Dietary Approach in Familial Hypercholesterolemia
Abstract
:1. Familial Hypercholesterolemia
1.1. Epidemiology
1.2. Genetic Background
1.3. Treatment
2. Dietary Approach in FH
2.1. Fat
2.2. Carbohydrates
2.3. Fiber
2.4. Protein
2.5. Dietary Models
3. Supplementation in FH
3.1. Plant Sterols and Stanols
3.2. Omega-3 Acids
3.3. Beta-Glucan
3.4. Red Yeast Fermented Rice Extract
4. Other Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khachadurian, A.K. The inheritance of essential familial hypercholesterolemia. Am. J. Med. 1964, 37, 402–407. [Google Scholar] [CrossRef]
- Nohara, A.; Tada, H.; Ogura, M.; Okazaki, S.; Ono, K.; Shimano, H.; Daida, H.; Dobashi, K.; Hayashi, T.; Hori, M.; et al. Homozygous Familial Hypercholesterolemia. J. Atheroscler. Thromb. 2021, 28, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Soutar, A.K.; Naoumova, R.P. Mechanisms of Disease: Genetic causes of familial hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med. 2007, 4, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Akioyamen, L.E.; Genest, J.; Shan, S.D.; Reel, R.L.; Albaum, J.M.; Chu, A.; Tu, J.V. Estimating the prevalence of heterozygous familial hypercholesterolaemia: A systematic review and meta-analysis. BMJ Open 2017, 7, e016461. [Google Scholar] [CrossRef] [PubMed]
- Sanna, C.; Stéphenne, X.; Revencu, N.; Smets, F.; Sassolas, A.; Di Filippo, M.; Descamps, O.S.; Sokal, E.M. Homozygous familial hypercholesterolemia in childhood: Genotype-phenotype description, established therapies and perspectives. Atherosclerosis 2016, 247, 97–104. [Google Scholar] [CrossRef]
- Lehrman, M.A.; Schneider, W.J.; Südhof, T.C.; Brown, M.S.; Goldstein, J.L.; Russell, D.W. Mutation in LDL Receptor: Alu-Alu Recombination Deletes Exons Encoding Transmembrane and Cytoplasmic Domains. Science 1985, 227, 140. [Google Scholar] [CrossRef]
- Yamamoto, T.; Davis, C.G.; Brown, M.S.; Schneider, W.J.; Casey, M.L.; Goldstein, J.L.; Russell, D.W. The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 1984, 39, 27–38. [Google Scholar] [CrossRef]
- Bianconi, V.; Banach, M.; Pirro, M. Why patients with familial hypercholesterolemia are at high cardiovascular risk? Beyond LDL-C levels. Trends Cardiovasc. Med. 2021, 31, 205–215. [Google Scholar] [CrossRef]
- Marco-Benedí, V.; Cenarro, A.; Laclaustra, M.; Larrea-Sebal, A.; Jarauta, E.; Lamiquiz-Moneo, I.; Calmarza, P.; Bea, A.M.; Plana, N.; Pintó, X.; et al. Lipoprotein(a) in hereditary hypercholesterolemia: Influence of the genetic cause, defective gene and type of mutation. Atherosclerosis 2022, 349, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Harada-Shiba, M.; Ohtake, A.; Sugiyama, D.; Tada, H.; Dobashi, K.; Matsuki, K.; Minamino, T.; Yamashita, S.; Yamamoto, Y. Guidelines for the Diagnosis and Treatment of Pediatric Familial Hypercholesterolemia 2022. J. Atheroscler. Thromb. 2023, 30, 531–557. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Yokote, K.; Arai, H.; Iida, M.; Ishigaki, Y.; Ishibashi, S.; Umemoto, S.; Egusa, G.; Ohmura, H.; Okamura, T.; et al. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2017. J. Atheroscler. Thromb. 2018, 25, 846–984. [Google Scholar] [CrossRef]
- Machado, V.A.; Fonseca, F.A.; Fonseca, H.A.; Malina, D.T.; Fonzar, W.T.; Barbosa, S.A.; Santana, J.M.; Izar, M.C. Plant sterol supplementation on top of lipid-lowering therapies in familial hypercholesterolemia. Int. J. Cardiol. 2015, 184, 570–572. [Google Scholar] [CrossRef]
- Vuorio, A.; Kuoppala, J.; Kovanen, P.T.; Humphries, S.E.; Tonstad, S.; Wiegman, A.; Drogari, E.; Ramaswami, U. Statins for children with familial hypercholesterolemia. Cochrane Database Syst. Rev. 2019, 2019, CD006401. [Google Scholar] [CrossRef]
- Rodríguez-Borjabad, C.; Malo, A.I.; Ibarretxe, D.; Girona, J.; Heras, M.; Ferré, R.; Feliu, A.; Salvadó, M.; Varela, A.; Amigó, N.; et al. Efficacy of therapeutic lifestyle changes on lipid profiles assessed by NMR in children with familial and non-familial hypercholesterolemia. Clínica E Investig. Arterioscler. 2020, 32, 49–58. [Google Scholar] [CrossRef]
- Evolocumab|CDA-AMC. Available online: https://www.cda-amc.ca/evolocumab-1 (accessed on 1 December 2024).
- Inclisiran (Leqvio): CADTH Reimbursement Recommendation: Indication: As an Adjunct to Lifestyle Changes, Including Diet, to Further Reduce Low-Density Lipoprotein Cholesterol (LDL-C) Level in Adults with the Following Conditions Who Are on Maximally Tolerated Dose of a Statin, with or Without Other LDL-C -Lowering Therapies: Heterozygous Familial Hypercholesterolemia (HeFH), or Non-Familial Hypercholesterolemia With Atherosclerotic Cardiovascular Disease; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2022.
- Roy, G.; Drouin-Chartier, J.-P. Cardiovascular disease prevention in heterozygous familial hypercholesterolemia: How important is a healthy diet in the era of long-lasting cholesterol-lowering drug therapies? Curr. Opin. Lipidol. 2024, 35, 1. [Google Scholar] [CrossRef]
- Roy, G.; Boucher, A.; Couture, P.; Drouin-Chartier, J.-P. Impact of Diet on Plasma Lipids in Individuals with Heterozygous Familial Hypercholesterolemia: A Systematic Review of Randomized Controlled Nutritional Studies. Nutrients 2021, 13, 235. [Google Scholar] [CrossRef]
- Lughetti, L.; Predieri, B.; Balli, F.; Calandra, S. Rational approach to the treatment for heterozygous familial hypercholesterolemia in childhood and adolescence: A review. J. Endocrinol. Investig. 2007, 30, 700–719. [Google Scholar] [CrossRef] [PubMed]
- Kameyama, N.; Maruyama, C.; Kitagawa, F.; Nishii, K.; Uenomachi, K.; Katayama, Y.; Koga, H.; Chikamoto, N.; Kuwata, Y.; Torigoe, J.; et al. Dietary Intake during 56 Weeks of a Low-Fat Diet for Lomitapide Treatment in Japanese Patients with Homozygous Familial Hypercholesterolemia. J. Atheroscler. Thromb. 2019, 26, 72–83. [Google Scholar] [CrossRef]
- Broekhuizen, K.; Van Poppel, M.N.M.; Koppes, L.L.; Kindt, I.; Brug, J.; Van Mechelen, W. Can Multiple Lifestyle Behaviours Be Improved in People with Familial Hypercholesterolemia? Results of a Parallel Randomised Controlled Trial. PLoS ONE 2012, 7, e50032. [Google Scholar] [CrossRef]
- Barkas, F.; Nomikos, T.; Liberopoulos, E.; Panagiotakos, D. Diet and Cardiovascular Disease Risk Among Individuals with Familial Hypercholesterolemia: Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2436. [Google Scholar] [CrossRef] [PubMed]
- Rundblad, A.; Sandoval, V.; Holven, K.B.; Ordovás, J.M.; Ulven, S.M. Omega-3 fatty acids and individual variability in plasma triglyceride response: A mini-review. Redox Biol. 2023, 63, 102730. [Google Scholar] [CrossRef] [PubMed]
- Hoile, S.P.; Clarke-Harris, R.; Huang, R.-C.; Calder, P.C.; Mori, T.A.; Beilin, L.J.; Lillycrop, K.A.; Burdge, G.C. Supplementation with N-3 Long-Chain Polyunsaturated Fatty Acids or Olive Oil in Men and Women with Renal Disease Induces Differential Changes in the DNA Methylation of FADS2 and ELOVL5 in Peripheral Blood Mononuclear Cells. PLoS ONE 2014, 9, e109896. [Google Scholar] [CrossRef] [PubMed]
- Vijay, A.; Astbury, S.; Le Roy, C.; Spector, T.D.; Valdes, A.M. The prebiotic effects of omega-3 fatty acid supplementation: A six-week randomised intervention trial. Gut Microbes 2021, 13, 1863133. [Google Scholar] [CrossRef]
- Jakulj, L.; Vissers, M.N.; Rodenburg, J.; Wiegman, A.; Trip, M.D.; Kastelein, J.J.P. Plant stanols do not restore endothelial function in pre-pubertal children with familial hypercholesterolemia despite reduction of low-density lipoprotein cholesterol levels. J. Pediatr. 2006, 148, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Telle-Hansen, V.H.; Gaundal, L.; Bastani, N.; Rud, I.; Byfuglien, M.G.; Gjøvaag, T.; Retterstøl, K.; Holven, K.B.; Ulven, S.M.; Myhrstad, M.C.W. Replacing saturated fatty acids with polyunsaturated fatty acids increases the abundance of Lachnospiraceae and is associated with reduced total cholesterol levels—A randomized controlled trial in healthy individuals. Lipids Health Dis. 2022, 21, 92. [Google Scholar] [CrossRef] [PubMed]
- Pimstone, S.N.; Sun, X.-M.; du Souich, C.; Frohlich, J.J.; Hayden, M.R.; Soutar, A.K. Phenotypic Variation in Heterozygous Familial Hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Patel, D.D.; Webb, J.C.; Knight, B.L.; Fan, L.M.; Cai, H.J.; Soutar, A.K. Familial hypercholesterolemia in China. Identification of mutations in the LDL-receptor gene that result in a receptor-negative phenotype. Arterioscler. Thromb. J. Vasc. Biol. 1994, 14, 85–94. [Google Scholar] [CrossRef]
- Hobbs, H.H.; Brown, M.S.; Goldstein, J.L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1992, 1, 445–466. [Google Scholar] [CrossRef] [PubMed]
- Løvheim, E.B.; Retterstøl, K.; Narverud, I.; Bogsrud, M.P.; Halvorsen, B.; Ueland, T.; Aukrust, P.; Holven, K.B. Adherence to the Healthy Nordic Food Index is associated with reduced plasma levels of inflammatory markers in patients with heterozygous familial hypercholesterolemia. Atheroscler. Plus 2024, 58, 38–45. [Google Scholar] [CrossRef]
- Rodrigues, R.P.C.B.; Aguiar, E.M.G.; Cardoso-Sousa, L.; Caixeta, D.C.; Guedes, C.C.F.V.; Siqueira, W.L.; Maia, Y.C.P.; Cardoso, S.V.; Sabino-Silva, R. Differential Molecular Signature of Human Saliva Using ATR-FTIR Spectroscopy for Chronic Kidney Disease Diagnosis. Braz. Dent. J. 2019, 30, 437–445. [Google Scholar] [CrossRef]
- Antoniazzi, L.; Arroyo-Olivares, R.; Bittencourt, M.S.; Tada, M.T.; Lima, I.; Jannes, C.E.; Krieger, J.E.; Pereira, A.C.; Quintana-Navarro, G.; Muñiz-Grijalvo, O.; et al. Association of dietary components with dyslipidemia and low-grade inflammation biomarkers in adults with heterozygous familial hypercholesterolemia from different countries. Eur. J. Clin. Nutr. 2019, 73, 1622–1625. [Google Scholar] [CrossRef]
- Torvik, K.; Narverud, I.; Ottestad, I.; Svilaas, A.; Gran, J.M.; Retterstøl, K.; Ellingvåg, A.; Strøm, E.; Ose, L.; Veierød, M.B.; et al. Dietary counseling is associated with an improved lipid profile in children with familial hypercholesterolemia. Atherosclerosis 2016, 252, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Gulesserian, T.; Widhalm, K. Effect of a Rapeseed Oil Substituting Diet on Serum Lipids and Lipoproteins in Children and Adolescents with Familial Hypercholesterolemia. J. Am. Coll. Nutr. 2002, 21, 103–108. [Google Scholar] [CrossRef]
- Negele, L.; Schneider, B.; Ristl, R.; Stulnig, T.M.; Willfort-Ehringer, A.; Helk, O.; Widhalm, K. Effect of a low-fat diet enriched either with rapeseed oil or sunflower oil on plasma lipoproteins in children and adolescents with familial hypercholesterolaemia. Results of a pilot study. Eur. J. Clin. Nutr. 2015, 69, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, A.; Sutherland, W.; Ball, M. The effect of dietary fat content on plasma noncholesterol sterol concentrations in patients with familial hypercholesterolemia treated with simvastatin. Metabolism 1994, 43, 310–314. [Google Scholar] [CrossRef]
- Malhotra, A.; Shafiq, N.; Arora, A.; Singh, M.; Kumar, R.; Malhotra, S. Dietary interventions (plant sterols, stanols, omega-3 fatty acids, soy protein and dietary fibers) for familial hypercholesterolaemia. Cochrane Database Syst. Rev. 2014, 2014, CD001918. [Google Scholar] [CrossRef]
- Pawlak, R. Low carbohydrate diets should NOT be recommended for patients with familiar hypercholesterolaemia. BMJ Evid.-Based Med. 2022, 27, 128. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J. Ketogenic diet and cardiovascular risk—State of the art review. Curr. Probl. Cardiol. 2024, 49, 102402. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials12. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Reyes-Soffer, G.; Ginsberg, H.N.; Berglund, L.; Duell, P.B.; Heffron, S.P.; Kamstrup, P.R.; Lloyd-Jones, D.M.; Marcovina, S.M.; Yeang, C.; Koschinsky, M.L.; et al. Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e48–e60. [Google Scholar] [CrossRef] [PubMed]
- Faghihnia, N.; Tsimikas, S.; Miller, E.R.; Witztum, J.L.; Krauss, R.M. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J. Lipid Res. 2010, 51, 3324–3330. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Knapp, A.; Johnson, A.; Wong, J.M.; Greco, K.F.; Ma, C.; Mora, S.; Ludwig, D.S. Effects of a low-carbohydrate diet on insulin-resistant dyslipoproteinemia—A randomized controlled feeding trial. Am. J. Clin. Nutr. 2022, 115, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.E.L. Dietary fibre and cardiovascular health: A review of current evidence and policy. Proc. Nutr. Soc. 2020, 79, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Ötles, S.; Ozgoz, S. Health effects of dietary fiber. Acta Sci. Pol. Technol. Aliment. 2014, 13, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Dietary Reference Values for Carbohydrates and Dietary Fibre|EFSA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/1462 (accessed on 1 December 2024).
- Mazur, M.; Przytuła, A.; Szymańska, M.; Popiołek-Kalisz, J. Dietary strategies for cardiovascular disease risk factors prevention. Curr. Probl. Cardiol. 2024, 49, 102746. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Glibowski, P. Apple Peel Supplementation Potential in Metabolic Syndrome Prevention. Life 2023, 13, 753. [Google Scholar] [CrossRef]
- Carboidrati E Fibra Alimentare. Available online: https://sinu.it/2019/07/09/carboidrati-e-fibra-alimentare/ (accessed on 1 December 2024).
- Hartley, L.; May, M.D.; Loveman, E.; Colquitt, J.L.; Rees, K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2016, 2016, CD011472. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Scientific opinion on the safety of monacolins in red yeast rice. EFSA J. 2018, 16, e05368. [Google Scholar] [CrossRef]
- Capra, M.E.; Biasucci, G.; Crivellaro, E.; Banderali, G.; Pederiva, C. Dietary intervention for children and adolescents with familial hypercholesterolaemia. Ital. J. Pediatr. 2023, 49, 77. [Google Scholar] [CrossRef]
- Molven, I.; Retterstøl, K.; Andersen, L.F.; Veierød, M.B.; Narverud, I.; Ose, L.; Svilaas, A.; Wandel, M.; Holven, K.B. Children and young adults with familial hypercholesterolaemia (FH) have healthier food choices particularly with respect to dietary fat sources compared with non-FH children. J. Nutr. Sci. 2013, 2, e32. [Google Scholar] [CrossRef]
- Wirth, A.; Middelhoff, G.; Braeuning, C.; Schlierf, G. Treatment of familial hypercholesterolemia with a combination of bezafibrate and guar. Atherosclerosis 1982, 45, 291–297. [Google Scholar] [CrossRef]
- Gaddi, A.; Ciarrocchi, A.; Matteucci, A.; Rimondi, S.; Ravaglia, G.; Descovich, G.; Sirtori, C. Dietary treatment for familial hypercholesterolemia—Differential effects of dietary soy protein according to the apolipoprotein E phenotypes. Am. J. Clin. Nutr. 1991, 53, 1191–1196. [Google Scholar] [CrossRef]
- Jacques, H.; Laurin, D.; Moorjani, S.; Steinke, F.H.; Gagné, C.; Brun, D.; Lupien, P.-J. Influence of Diets Containing Cow’s Milk or Soy Protein Beverage on Plasma Lipids in Children With Familial Hypercholesterolemia. J. Am. Coll. Nutr. 1992, 11, 69S–73S. [Google Scholar] [CrossRef] [PubMed]
- Helk, O.; Widhalm, K. Effects of a low-fat dietary regimen enriched with soy in children affected with heterozygous familial hypercholesterolemia. Clin. Nutr. ESPEN 2020, 36, 150–156. [Google Scholar] [CrossRef]
- Wolfe, B.M.; Giovannetti, P.M. High protein diet complements resin therapy of familial hypercholesterolemia. Clin. Investig. Med. Med. Clin. Exp. 1992, 15, 349–359. [Google Scholar]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [PubMed]
- Tonstad, S.; Sivertsen, M. Dietary adherence in children with familial hypercholesterolemia. Am. J. Clin. Nutr. 1997, 65, 1018–1026. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Antoniazzi, L.; Arroyo-Olivares, R.; Bittencourt, M.S.; Tada, M.T.; Lima, I.; Jannes, C.E.; Krieger, J.E.; Pereira, A.C.; Quintana-Navarro, G.; Muñiz-Grijalvo, O.; et al. Adherence to a Mediterranean diet, dyslipidemia and inflammation in familial hypercholesterolemia. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2014–2022. [Google Scholar] [CrossRef] [PubMed]
- Antoniazi, L.; Arroyo-Olivares, R.; Mata, P.; Santos, R.D. Association of dietary patterns and components with atherosclerosis risk biomarkers in familial hypercholesterolemia. Curr. Opin. Lipidol. 2022, 33, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Borjabad, C.; Narveud, I.; Christensen, J.J.; Ibarretxe, D.; Andreychuk, N.; Girona, J.; Torvik, K.; Folkedal, G.; Bogsrud, M.P.; Retterstøl, K.; et al. Association between Nordic and Mediterranean diets with lipoprotein phenotype assessed by 1HNMR in children with familial hypercholesterolemia. Atherosclerosis 2023, 373, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Olivares, R.; Alonso, R.; Quintana-Navarro, G.; Fuentes-Jiménez, F.; Mata, N.; Muñiz-Grijalvo, O.; Díaz-Díaz, J.L.; Zambón, D.; Arrieta, F.; García-Cruces, J.; et al. Adults with familial hypercholesterolaemia have healthier dietary and lifestyle habits compared with their non-affected relatives: The SAFEHEART study. Public Health Nutr. 2019, 22, 1433–1443. [Google Scholar] [CrossRef] [PubMed]
- Blokhina, A.V.; Ershova, A.I.; Kopylova, O.V.; Limonova, A.S.; Karamnova, N.S.; Shvabskaya, O.B.; Kiseleva, A.V.; Derbeneva, S.A.; Meshkov, A.N.; Drapkina, O.M. Actual nutrition in adults with familial hypercholesterolemia. Probl. Nutr. 2023, 92, 49–58. [Google Scholar] [CrossRef]
- Maștaleru, A.; Cojocariu, A.S.; Oancea, A.; Leon-Constantin, M.-M.; Roca, M.; Zota, I.M.; Abdulan, I.M.; Rusu, C.; Trandafir, L.M.; Costache, A.D.; et al. Eating Habits in Patients with Familial Hypercholesterolemia from North-Eastern Romania. Nutrients 2022, 14, 3124. [Google Scholar] [CrossRef] [PubMed]
- Marushko, T.; Kurilina, T.; Kulchytska, Y.-E. Impact of the Cardiovascular Health Integrated Lifestyle Diet on nutritional profile and dietary compliance in Ukrainian pediatric patients with heterozygous familial hypercholesterolemia. CHILDS Health 2022, 17, 374–381. [Google Scholar] [CrossRef]
- Crawford, M.d. The Metabolic Basis of Inherited Disease. J. Clin. Pathol. 1983, 36, 961. [Google Scholar] [CrossRef]
- Becker, M.; Staab, D.; Von Bergmann, K. Treatment of severe familial hypercholesterolemia in childhood with sitosterol and sitostanol. J. Pediatr. 1993, 122, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Amundsen, Å.L.; Ose, L.; Nenseter, M.S.; Ntanios, F.Y. Plant sterol ester–enriched spread lowers plasma total and LDL cholesterol in children with familial hypercholesterolemia. Am. J. Clin. Nutr. 2002, 76, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Vuorio, A.F.; Gylling, H.; Turtola, H.; Kontula, K.; Ketonen, P.; Miettinen, T.A. Stanol Ester Margarine Alone and With Simvastatin Lowers Serum Cholesterol in Families With Familial Hypercholesterolemia Caused by the FH–North Karelia Mutation. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 500–506. [Google Scholar] [CrossRef]
- Guardamagna, O.; Abello, F.; Baracco, V.; Federici, G.; Bertucci, P.; Mozzi, A.; Mannucci, L.; Gnasso, A.; Cortese, C. Primary hyperlipidemias in children: Effect of plant sterol supplementation on plasma lipids and markers of cholesterol synthesis and absorption. Acta Diabetol. 2011, 48, 127–133. [Google Scholar] [CrossRef]
- Garoufi, A.; Vorre, S.; Soldatou, A.; Tsentidis, C.; Kossiva, L.; Drakatos, A.; Marmarinos, A.; Gourgiotis, D. Plant sterols–enriched diet decreases small, dense LDL-cholesterol levels in children with hypercholesterolemia: A prospective study. Ital. J. Pediatr. 2014, 40, 42. [Google Scholar] [CrossRef]
- Gylling, H.; Siimes, M.A.; Miettinen, T.A. Sitostanol ester margarine in dietary treatment of children with familial hypercholesterolemia. J. Lipid Res. 1995, 36, 1807–1812. [Google Scholar] [CrossRef] [PubMed]
- Moruisi, K.G.; Oosthuizen, W.; Opperman, A.M. Phytosterols/Stanols Lower Cholesterol Concentrations in Familial Hypercholesterolemic Subjects: A Systematic Review with Meta-Analysis. J. Am. Coll. Nutr. 2006, 25, 41–48. [Google Scholar] [CrossRef]
- Neil, H. Randomised controlled trial of use by hypercholesterolaemic patients of a vegetable oil sterol-enriched fat spread. Atherosclerosis 2001, 156, 329–337. [Google Scholar] [CrossRef]
- Ying, Q.; Chan, D.C.; Pang, J.; Croyal, M.; Blanchard, V.; Krempf, M.; Watts, G.F. Effect of omega-3 fatty acid ethyl esters on postprandial arterial elasticity in patients with familial hypercholesterolemia. Clin. Nutr. ESPEN 2023, 55, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Hande, L.N.; Thunhaug, H.; Enebakk, T.; Ludviksen, J.; Pettersen, K.; Hovland, A.; Lappegård, K.T. Addition of marine omega-3 fatty acids to statins in familial hypercholesterolemia does not affect in vivo or in vitro endothelial function. J. Clin. Lipidol. 2019, 13, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Hande, L.N.; Thunhaug, H.; Ludviksen, J.; Hovland, A.; Lappegård, K.T. No effect of omega-3 polyunsaturated fatty acid supplementation on inflammatory markers in familial hypercholesterolemia: A randomized crossover trial. Scand. J. Clin. Lab. Investig. 2023, 83, 152–159. [Google Scholar] [CrossRef]
- Balestrieri, G.P.; Maffi, V.; Sleiman, I.; Spandrio, S.; Di Stefano, O.; Salvi, A.; Scalvini, T. Fish oil supplementation in patients with heterozygous familial hypercholesterolemia. Recenti Prog. Med. 1996, 87, 102–105. [Google Scholar] [PubMed]
- Chen, J.; Huang, X.-F. The effects of diets enriched in beta-glucans on blood lipoprotein concentrations. J. Clin. Lipidol. 2009, 3, 154–158. [Google Scholar] [CrossRef]
- Mannarino, M.R.; Ministrini, S.; Pirro, M. Nutraceuticals for the treatment of hypercholesterolemia. Eur. J. Intern. Med. 2014, 25, 592–599. [Google Scholar] [CrossRef]
- Brown, L.; Rosner, B.; Willett, W.W.; Sacks, F.M. Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr. 1999, 69, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, A.; Beck, E.J.; Tosh, S.; Wolever, T.M. Cholesterol-lowering effects of oat β-glucan: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1413–1421. [Google Scholar] [CrossRef]
- Li, P.; Wang, Q.; Chen, K.; Zou, S.; Shu, S.; Lu, C.; Wang, S.; Jiang, Y.; Fan, C.; Luo, Y. Red Yeast Rice for Hyperlipidemia: A Meta-Analysis of 15 High-Quality Randomized Controlled Trials. Front. Pharmacol. 2022, 12, 819482. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, Y.; Ye, Q.; Li, J.; Hua, Y.; Ju, D.; Zhang, D.; Cooper, R.; Chang, M. Constituents of Red Yeast Rice, a Traditional Chinese Food and Medicine. J. Agric. Food Chem. 2000, 48, 5220–5225. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.Y.; Cooperman, T.; Obermeyer, W.; Becker, D.J. Marked Variability of Monacolin Levels in Commercial Red Yeast Rice Products: Buyer Beware! Arch. Intern. Med. 2010, 170, 1722–1727. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Banach, M.; Mikhailidis, D.P.; Bruckert, E.; Toth, P.P.; Watts, G.F.; Reiner, Ž.; Mancini, J.; Rizzo, M.; Mitchenko, O.; et al. Safety of red yeast rice supplementation: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2019, 143, 1–16. [Google Scholar] [CrossRef]
- Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; et al. The Role of Nutraceuticals in Statin Intolerant Patients. J. Am. Coll. Cardiol. 2018, 72, 96–118. [Google Scholar] [CrossRef]
- Stefanutti, C.; Mazza, F.; Mesce, D.; Morozzi, C.; Di Giacomo, S.; Vitale, M.; Pergolini, M. Monascus purpureus for statin and ezetimibe intolerant heterozygous familial hypercholesterolaemia patients: A clinical study. Atheroscler. Suppl. 2017, 30, 86–91. [Google Scholar] [CrossRef]
- Carmena-Ramon, R.; Ascaso, J.F.; Real, J.T.; Ordovas, J.M.; Carmena, R. Genetic Variation at the ApoA-IV Gene Locus and Response to Diet in Familial Hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1266–1274. [Google Scholar] [CrossRef]
- Carmena-Ramón, R.; Real, J.T.; Ascaso, J.F.; Ordovás, J.M.; Carmena, R. Effect of apolipoprotein E genotype on lipid levels and response to diet in familial hypercholesterolemia. Nutr. Metab. Cardiovasc. Dis. NMCD 2000, 10, 7–13. [Google Scholar]
- Carmena-Ramon, R.F.; Ordovas, J.M.; Ascaso, J.F.; Real, J.; Priego, M.A.; Carmena, R. Influence of genetic variation at the apo A-I gene locus on lipid levels and response to diet in familial hypercholesterolemia. Atherosclerosis 1998, 139, 107–113. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiolek-Kalisz, J.; Salamon, K.; Mazur, M.; Mikolajczyk, K.; Kalisz, G. Dietary Approach in Familial Hypercholesterolemia. Cardiogenetics 2025, 15, 1. https://doi.org/10.3390/cardiogenetics15010001
Popiolek-Kalisz J, Salamon K, Mazur M, Mikolajczyk K, Kalisz G. Dietary Approach in Familial Hypercholesterolemia. Cardiogenetics. 2025; 15(1):1. https://doi.org/10.3390/cardiogenetics15010001
Chicago/Turabian StylePopiolek-Kalisz, Joanna, Klaudia Salamon, Michal Mazur, Klaudia Mikolajczyk, and Grzegorz Kalisz. 2025. "Dietary Approach in Familial Hypercholesterolemia" Cardiogenetics 15, no. 1: 1. https://doi.org/10.3390/cardiogenetics15010001
APA StylePopiolek-Kalisz, J., Salamon, K., Mazur, M., Mikolajczyk, K., & Kalisz, G. (2025). Dietary Approach in Familial Hypercholesterolemia. Cardiogenetics, 15(1), 1. https://doi.org/10.3390/cardiogenetics15010001