Consideration of the Medical Economics of Cardiac Genetics, Focusing on the Cost-Effectiveness of P2Y12 Inhibitor Selection Based on the CYP2C19 Loss-of-Function Allele: A Semi-Systematic Review
Abstract
:1. Introduction
2. Method
2.1. Basic Concept of This Review
2.2. Related PCI and Antiplatelet Therapy
2.3. Genotype-Guided Therapy to Be Evaluated
2.4. Health Economic Evaluation (Cost-Effectiveness Analysis)
2.5. Simulation Study
2.6. Review Design
2.7. Literature Review Methods and Conditions
2.8. Meta-Analysis
3. Results
3.1. Literature Search Results
3.2. Antiplatelet Therapy (GGT) after PCI
3.3. Genetic Screening for Familial Hypercholesterolemia
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
ACS | acute coronary syndrome |
CYP2C19 LOF allele | Cytochrome P4502C19 loss-of-function allele |
DAPT | dual antiplatelet therapy |
FH | familial hypercholesterolemia |
GGT | genotype-guided therapy |
HTA | health technology assessment |
ICER | incremental cost–effectiveness ratio |
ICUR | incremental cost–utility ratio |
MACE | major adverse cardiovascular events |
PCI | percutaneous coronary intervention |
PG-PRT | genotype plus platelet reactivity-guided antiplatelet therapy |
SNP | single nucleotide polymorphism |
QOL | quality of life |
QALY | quality-adjusted life year |
RCT | randomized control trial |
References
- Walter, C.W. Balancing life-style and genomics research for disease prevention. Science 2002, 296, 695–698. [Google Scholar]
- Rosenbaum, A.N.; Agre, K.E.; Pereira, N.L. Genetics of dilated cardiomyopathy: Practical implications for heart failure management. Nat. Rev. Cardiol. 2020, 17, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Ito, K.; Terao, C.; Akiyama, M.; Horikoshi, M.; Momozawa, Y.; Matsunaga, H.; Ieki, H.; Ozaki, K.; Onouchi, Y.; et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat Genet. 2020, 52, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Mela, A.; Lis, D.; Rdzanek, E.; Jaroszyński, J.; Furtak-Niczyporuk, M.; Drop, B.; Blicharski, T.; Niewada, M. AOTMiT reimbursement recommendations compared to other HTA agencies. Eur. J. Health Econ, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Beitelshees, A.L.; Thomas, C.D.; Empey, P.E.; Stouffer, G.A.; Angiolillo, D.J.; Franchi, F.; Tuteja, S.; Limdi, N.A.; Lee, J.C.; Duarte, J.D.; et al. CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention in diverse clinical settings. J. Am. Heart Assoc. 2022, 11, e024159. [Google Scholar] [CrossRef] [PubMed]
- AlMukdad, S.; Elewa, H.; Al-Badriyeh, D. Economic evaluations of CYP2C19 genotype-guided antiplatelet therapy compared to the universal use of antiplatelets in patients with acute coronary syndrome: A systematic review. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Pereira, N.L.; Farkouh, M.E.; So, D.; Lennon, R.; Geller, N.; Mathew, V.; Bell, M.; Bae, J.H.; Jeong, M.H.; Chavez, I.; et al. Effect of genotype-guided oral P2Y12 inhibitor selection vs conventional clopidogrel therapy on ischemic outcomes after percutaneous coronary intervention: The TAILOR-PCI randomized clinical trial. JAMA 2020, 324, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Claassens, D.M.F.; Vos, G.J.A.; Bergmeijer, T.O.; Hermanides, R.S.; van’t Hof, A.W.J.; van der Harst, P.; Barbato, E.; Morisco, C.; Tjon Joe Gin, R.M.; Asselbergs, F.W.; et al. A Genotype-Guided Strategy for Oral P2Y12 Inhibitors in Primary PCI. N. Engl. J. Med. 2019, 381, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.B.; Rohrich, R.J.; Chung, K.C. The levels of evidence and their role in evidence-based medicine. Plast. Reconstr. Surg. 2011, 128, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Kimura, K.; Kimura, T.; Ishihara, M.; Otsuka, F.; Kozuma, K.; Shinke, T.; Nakagawa, Y.; Natsuaki, M.; Yasuda, S. JCS 2020 Guideline Focused Update on Antithrombotic Therapy in Patients with Coronary Artery Disease. Circ. J. 2020, 84, 831–865. [Google Scholar] [CrossRef] [PubMed]
- Desta, Z.; Zhao, X.; Shin, J.G.; Flockhart, D.A. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 2002, 41, 913–958. [Google Scholar] [CrossRef] [PubMed]
- Arslan, F.; Damman, P.; Zwart, B.; Appelman, Y.; Voskuil, M.; de Vos, A.; van Royen, N.; Jukema, J.W.; Waalewijn, R.; Hermanides, R.S.; et al. ESC Guidelines on Acute Coronary Syndrome without ST-Segment Elevation. Neth. Heart J. 2021, 29, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, J.M.; Eraker, S.A. Parameter Estimates for a QALY Utility Model. Med. Decis. Mak. 1985, 5, 191–213. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.; Heidenreich, P.A.; Barnett, P.G.; Creager, M.A.; Fonarow, G.C.; Gibbons, R.J.; Halperin, J.L.; Hlatky, M.A.; Jacobs, A.K.; Mark, D.B.; et al. ACC/AHA Statement on Cost/Value Methodology in Clinical Practice Guidelines and Performance Measures: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures and Task Force on Practice Guidelines. Circulation 2014, 129, 2329–2345. [Google Scholar] [CrossRef] [PubMed]
- About the Immediate Operation of the Cost-Effectiveness Evaluation System-Central Social Insurance Medical Council: Total No. 9. Available online: https://www.mhlw.go.jp/content/12404000/000736552.pdf (accessed on 8 January 2022).
- Takura, T.; Komuro, I.; Ono, M. Trends in the Cost-Effectiveness Level of Percutaneous Coronary Intervention: Macro Socioeconomic Analysis and Health Technology Assessment. J. Cardiol. 2023, 81, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Baio, G. Bayesian Methods in Health Economics; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Hopewell, S.; Clarke, M.; Lefebvre, C.; Scherer, R. Handsearching Versus Electronic Searching to Identify Reports of Randomized Trials. Cochrane Database Syst. Rev. 2007, 2007, MR000001. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, M.; Hedges, L.; Higgins, J.; Rothstein, H. Criticisms of Meta-analysis. In Introduction to Meta Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 377–387. [Google Scholar]
- Murad, M.H.; Montori, V.M.; Ioannidis, J.P.; Jaeschke, R.; Devereaux, P.J.; Prasad, K.; Neumann, I.; Carrasco-Labra, A.; Agoritsas, T.; Hatala, R.; et al. How to Read a Systematic Review and Meta-Analysis and Apply the Results to Patient Care: Users’ Guides to the Medical Literature. JAMA 2014, 312, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Dong, O.M.; Friede, K.A.; Chanfreau-Coffinier, C.; Voora, D. Cost-Effectiveness of CYP2C19-Guided P2Y12 Inhibitors in Veterans Undergoing Percutaneous Coronary Intervention for Acute Coronary Syndromes. Eur. Heart J. Qual. Care Clin. Outcomes 2023, 9, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Claassens, D.M.F.; van Dorst, P.W.M.; Vos, G.J.A.; Bergmeijer, T.O.; Hermanides, R.S.; van’T Hof, A.W.J.; van der Harst, P.; Barbato, E.; Morisco, C.; Tjon Joe Gin, R.M.; et al. Cost effectiveness of a CYP2C19 eenotype-guided strategy in patients with acute myocardial infarction: Results from the POPular genetics trial. Am. J. Cardiovasc. Drugs 2022, 22, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Panattoni, L.; Brown, P.M.; Te Ao, B.; Webster, M.; Gladding, P. The Cost Effectiveness of Genetic Testing for CYP2C19 Variants to Guide Thienopyridine Treatment in Patients with Acute Coronary Syndromes: A New Zealand Evaluation. Pharmacoeconomics 2012, 30, 1067–1084. [Google Scholar] [CrossRef] [PubMed]
- Limdi, N.A.; Cavallari, L.H.; Lee, C.R.; Hillegass, W.B.; Holmes, A.M.; Skaar, T.C.; Pisu, M.; Dillon, C.; Beitelshees, A.L.; Empey, P.E.; et al. Cost-Effectiveness of CYP2C19-Guided Antiplatelet Therapy in Patients with Acute Coronary Syndrome and Percutaneous Coronary Intervention Informed by Real-World Data. Pharmacogenomics J. 2020, 20, 724–735. [Google Scholar] [CrossRef] [PubMed]
- AlMukdad, S.; Elewa, H.; Arafa, S.; Al-Badriyeh, D. Short- and Long-Term Cost-Effectiveness Analysis of CYP2C19 Genotype-Guided Therapy, Universal Clopidogrel, Versus Universal Ticagrelor in Post-percutaneous Coronary Intervention Patients in Qatar. Int. J. Cardiol. 2021, 331, 27–34. [Google Scholar] [CrossRef]
- Fragoulakis, V.; Bartsakoulia, M.; Díaz-Villamarín, X.; Chalikiopoulou, K.; Kehagia, K.; Ramos, J.G.S.; Martínez-González, L.J.; Gkotsi, M.; Katrali, E.; Skoufas, E.; et al. Cost-Effectiveness Analysis of Pharmacogenomics-Guided Clopidogrel Treatment in Spanish Patients Undergoing Percutaneous Coronary Intervention. Pharmacogenomics J. 2019, 19, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, B.P.; Liew, D.; Lee, V.W.Y. Cost-Effectiveness of Cytochrome P450 2C19 *2 Genotype-Guided Selection of Clopidogrel or Ticagrelor in Chinese Patients with Acute Coronary Syndrome. Pharmacogenomics J. 2018, 18, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; You, J.H. CYP2C19 LOF and GOF-Guided Antiplatelet Therapy in Patients with Acute Coronary Syndrome: A Cost-Effectiveness Analysis. Cardiovasc. Drugs Ther. 2017, 31, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Deiman, B.A.; Tonino, P.A.; Kouhestani, K.; Schrover, C.E.; Scharnhorst, V.; Dekker, L.R.; Pijls, N.H. Reduced Number of Cardiovascular Events and Increased Cost-Effectiveness by Genotype-Guided Antiplatelet Therapy in Patients Undergoing Percutaneous Coronary Interventions in the Netherlands. Neth. Heart J. 2016, 24, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; You, J.H. Review of Pharmacoeconomic Evaluation of Genotype-Guided Antiplatelet Therapy. Expert Opin. Pharmacother. 2015, 16, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Lin, F.J.; Ojo, O.; Rao, S.; Yu, S.; Zhan, L.; Touchette, D.R. Cost-Utility Analysis of Genotype-Guided Antiplatelet Therapy in Patients with Moderate-to-High Risk Acute Coronary Syndrome and Planned Percutaneous Coronary Intervention. Pharm. Pract. 2014, 12, 438. [Google Scholar] [CrossRef] [PubMed]
- Lala, A.; Berger, J.S.; Sharma, G.; Hochman, J.S.; Scott Braithwaite, R.; Ladapo, J.A. Genetic Testing in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention: A Cost-Effectiveness Analysis. J. Thromb. Haemost. 2013, 11, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Reese, E.S.; Daniel Mullins, C.; Beitelshees, A.L.; Onukwugha, E. Cost-Effectiveness of Cytochrome P450 2C19 Genotype Screening for Selection of Antiplatelet Therapy with Clopidogrel or Prasugrel. Pharmacotherapy 2012, 32, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Kazi, D.S.; Garber, A.M.; Shah, R.U.; Dudley, R.A.; Mell, M.W.; Rhee, C.; Moshkevich, S.; Boothroyd, D.B.; Owens, D.K.; Hlatky, M.A. Cost-effectiveness of genotype-guided and dual antiplatelet therapies in acute coronary syndrome. Ann. Intern. Med. 2014, 160, 221–232. [Google Scholar] [CrossRef]
- Kim, K.; Touchette, D.R.; Cavallari, L.H.; Ardati, A.K.; DiDomenico, R.J. Cost-Effectiveness of Strategies to Personalize the Selection of p2y12 Inhibitors in Patients with Acute Coronary Syndrome. Cardiovasc. Drugs Ther. 2019, 33, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; You, J.H. CYP2C19 Genotype plus Platelet Reactivity-Guided Antiplatelet Therapy in Acute Coronary Syndrome Patients: A Decision Analysis. Pharmacogenet. Genom. 2015, 25, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; You, J.H. Cost-Effectiveness Analysis of Personalized Antiplatelet Therapy in Patients with Acute Coronary Syndrome. Pharmacogenomics 2016, 17, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.G.; Gruntowicz, D.; Chua, T.; Morlock, R.J. Financial Analysis of CYP2C19 Genotyping in Patients Receiving Dual Antiplatelet Therapy Following Acute Coronary Syndrome and Percutaneous Coronary Intervention. J Manag Care Spec Pharm 2015, 21, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, P.; Marston, L. How to Read a Funnel Plot in a Meta-analysis. BMJ 2015, 351, h4718. [Google Scholar] [CrossRef] [PubMed]
- Marquina, C.; Lacaze, P.; Tiller, J.; Riaz, M.; Sturm, A.C.; Nelson, M.R.; Ference, B.A.; Pang, J.; Watts, G.F.; Nicholls, S.J.; et al. Population Genomic Screening of Young Adults for Familial Hypercholesterolaemia: A Cost-Effectiveness Analysis. Eur. Heart J. 2022, 43, 3243–3254. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.J.; Jones, L.K.; Guzauskas, G.F.; Hao, J.; Williams, M.S.; Peterson, J.F.; Veenstra, D.L. Cost-Effectiveness of Population-Wide Genomic Screening for Familial Hypercholesterolemia in the United States. J. Clin. Lipidol. 2022, 16, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, M.E.; Rupprecht, H.J.; Urban, P.; Gershlick, A.H.; CLASSICS Investigators. Double-Blind Study of the Safety of Clopidogrel with and without a Loading Dose in Combination with Aspirin Compared with Ticlopidine in Combination with Aspirin After Coronary Stenting: The Clopidogrel Aspirin Stent International Cooperative Study (CLASSICS). Circulation 2000, 102, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, D.; Xanthopoulou, I.; Deftereos, S.; Hamilos, M.; Sitafidis, G.; Kanakakis, I.; Pentara, I.; Vavouranakis, M.; Davlouros, P.; Hahalis, G.; et al. Contemporary Antiplatelet Treatment in Acute Coronary Syndrome Patients Undergoing Percutaneous Coronary Intervention: 1-Year Outcomes from the Greek Antiplatelet (GRAPE) Registry. J. Thromb. Haemost. 2016, 14, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.H.; Gupta, R.; Chakraborty, S.; Mahajan, P.; Bandyopadhyay, D.; Yandrapalli, S.; Zaid, S.; Sreenivasan, J.; Chaturvedi, A.; Mehta, S.S.; et al. Effect of Genotype-Guided Oral P2Y12 Inhibitor Selection After Percutaneous Coronary Intervention: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Cardiovasc. Revasc. Med. 2022, 41, 115–121. [Google Scholar] [CrossRef]
- Galli, M.; Benenati, S.; Franchi, F.; Rollini, F.; Capodanno, D.; Biondi-Zoccai, G.; Vescovo, G.M.; Cavallari, L.H.; Bikdeli, B.; ten Berg, J.; et al. Comparative Effects of Guided vs. Potent P2Y12 Inhibitor Therapy in Acute Coronary Syndrome: A Network Meta-analysis of 61 898 Patients from 15 Randomized Trials. Eur. Heart J. 2022, 43, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Kiflen, M.; Le, A.; Mao, S.; Lali, R.; Narula, S.; Xie, F.; Paré, G. Cost-Effectiveness of Polygenic Risk Scores to Guide Statin Therapy for Cardiovascular Disease Prevention. Circ Genom Precis Med 2022, 15, e003423. [Google Scholar] [CrossRef] [PubMed]
- Takura, T.; Miura, H. Socioeconomic Determinants of Universal Health Coverage in the Asian Region. Int. J. Environ. Res. Public Health 2022, 19, 2376. [Google Scholar] [CrossRef] [PubMed]
Item | ADP (P2Y12) Receptor Inhibitor | Analysis Method | |||
---|---|---|---|---|---|
Category | Clopidogrel | Prasugrel | Ticagrelor | Cost-Utility Analysis | Cost-Effectiveness Analysis |
Systematic review or meta-analysis | 2 (11.1) | 2 (14.2) | 2 (15.3) | 2 (11.1) | 2 (66.6) |
Randomized control trial | 0 (0.0) | 1 (7.1) | 1 (7.6) | 1 (5.5) | 0 (0.0) |
Cohort study | 2 (11.1) | 1 (7.1) | 1 (7.6) | 2 (11.1) | 0 (0.0) |
Simulation (model calculation) | 14 (77.7) | 10 (71.4) | 9 (69.2) | 13 (72.2) | 1 (33.3) |
Total amount | 18 | 14 | 13 | 18 | 3 |
Number and Author | Publish Year | Study Region (Country) | Treatment Strategy and Patients (Number of Reports) | Study Design | Analysis Type and Outcome, Result, and Conclusion | Analysis Period | ADP (P2Y12) Receptor Inhibitor as DAPT |
---|---|---|---|---|---|---|---|
1 Sawsan AlMukdad, et al. (Reference: [6]) | 2020 | - | 13 reports (the target literature was simulation study) | Systematic review | Cost–utility analysis: Qaly, Cost-effectiveness analysis: MACE | - | Clopidogrel, Prasugrel, Ticagrelor |
Prasugrel [ICUR: 24,617 (NZD/Qaly)—4200 (US$/Qaly) ICER: US$4200, dominant], | |||||||
Ticagrelor [ICUR: dominant, 42,546 (US$/Qaly)—22,821 (US$/Qaly)] | |||||||
2 Minghuan Jiang, et al. (Reference: [34]) | 2015 | - | 7 reports (the target literature was simulation study) | Review | Cost–utility analysis: Qaly, Cost-effectiveness analysis: clinical events | - | Clopidogrel, Prasugrel, Ticagrelor |
ICUR: dominant, two reports were included in which ticagrelor was superior to GGT [42,546 (US$/Qaly), 22,821 (AUD/Qaly)]. | |||||||
3 Daniel M F Claassens, et al. (Reference: [26]) | 2022 | Netherlands | Number of set cases: 1000 patients, RCT: 2700 patients scheduled with ST-segment elevation myocardial infarction who undergo primary PCI | Model calculation based on RCT (clinical effects are based on RCT data) | Cost–utility analysis: Qaly; clinical events (death, [recurrent] myocardial infarction, definite stent thrombosis, stroke, and platelet inhibition and patient outcomes major bleeding) | 12 months | Prasugrel, Ticagrelor |
ICUR: Dominant | |||||||
4 Vasilios Fragoulakis, et al. (Reference: [30]) | 2019 | Spain | In 549 patients diagnosed with coronary artery disease followed by PCI | Cohort study | Cost–utility analysis: Qaly | 12 months | Clopidogrel |
ICUR: Dominant [Δutility: 0.0067 (Qaly), ΔCost: −234 (€)] | |||||||
5 B. A. L. M. Deiman, et al. (Reference: [33]) | 2016 | Netherlands | In 3210 patients who were scheduled for elective PCI (Patients with ST-segment elevation myocardial infarction who received primary PCI were not included.) | Cohort study | Cost–utility analysis: Qaly | 18 months | Clopidogrel, Prasugrel |
ICUR: <10,000 (€/Qaly) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takura, T. Consideration of the Medical Economics of Cardiac Genetics, Focusing on the Cost-Effectiveness of P2Y12 Inhibitor Selection Based on the CYP2C19 Loss-of-Function Allele: A Semi-Systematic Review. Cardiogenetics 2024, 14, 59-73. https://doi.org/10.3390/cardiogenetics14020005
Takura T. Consideration of the Medical Economics of Cardiac Genetics, Focusing on the Cost-Effectiveness of P2Y12 Inhibitor Selection Based on the CYP2C19 Loss-of-Function Allele: A Semi-Systematic Review. Cardiogenetics. 2024; 14(2):59-73. https://doi.org/10.3390/cardiogenetics14020005
Chicago/Turabian StyleTakura, Tomoyuki. 2024. "Consideration of the Medical Economics of Cardiac Genetics, Focusing on the Cost-Effectiveness of P2Y12 Inhibitor Selection Based on the CYP2C19 Loss-of-Function Allele: A Semi-Systematic Review" Cardiogenetics 14, no. 2: 59-73. https://doi.org/10.3390/cardiogenetics14020005
APA StyleTakura, T. (2024). Consideration of the Medical Economics of Cardiac Genetics, Focusing on the Cost-Effectiveness of P2Y12 Inhibitor Selection Based on the CYP2C19 Loss-of-Function Allele: A Semi-Systematic Review. Cardiogenetics, 14(2), 59-73. https://doi.org/10.3390/cardiogenetics14020005