Users’ Perceived Value of Electric Vehicles in China: A Latent Class Model-Based Analysis
Abstract
1. Introduction
1.1. Research Background
1.2. Literature Review
1.3. Contributions
2. Theoretical Framework
3. Data and Methodology
3.1. Methods
3.1.1. Instruments and Measures
3.1.2. Latent Class Model
3.1.3. Regression Mixture Model
3.1.4. Model Specifications
3.2. Data Collection
4. Results
4.1. Sample Distribution
4.2. Reliability and Validity Test
4.3. Potential Classifications of EV Users
4.4. RMM Analysis: Predictor Variable
4.5. RMM Analysis: Outcome Variable
5. Discussion
6. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Carvalho, E.N.; Pinho Brasil Junior, A.C.; de Mendonça Brasil, A.C. Energy impact assessment of electric vehicle insertion in the Brazilian scenario, 2020–2050: A machine learning approach to fleet projection. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 4, 100184. [Google Scholar] [CrossRef]
- McCollum, D.L.; Wilson, C.; Bevione, M.; Carrara, S.; Edelenbosch, O.Y.; Emmerling, J.; Guivarch, C.; Karkatsoulis, P.; Keppo, I.; Krey, V.; et al. Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nat. Energy 2018, 3, 664–673. [Google Scholar] [CrossRef]
- Chakraborty, R.; Chakravarty, S. Factors affecting acceptance of electric two-wheelers in India: A discrete choice survey. Transp. Policy 2023, 132, 27–41. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, R.; Yang, H.; Dong, K. Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions reduction? Transp. Policy 2022, 125, 151–163. [Google Scholar] [CrossRef]
- China Automotive Technology & Research Center. Annual Report on New Energy Vehicle Industry in China; Social Sciences Literature Publishing House: Beijing, China, 2023. [Google Scholar]
- Dai, G.; Yang, S. A comparative study of motivations driving EV purchases in different-tier Chinese cities. Transp. Res. Part D Transp. Environ. 2024, 126, 103993. [Google Scholar] [CrossRef]
- Herberz, M.; Hahnel, U.J.J.; Brosch, T. Counteracting electric vehicle range concern with a scalable behavioural intervention. Nat. Energy 2022, 7, 503–510. [Google Scholar] [CrossRef]
- Alhomaidat, F.; Hasan, R.A.; Eljufout, T.; Abbas, A.H. User’s perceptions of electric, hybrid, and fuel-powered vehicles in Iraq and Jordan. Case Stud. Transp. Policy 2023, 12, 101004. [Google Scholar] [CrossRef]
- Hardman, S.; Tal, G. Understanding discontinuance among California’s electric vehicle owners. Nat. Energy 2021, 6, 538–545. [Google Scholar] [CrossRef]
- Qian, L.; Huang, Y.; Tyfield, D.; Soopramanien, D. Dynamic consumer preferences for electric vehicles in China: A longitudinal approach. Transp. Res. Part A Policy Pract. 2023, 176, 103797. [Google Scholar] [CrossRef]
- Sheth, J. New areas of research in marketing strategy, consumer behavior, and marketing analytics: The future is bright. J. Mark. Theory Pract. 2021, 29, 3–12. [Google Scholar] [CrossRef]
- Cole, M.; O’Keefe, R.M.; Siala, H. From the User Interface to the Consumer Interface. Inf. Syst. Front. 2000, 1, 349–361. [Google Scholar] [CrossRef]
- Qian, X.; Gkritza, K. Spatial and temporal variance in public perception of electric vehicles: A comparative analysis of adoption pioneers and laggards using twitter data. Transp. Policy 2024, 149, 150–162. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, R.; Wang, S.; Gao, L.; Zhu, Z. Consumers’ value perception and intention to purchase electric vehicles: A benefit-risk analysis. Res. Transp. Bus. Manag. 2023, 49, 101004. [Google Scholar] [CrossRef]
- Anastasiadou, K.; Gavanas, N. State-of-the-Art Review of the Key Factors Affecting Electric Vehicle Adoption by Consumers. Energies 2022, 15, 9409. [Google Scholar] [CrossRef]
- Zhao, D.; Gao, J.; Liu, N. Exploring user satisfaction and improvement priorities in electric vehicle segments. Transp. Res. Part D Transp. Environ. 2023, 125, 103996. [Google Scholar] [CrossRef]
- Hasan, S. Assessment of electric vehicle repurchase intention: A survey-based study on the Norwegian EV market. Transp. Res. Interdiscip. Perspect. 2021, 11, 100439. [Google Scholar] [CrossRef]
- Kwon, Y.; Son, S.; Jang, K. User satisfaction with battery electric vehicles in South Korea. Transp. Res. Part D Transp. Environ. 2020, 82, 102306. [Google Scholar] [CrossRef]
- Liu, L.; Niu, M.; Li, B.; Zhang, Y.; Zou, M.; Liu, D.; Zhang, T.; Wang, L.; Shang, S.; Liu, M. Aggregation Optimization Method of Virtual Energy Storage for Electric Vehicles Considering User Elasticity. IOP Conf. Ser. Earth Environ. Sci. 2021, 647, 012130. [Google Scholar] [CrossRef]
- Helmus, J.; Van den Hoed, R. Unraveling User Type Characteristics: Towards a Taxonomy for Charging Infrastructure. World Electr. Veh. J. 2015, 7, 589–604. [Google Scholar] [CrossRef]
- Li, W.; Long, R.; Chen, H.; Yang, T.; Geng, J.; Yang, M. Effects of personal carbon trading on the decision to adopt battery electric vehicles: Analysis based on a choice experiment in Jiangsu, China. Appl. Energy 2018, 209, 478–488. [Google Scholar] [CrossRef]
- Alganad, A.M.N.; Isa, N.M.; Fauzi, W.I.M. Why people do not purchase green cars in Malaysia: The influence of consumption values on consumers’ attitude towards green cars. Case Stud. Transp. Policy 2023, 12, 101007. [Google Scholar] [CrossRef]
- Sheth, J.N.; Newman, B.I.; Gross, B.L. Why we buy what we buy: A theory of consumption values. J. Bus. Res. 1991, 22, 159–170. [Google Scholar] [CrossRef]
- Sheth, J.; Newman, B.; Gross, B. Consumption Values and Market Choices: Theory and Applications. J. Mark. Res. 1991, 29, 487. [Google Scholar]
- Lin, P.-C.; Huang, Y.-H. The influence factors on choice behavior regarding green products based on the theory of consumption values. J. Clean. Prod. 2012, 22, 11–18. [Google Scholar] [CrossRef]
- Sharma, K.; Aswal, C.; Paul, J. Factors affecting green purchase behavior: A systematic literature review. Bus. Strategy Environ. 2023, 32, 2078–2092. [Google Scholar] [CrossRef]
- Dhir, A.; Sadiq, M.; Talwar, S.; Sakashita, M.; Kaur, P. Why do retail consumers buy green apparel? A knowledge-attitude-behaviour-context perspective. J. Retail. Consum. Serv. 2021, 59, 102398. [Google Scholar] [CrossRef]
- Cui, L.; Wang, Y.; Chen, W.; Wen, W.; Han, M.S. Predicting determinants of consumers’ purchase motivation for electric vehicles: An application of Maslow’s hierarchy of needs model. Energy Policy 2021, 151, 112167. [Google Scholar] [CrossRef]
- Liu, Y.; Ouyang, Z.; Cheng, P. Predicting consumers’ adoption of electric vehicles during the city smog crisis: An application of the protective action decision model. J. Environ. Psychol. 2019, 64, 30–38. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Li, J.; Wang, J.; Liang, L. Policy implications for promoting the adoption of electric vehicles: Do consumer’s knowledge, perceived risk and financial incentive policy matter? Transp. Res. Part A Policy Pract. 2018, 117, 58–69. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, D.; Yang, Z.; Ma, S. Unraveling customer sustainable consumption behaviors in sharing economy: A socio-economic approach based on social exchange theory. J. Clean. Prod. 2019, 208, 869–879. [Google Scholar] [CrossRef]
- Diamond, D. The impact of government incentives for hybrid-electric vehicles: Evidence from US states. Energy Policy 2009, 37, 972–983. [Google Scholar] [CrossRef]
- Moon, S.; Lee, J.; Choi, H.; Woo, J. Impact of energy production mix on alternative fuel vehicle adoption in Korea. Transp. Res. Part D Transp. Environ. 2022, 105, 103219. [Google Scholar] [CrossRef]
- Ehsani, M.; Falahi, M.; Lotfifard, S. Vehicle to Grid Services: Potential and Applications. Energies 2012, 5, 4076–4090. [Google Scholar] [CrossRef]
- Banerjee, S.; Pillania, R.K. Relative position of resale value as a decision variable in a car purchase: A Thurstone Case V analysis of a multiattribute car purchase decision model in India. Int. J. Electr. Hybrid Veh. 2009, 2, 77–97. [Google Scholar] [CrossRef]
- Shang, W.-L.; Zhang, J.; Wang, K.; Yang, H.; Ochieng, W. Can financial subsidy increase electric vehicle (EV) penetration---evidence from a quasi-natural experiment. Renew. Sustain. Energy Rev. 2024, 190, 114021. [Google Scholar] [CrossRef]
- Sridhar, S.; Srinivasan, R. Social Influence Effects in Online Product Ratings. J. Mark. 2012, 76, 70–88. [Google Scholar] [CrossRef]
- Li, W.; Long, R.; Chen, H.; Wang, M.; Li, Q.; Wu, M.; Cheng, X. Inter-provincial emissions transfer embodied in electric vehicles in China. Transp. Res. Part D Transp. Environ. 2023, 119, 103756. [Google Scholar] [CrossRef]
- Higueras-Castillo, E.; Singh, V.; Singh, V.; Liébana-Cabanillas, F. Factors affecting adoption intention of electric vehicle: A cross-cultural study. Environ. Dev. Sustain. 2024, 26, 29293–29329. [Google Scholar] [CrossRef]
- Xia, Z.; Wu, D.; Zhang, L. Economic, Functional, and Social Factors Influencing Electric Vehicles’ Adoption: An Empirical Study Based on the Diffusion of Innovation Theory. Sustainability 2022, 14, 6283. [Google Scholar] [CrossRef]
- Ng, M.; Law, M.; Zhang, S. Predicting purchase intention of electric vehicles in Hong Kong. Australas. Mark. J. 2018, 26, 272–280. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Cheng, X.; Long, R. The impact of interaction on the adoption of electric vehicles: Mediating role of experience value. Front. Psychol. 2023, 14, 1129752. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhou, Y.; Wang, J.; Shen, W.; Li, W.; Lu, W. Influence of emotion on purchase intention of electric vehicles: A comparative study of consumers with different income levels. Curr. Psychol. 2023, 42, 21704–21719. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Lamont, A.E.; Vermunt, J.K.; Van Horn, M.L. Regression Mixture Models: Does Modeling the Covariance Between Independent Variables and Latent Classes Improve the Results? Multivar. Behav. Res. 2016, 51, 35–52. [Google Scholar] [CrossRef]
- Shahrier, H.; Habib, M.A. Electric vehicle (EV) type choice model: Latent class modelling approach. Int. J. Transp. Sci. Technol. 2025, 18, 315–329. [Google Scholar] [CrossRef]
- Hajhashemi, E.; Sauri Lavieri, P.; Nassir, N. Identifying electric vehicle charging styles among consumers: A latent class cluster analysis. Transp. Res. Interdiscip. Perspect. 2024, 27, 101198. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, S.; Moon, H.; Woo, J. Analyzing heterogeneous electric vehicle charging preferences for strategic time-of-use tariff design and infrastructure development: A latent class approach. Appl. Energy 2024, 374, 124074. [Google Scholar] [CrossRef]
- Sekaran, U.; Bougie, R. Research Methods for Business: A Skill Building Approach; John wiley & sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Zhao, X.; Ma, Y.; Shao, S.; Ma, T. What determines consumers’ acceptance of electric vehicles: A survey in Shanghai, China. Energy Econ. 2022, 108, 105805. [Google Scholar] [CrossRef]
- Zamil, A.M.A.; Ali, S.; Akbar, M.; Zubr, V.; Rasool, F. The consumer purchase intention toward hybrid electric car: A utilitarian-hedonic attitude approach. Front. Environ. Sci. 2023, 11, 1101258. [Google Scholar] [CrossRef]
- Tu, J.-C.; Yang, C. Key Factors Influencing Consumers’ Purchase of Electric Vehicles. Sustainability 2019, 11, 3863. [Google Scholar] [CrossRef]
- Le, T.T.; Jabeen, F.; Santoro, G. What drives purchase behavior for electric vehicles among millennials in an emerging market. J. Clean. Prod. 2023, 428, 139213. [Google Scholar] [CrossRef]
- Singh, V.; Singh, V.; Vaibhav, S. A review and simple meta-analysis of factors influencing adoption of electric vehicles. Transp. Res. Part D Transp. Environ. 2020, 86, 102436. [Google Scholar] [CrossRef]
- Cheng, Y.-W.; Chen, J.; Lin, K. Exploring consumer attitudes and public opinions on battery electric vehicles. J. Renew. Sustain. Energy 2015, 7, 043122. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.-J.; Zhang, X.; Lee, Y.-K. Does value orientation predict buying intention of new energy vehicles? Transp. Policy 2024, 153, 68–75. [Google Scholar] [CrossRef]
- Li, W.; Long, R.; Chen, H.; Geng, J. A review of factors influencing consumer intentions to adopt battery electric vehicles. Renew. Sustain. Energy Rev. 2017, 78, 318–328. [Google Scholar] [CrossRef]
- Zhu, X.; Ma, Y.; Li, J.; Li, N. Social and technological factors influencing consumer satisfaction with electric vehicles: An assimilation-contrast effect perspective. Res. Transp. Bus. Manag. 2024, 57, 101218. [Google Scholar] [CrossRef]
- Bengler, K. Driver and Driving Experience in Cars. In Automotive User Interfaces: Creating Interactive Experiences in the Car; Meixner, G., Müller, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 79–94. [Google Scholar]
- Yin, X.; Chen, W.; Eom, J.; Clarke, L.E.; Kim, S.H.; Patel, P.L.; Yu, S.; Kyle, G.P. China’s transportation energy consumption and CO2 emissions from a global perspective. Energy Policy 2015, 82, 233–248. [Google Scholar] [CrossRef]
- Li, F.; Ou, R.; Xiao, X.; Zhou, K.; Xie, W.; Ma, D.; Liu, K.; Song, Z. Regional comparison of electric vehicle adoption and emission reduction effects in China. Resour. Conserv. Recycl. 2019, 149, 714–726. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Y.; Guo, Q.; Zhang, H.; Sun, H. Deployment of the Electric Vehicle Charging Station Considering Existing Competitors. IEEE Trans. Smart Grid 2020, 11, 4236–4248. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M. A systematic review on sustainability assessment of electric vehicles: Knowledge gaps and future perspectives. Environ. Impact Assess. Rev. 2022, 97, 106867. [Google Scholar] [CrossRef]
- Jia, C.; Ding, C.; Chen, W. Research on the Diffusion Model of Electric Vehicle Quantity Considering Individual Choice. Energies 2023, 16, 5423. [Google Scholar] [CrossRef]
- Milligan, R.; Etxebarria, S.; Muneer, T.; Jadraque Gago, E. Driven Performance of Electric Vehicles in Edinburgh and Its Environs. Energies 2019, 12, 3074. [Google Scholar] [CrossRef]
- Lashari, Z.A.; Ko, J.; Jang, J. Consumers’ Intention to Purchase Electric Vehicles: Influences of User Attitude and Perception. Sustainability 2021, 13, 6778. [Google Scholar] [CrossRef]
- Alanazi, F. Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation. Appl. Sci. 2023, 13, 6016. [Google Scholar] [CrossRef]
- Park, E.; Lim, J.; Cho, Y. Understanding the Emergence and Social Acceptance of Electric Vehicles as Next-Generation Models for the Automobile Industry. Sustainability 2018, 10, 662. [Google Scholar] [CrossRef]
- Globisch, J.; Plötz, P.; Dütschke, E.; Wietschel, M. Consumer preferences for public charging infrastructure for electric vehicles. Transp. Policy 2019, 81, 54–63. [Google Scholar] [CrossRef]
- Pamidimukkala, A.; Kermanshachi, S.; Rosenberger, J.M.; Hladik, G. Barriers and Motivators to the Adoption of Electric Vehicles: A Global Review. Green Energy Intell. Transp. 2024, 3, 100153. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Y.; Wang, Z.; Tian, S.; Xiong, Q.; Li, L.Q. Effects of incentive policies on the purchase intention of electric vehicles in China: Psychosocial value and family ownership. Energy Policy 2023, 181, 113732. [Google Scholar] [CrossRef]
- Ackaah, W.; Kanton, A.T.; Adams, C.A. Adoption of Electric Vehicles: Analysis of Consumer Perception in Ghana. 2022. Available online: https://api.semanticscholar.org/CorpusID:248962202 (accessed on 10 August 2025).
- Heyvaert, S.; Coosemans, T.; Van Mierlo, J.; Macharis, C. Electric vehicle attitudes and purchase intention: A Flemish case study. Int. J. Electr. Hybrid Veh. 2015, 7, 83. [Google Scholar] [CrossRef]
- Caban, J.; Małek, A.; Šarkan, B. Strategic Model for Charging a Fleet of Electric Vehicles with Energy from Renewable Energy Sources. Energies 2024, 17, 1264. [Google Scholar] [CrossRef]
- Mourad, M. A proposed fuel cell vehicle for reducing CO2 emissions and its contribution to reducing greenhouse gas emissions. Int. J. Eng. Technol. 2014, 3, 252. [Google Scholar] [CrossRef]
- Marinković, D.; Dezső, G.; Milojević, S. Application of machine learning during maintenance and exploitation of electric vehicles. Adv. Eng. Lett. 2024, 3, 132–140. [Google Scholar] [CrossRef]
Value Dimension | Item |
---|---|
Economic value | I purchased an EV due to its reasonable price compared to gasoline-powered vehicles. |
I purchased an EV due to its lower daily driving costs compared to gasoline-powered vehicles. | |
I purchased an EV due to its high resale price compared to gasoline-powered vehicles. | |
Social value | It is important for me to buy an EV that is recommended by others. |
Owning the same EVs that other people use enhances my sense of belonging. | |
My purchase of an EV has been fully recognized by the people around me. | |
Emotional value | Driving an EV assists in making a positive impression on others. |
Using an EV leads others to perceive me as someone with a strong sense of social responsibility. | |
The positive societal feedback from using an EV meets my expectations (the social recognition and appreciation received from others after purchasing an EV). | |
Technological value | EVs meet my expectations for innovative solutions to energy problems. |
EVs meet my expectations for automotive technology innovation. | |
EVs provide me with a novel driving experience that adds to the pleasure of driving. | |
Environmental value | EVs play a significant role in reducing greenhouse gas emissions. |
EVs can greatly help reduce the environmental pollution caused by personal travel. EVs can bring me a sense of fulfillment through its environmental benefits of energy conservation and emission reduction. |
Personal Attribute | Response | Number | Percentage |
---|---|---|---|
Educational background | College degree or below | 73 | 0.22 |
Bachelor’s degree | 179 | 0.53 | |
Master’s degree or above | 85 | 0.25 | |
Gender | Male | 233 | 0.69 |
Female | 104 | 0.31 | |
Age | 20–25 | 23 | 0.07 |
26–30 | 87 | 0.26 | |
31–35 | 87 | 0.26 | |
36–40 | 82 | 0.24 | |
41–45 | 28 | 0.08 | |
46–50 | 30 | 0.09 | |
Marriage | Married | 260 | 0.77 |
Single | 77 | 0.23 | |
Family size | 1–2 | 11 | 0.03 |
3 | 150 | 0.44 | |
4 | 154 | 0.46 | |
5 | 22 | 0.07 | |
Family income | 100,000 and below | 17 | 0.05 |
100,001–150,000 | 21 | 0.06 | |
150,001–200,000 | 46 | 0.13 | |
200,001–250,000 | 93 | 0.28 | |
250,001–300,000 | 86 | 0.26 | |
300,001–400,000 | 49 | 0.15 | |
400,001–500,000 | 15 | 0.04 | |
500,001 and above | 10 | 0.03 | |
Number of cars owned | 1 | 198 | 0.59 |
2 | 109 | 0.32 | |
3 | 30 | 0.09 | |
Age of purchase | 1 | 165 | 0.49 |
2 | 88 | 0.26 | |
3 | 66 | 0.2 | |
4 | 13 | 0.04 | |
5 | 5 | 0.01 | |
Fixed parking space | Yes | 180 | 0.53 |
No | 157 | 0.47 |
Likert Scale Construct | Number of Items | Cronbach’s Alpha | Standardized Factor Loadings | Composite Reliability | AVE | Eigenvalue | Variance Explained (%) |
---|---|---|---|---|---|---|---|
Economic value | 3 | 0.885 | 0.668 | 0.751 | 0.504 | 1.471 | 10.507 |
0.789 | 1.324 | 9.454 | |||||
0.666 | 1.203 | 8.594 | |||||
Social value | 3 | 0.844 | 0.782 | 0.769 | 0.534 | 1.201 | 8.581 |
0.553 | 1.169 | 8.352 | |||||
0.827 | 1.130 | 8.069 | |||||
Emotional value | 3 | 0.883 | 0.808 | 0.768 | 0.526 | 1.123 | 8.020 |
0.636 | 1.071 | 7.650 | |||||
0.723 | 1.052 | 7.513 | |||||
Technological value | 3 | 0.809 | 0.818 | 0.814 | 0.597 | 0.935 | 6.675 |
0.632 | 0.721 | 5.147 | |||||
0.85 | 0.658 | 4.700 | |||||
Environmental value | 2 | 0.873 | 0.763 | 0.76 | 0.514 | 0.508 | 3.631 |
0.673 | 0.435 | 3.107 |
Class | AIC | BIC | ABIC | Entropy | LMR(P) | BLRT(P) | CLASS PRO |
---|---|---|---|---|---|---|---|
1 | 9048.089 | 9155.051 | 9066.231 | / | / | / | 1 |
2 | 6555.406 | 6773.151 | 6592.339 | 0.992 | 0 | 0 | 0.77/0.23 |
3 | 5935.185 | 6263.712 | 5990.909 | 0.986 | 0 | 0 | 0.62/0.21/0.17 |
4 | 5828.693 | 6268.002 | 5903.207 | 0.996 | 0.0001 | 0 | 0.41/0.21/0.2/0.18 |
5 | 5778.483 | 6328.575 | 5871.787 | 0.992 | 0.062 | 0 | 0.4/0.21/0.07/0.14/0.18 |
6 | 5738.508 | 6399.383 | 5850.603 | 0.952 | 0.38 | 0 | 0.19/0.12/0.26/0.18/0.18/0.07 |
Demographic Variables | Category | Class 1 (n = 208) | Class 2 (n = 70) | Class 3 (n = 59) | |||
---|---|---|---|---|---|---|---|
Number | Percentage | Number | Percentage | Number | Percentage | ||
Gender | Female | 62 | 29.81% | 26 | 37.14% | 16 | 27.12% |
Male | 146 | 70.19% | 44 | 62.86% | 43 | 72.88% | |
Age | 22–30 | 47 | 22.60% | 32 | 45.71% | 32 | 54.24% |
31–40 | 135 | 64.90% | 25 | 35.71% | 8 | 13.56% | |
41–50 | 23 | 11.06% | 9 | 12.86% | 19 | 32.20% | |
≥51 | 3 | 1.44% | 4 | 5.71% | 1 | 1.69% | |
Income (RMB) | ≤100,000 | 5 | 2.40% | 11 | 15.71% | 1 | 1.69% |
100,000–150,000 | 5 | 2.40% | 16 | 22.86% | 0 | 0.00% | |
150,000–200,000 | 22 | 10.58% | 17 | 24.29% | 7 | 11.86% | |
200,000–250,000 | 56 | 26.92% | 11 | 15.71% | 26 | 44.07% | |
250,000–300,000 | 60 | 28.85% | 9 | 12.86% | 17 | 28.81% | |
300,000–400,000 | 39 | 18.75% | 3 | 4.29% | 7 | 11.86% | |
400,000–500,000 | 13 | 6.25% | 1 | 1.43% | 1 | 1.69% | |
≥500,000 | 8 | 3.85% | 2 | 2.86% | 0 | 0.00% | |
Education | Below bachelor’s degree | 44 | 21.15% | 19 | 27.14% | 10 | 16.95% |
Bachelor’s degree | 110 | 52.88% | 33 | 47.14% | 36 | 61.02% | |
Master’s degree and above | 54 | 25.96% | 18 | 25.71% | 13 | 22.03% | |
Car ownership | 1 | 133 | 63.94% | 37 | 52.86% | 28 | 47.46% |
2 | 55 | 26.44% | 26 | 37.14% | 28 | 47.46% | |
3 | 20 | 9.62% | 7 | 10.00% | 3 | 5.08% |
Class 1 (High Endorsement Group) | Class 2 (Moderate Endorsement Group Group) | |||||
---|---|---|---|---|---|---|
Coef | S.E | OR | Coef | S.E | OR | |
Homeownership | 1.957 *** | 0.571 | 7.077 | 0.98 | 0.599 | 2.665 |
Family size | −0.467 * | 0.209 | 0.627 | −0.582 * | 0.286 | 0.559 |
Age | −0.026 | 0.024 | 0.974 | −0.019 | 0.029 | 0.981 |
Age ≥ 60 | 0.189 | 0.314 | 1.208 | 1.064 ** | 0.409 | 2.898 |
Age ≤ 10 | 0.756 * | 0.334 | 2.13 | −0.041 | 0.407 | 0.96 |
Bachelor’s degree | 0.333 | 0.497 | 1.395 | −1.178 * | 0.549 | 0.308 |
Master’s degree and above | −0.376 | 0.376 | 0.687 | −1.19 ** | 0.458 | 0.301 |
Gender | −0.307 | 0.36 | 0.736 | −0.7 | 0.205 | 0.496 |
Marital status | 0.738 * | 0.351 | 2.092 | 0.202 | 0.617 | 1.224 |
Income | 0.181 * | 0.092 | 1.199 | 0.52 | 0.176 | 0.594 |
Subsidy | 2.55 * | 1.121 | 12.81 | 2.849 * | 1.15 | 17.26 |
Free time | 2.01 *** | 0.33 | 7.465 | 0.637 | 0.385 | 1.891 |
Purchase limit | 0.374 * | 0.38 | 1.688 | 1.78 ** | 0.52 | 1.167 |
Class | Prob | Chi-Square Test | Pair by Pair | ||
---|---|---|---|---|---|
Fuel type | BEV | PHEV | |||
Class 1 | 0.597 | 0.403 | 40.425 *** | Class 3 > Class 2 | |
Class 2 | 0.742 | 0.258 | Class 2 > Class 1 | ||
Class 3 | 0.915 | 0.085 | Class 3 > Class 1 | ||
Vehicle size | Mini and Small | Compact | Medium and above | Chi-square test | Pair by pair |
Class 1 | 0.119 | 0.462 | 0.419 | Class 1 > Class 2 | |
Class 2 | 0.245 | 0.455 | 0.3 | 20.358 ** | Class 3 > Class 1 |
Class 3 | 0.186 | 0.373 | 0.441 | Class 3 > Class 2 | |
Price | Mean | S.E | Chi-square test | Pair by pair | |
Class 1 | 20.439 | 0.561 | Class 1 > Class 2 | ||
Class 2 | 19.183 | 1.233 | 1.296 * | Class 3 > Class 2 | |
Class 3 | 19.424 | 1.074 | Class 1 > Class 3 | ||
Range | Mean | S.E | Chi-square test | Pair by pair | |
Class 1 | 703.865 | 21.539 | Class 1 > Class 2 | ||
Class 2 | 629.464 | 41.953 | 23.706 *** | Class 1 > Class 3 | |
Class 3 | 533.388 | 27.633 | Class 2 > Class 3 | ||
Charge time | Mean | S.E | Chi-square test | Pair by pair | |
Class 1 | 430.886 | 12.035 | Class 2 > Class 1 | ||
Class 2 | 449.546 | 17.833 | 5.37 * | Class 3 > Class 1 | |
Class 3 | 483.187 | 19.165 | Class 3 > Class 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Cui, K.; Wu, L.; Zheng, B. Users’ Perceived Value of Electric Vehicles in China: A Latent Class Model-Based Analysis. World Electr. Veh. J. 2025, 16, 461. https://doi.org/10.3390/wevj16080461
Li W, Cui K, Wu L, Zheng B. Users’ Perceived Value of Electric Vehicles in China: A Latent Class Model-Based Analysis. World Electric Vehicle Journal. 2025; 16(8):461. https://doi.org/10.3390/wevj16080461
Chicago/Turabian StyleLi, Wenbo, Ke Cui, Leixing Wu, and Bin Zheng. 2025. "Users’ Perceived Value of Electric Vehicles in China: A Latent Class Model-Based Analysis" World Electric Vehicle Journal 16, no. 8: 461. https://doi.org/10.3390/wevj16080461
APA StyleLi, W., Cui, K., Wu, L., & Zheng, B. (2025). Users’ Perceived Value of Electric Vehicles in China: A Latent Class Model-Based Analysis. World Electric Vehicle Journal, 16(8), 461. https://doi.org/10.3390/wevj16080461