.; Bauer, H. Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid. Redox Signal. 2011, 15, 1305–1323. [Google Scholar] [CrossRef]
- Ahmad, W.; Ijaz, B.; Shabbiri, K.; Ahmed, F.; Rehman, S. Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/RNS generation. J. Biomed. Sci. 2017, 24, 76. [Google Scholar] [CrossRef]
- Tian, Z.; Ji, X.; Liu, J. Neuroinflammation in vascular cognitive impairment and dementia: Current evidence, advances, and perspectives. Int. J. Mol. Sci. 2022, 23, 6224. [Google Scholar] [CrossRef]
- Higashi, Y. Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, Q.; Zhang, Y.; Di, L.; Xue, F.; Xu, W.; Gao, W.; Guo, Y.; He, Y.; Kou, J.; et al. A new andrographolide derivative ADA targeting SIRT3-FOXO3a signaling mitigates cognitive impairment by activating mitophagy and inhibiting neuroinflammation in Apoe4 mice. Phytomedicine 2024, 124, 155298. [Google Scholar] [CrossRef]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Zlokovic, B.V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 2008, 57, 178–201. [Google Scholar] [CrossRef]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Obermeier, B.; Daneman, R.; Ransohoff, R.M. Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 2013, 19, 1584–1596. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef]
- Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science 2016, 353, 777–783. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Kanekiyo, T. Blood–brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci. 2017, 18, 1965. [Google Scholar] [CrossRef]
- Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016, 235, 34–47. [Google Scholar] [CrossRef]
- Panghal, A.; Flora, S.J.S. Nanotechnology in the diagnostic and therapy for Alzheimer’s disease. Biochim. Biophys. Acta. Gen. Subj. 2024, 1868, 130559. [Google Scholar] [CrossRef]
- Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018, 217, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Montagne, A.; Nation, D.A.; Sagare, A.P.; Barisano, G.; Sweeney, M.D.; Chakhoyan, A.; Pachicano, M.; Joe, E.; Nelson, A.R.; D’Orazio, L.M.; et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 2020, 581, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.D.; Winkler, E.A.; Sagare, A.P.; Singh, I.; LaRue, B.; Deane, R.; Zlokovic, B.V. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, R.; Chen, S.; Liu, P.; Zhang, M.; He, J.; Cui, Y. Blood–brain barrier dysfunction in Alzheimer’s disease: Pathogenic mechanisms and therapeutic targets. CNS Neurosci. Ther. 2024, 30, e5–e19. [Google Scholar] [CrossRef]
- Rojo, A.I.; McBean, G.; Cindric, M.; Egea, J.; López, M.G.; Rada, P.; Zarkovic, N.; Cuadrado, A. Redox control of microglial function: Molecular mechanisms and functional significance. Antioxid. Redox Signal. 2014, 21, 1766–1801. [Google Scholar] [CrossRef]
- Fraser, P.E.; Nguyen, J.T.; McLachlan, D.R.; Abraham, C.R.; Kirschner, D.A. Alpha 1-antichymotrypsin binding to Alzheimer A beta peptides is sequence specific and induces fibril disaggregation in vitro. J. Neurochem. 1993, 61, 298–305. [Google Scholar] [CrossRef]
- Preis, L.; Villringer, K.; Brosseron, F.; Düzel, E.; Jessen, F.; Petzold, G.C.; Ramirez, A.; Spottke, A.; Fiebach, J.B.; Peters, O. Assessing blood–brain barrier dysfunction and its association with Alzheimer’s pathology, cognitive impairment and neuroinflammation. Alzheimers Res. Ther. 2024, 16, 172. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Montagne, A.; Zhao, Z.; Zlokovic, B.V. Blood–brain barrier: From physiology to disease and back. Physiol. Rev. 2022, 102, 1461–1523. [Google Scholar] [CrossRef]
- Gorelick, P.B.; Scuteri, A.; Black, S.E.; Sellal, F.; Meyer, N.; Raul, J.S.; Sabourdy, C.; Boujan, F.; Jahn, C.; Beaujeux, R.; et al. Vascular contributions to cognitive impairment and dementia. Stroke 2011, 42, 2672–2713. [Google Scholar] [CrossRef]
- Chen, Y.; He, Y.; Han, J.; Wei, W.; Chen, F. Blood–brain barrier dysfunction and Alzheimer’s disease: Associations, pathogenic mechanisms, and therapeutic potential. Front. Aging Neurosci. 2023, 15, 1258640. [Google Scholar] [CrossRef] [PubMed]
- Raas, Q.; Tawbeh, A.; Tahri-Joutey, M.; Gondcaille, C.; Saih, F.-E.; Loichot, D.; Hamon, Y.; Keime, C.; Benani, A.; Di Cara, F.; et al. Impaired peroxisomal beta-oxidation in microglia triggers oxidative stress and impacts neurons and oligodendrocytes. Front. Mol. Neurosci. 2025, 18, 1542938. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Rhea, E.M. The blood–brain barrier, oxidative stress, and insulin resistance. Antioxidants 2021, 10, 1695. [Google Scholar] [CrossRef]
- Iadecola, C. The pathobiology of vascular dementia. Neuron 2013, 80, 844–866. [Google Scholar] [CrossRef]
- Da, F.A.; Matias, D.; Garcia, C.; Amaral, R.; Geraldo, L.H.; Freitas, C.; Lima, F.R.S. The impact of microglial activation on blood–brain barrier in brain diseases. Front. Cell. Neurosci. 2014, 8, 362. [Google Scholar] [CrossRef]
- Song, K.; Li, Y.; Zhang, H.; An, N.; Wei, Y.; Wang, L.; Tian, C.; Yuan, M.; Sun, Y.; Xing, Y. Oxidative stress-mediated blood–brain barrier disruption in neurological diseases. Oxid. Med. Cell. Longev. 2020, 2020, 4356386. [Google Scholar] [CrossRef]
- Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 2019, 25, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Montagne, A.; Nikolakopoulou, A.M.; Zhao, Z.; Toga, A.W.; Jacobs, R.E.; Liu, C.Y.; Amezcua, L.; Harrington, M.G.; Chui, H.C.; Law, M.; et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 2020, 85, 296–302. [Google Scholar] [CrossRef]
- Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv. Drug Deliv. Rev. 2014, 71, 2–14. [Google Scholar] [CrossRef]
- Velmurugan, G.V.; Vekaria, H.J.; Hartz, A.M.S.; Bauer, B.; Hubbard, W.B. Oxidative stress alters mitochondrial homeostasis in isolated brain capillaries. Fluids Barriers CNS 2024, 21, 81. [Google Scholar] [CrossRef]
- Zuo, M.L.; Wang, A.P.; Song, G.L.; Yang, Z.B. miR-652 protects rats from cerebral ischemia/reperfusion oxidative stress injury by directly targeting NOX2. Biomed. Pharmacother. 2020, 124, 109860. [Google Scholar] [CrossRef]
- Zhu, M.L.; Zhang, J.; Guo, L.J.; Yue, R.-Z.; Li, S.-S.; Cui, B.-Y.; Guo, S.; Niu, Q.-Q.; Yu, Y.-N.; Wang, H.-H.; et al. Amorphous selenium inhibits oxidative stress injury of neurons in vascular dementia rats by activating NMDAR pathway. Eur. J. Pharmacol. 2023, 955, 175874. [Google Scholar] [CrossRef]
- Alcendor, D.J. Interactions between amyloid-β proteins and human brain pericytes: Implications for the pathobiology of Alzheimer’s disease. J. Clin. Med. 2020, 9, 1490. [Google Scholar] [CrossRef]
- Chou, R.C.; Kane, M.; Ghimire, S.; Gautam, S.; Gui, J. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: A nested case–control analysis. Sci. Rep. 2016, 6, 20608. [Google Scholar] [CrossRef] [PubMed]
- Ayton, S.; Faux, N.G.; Bush, A.I. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are linked to APOE genotype. J. Neurol. Neurosurg. Psychiatry 2021, 92, 701–707. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, Y.; Zhang, Y.; Guan, H.; Huang, X.; Miao, R.; Yin, R.; Tian, J. Endothelial extracellular vesicles: Their possible function and clinical significance in diabetic vascular complications. J. Transl. Med. 2024, 22, 944. [Google Scholar] [CrossRef] [PubMed]
- Sofroniew, M.V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 2015, 16, 249–263. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Li, H.; Xia, Y.; Xing, M.; Xiao, C.; Cai, W.; Bu, L.; Li, Y.; Park, T.-E.; et al. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer’s disease. Transl. Neurodegener. 2024, 13, 1. [Google Scholar] [CrossRef]
- Parker, E.; Aboghazleh, R.; Mumby, G.; Veksler, R.; Ofer, J.; Newton, J.; Smith, R.; Kamintsky, L.; Jones, C.M.A.; O’Keeffe, E.; et al. Concussion susceptibility is mediated by spreading depolarization-induced neurovascular dysfunction. Brain 2022, 145, 2049–2063. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Boyd-Kimball, D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. J. Alzheimers Dis. 2018, 62, 1345–1367. [Google Scholar] [CrossRef]
- Chung, T.D.; Linville, R.M.; Guo, Z.; Ye, R.; Jha, R.; Grifno, G.N.; Searson, P.C. Effects of acute and chronic oxidative stress on the blood–brain barrier in 2D and 3D in vitro models. Fluids Barriers CNS 2022, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- El-Mezayen, N.S.; Abd El-Maksoud, R.M.; El-Rewini, S.H. Vitamin B12 as a cholinergic system modulator and blood–brain barrier integrity restorer in Alzheimer’s disease. Eur. J. Pharm. Sci. 2022, 174, 106201. [Google Scholar] [CrossRef] [PubMed]
- Levi, S.; Ripamonti, M.; Moro, A.S.; Cozzi, A. Iron imbalance in neurodegeneration. Mol. Psychiatry 2024, 29, 1139–1152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neyra Chauca, J.M.; Robles Martinez, G.G. Histological and Functional Breakdown of the Blood−Brain Barrier in Alzheimer’s Disease: A Multifactorial Intersection. Neurol. Int. 2025, 17, 166. https://doi.org/10.3390/neurolint17100166
Neyra Chauca JM, Robles Martinez GG. Histological and Functional Breakdown of the Blood−Brain Barrier in Alzheimer’s Disease: A Multifactorial Intersection. Neurology International. 2025; 17(10):166. https://doi.org/10.3390/neurolint17100166
Chicago/Turabian StyleNeyra Chauca, Jordana Mariane, and Graciela Gaddy Robles Martinez. 2025. "Histological and Functional Breakdown of the Blood−Brain Barrier in Alzheimer’s Disease: A Multifactorial Intersection" Neurology International 17, no. 10: 166. https://doi.org/10.3390/neurolint17100166
APA StyleNeyra Chauca, J. M., & Robles Martinez, G. G. (2025). Histological and Functional Breakdown of the Blood−Brain Barrier in Alzheimer’s Disease: A Multifactorial Intersection. Neurology International, 17(10), 166. https://doi.org/10.3390/neurolint17100166