The Impact of New Energy Vehicle Industry Agglomeration on High-Quality Green Development—Evidence from China
Abstract
1. Introduction
2. Literature Review
2.1. Investigate Trends in the Agglomeration of the New Energy Vehicle Industry
2.2. Research Trends on High-Quality Green Development
3. Theoretical Structure and Hypotheses
3.1. Direct and Indirect Impacts of New Energy Vehicle Industry Agglomeration on High-Quality Green Development
3.2. Heterogeneous Effects of New Energy Vehicle Industry Agglomeration on High-Quality Green Development
3.3. Agglomeration of the New Energy Vehicle Industry’s Spatial Spillover Impact on High-Quality Green Development
3.4. Research Questions and Objectives
4. Data, Variables, and Techniques
4.1. Data
4.2. Variables
4.2.1. Measuring New Energy Vehicle Industry Agglomeration
- Location quotient index
- Concentration ratio
- Herfindahl Index
- Data standardization
- 2.
- Calculate the share of indicator in region :
- 3.
- Find the entropy value of the th indicator. is the number of research units in the equation, and when , it follows that :
- 4.
- Determine the entropy weight for each indicator:
- 5.
- Calculate the composite index score:
4.2.2. Measuring High-Quality Green Development
- Production possibilities pool.
- 2.
- The directional distance function of SBM is neither radial nor angular in nature.
- 3.
- The Global Malmquist–Luenberger Productivity Index.
4.2.3. Mediating Variables
4.2.4. Control Variables
4.3. Econometric Techniques
5. Results
5.1. Direct Effects
5.2. Mediating Effects
5.3. Heterogeneous Effects
5.4. DID: Exogenous Policy Shocks
5.5. Robustness Tests and Endogenous Discussion
5.5.1. Tests for Robustness
5.5.2. The Instrumental Variable Approach
6. Spatial Econometrics
6.1. Spatial Spillover Effects
6.2. Replace Matrix Verification
7. Discussion
7.1. Research Contributions
7.2. Limitations and Future Research
8. Conclusions
8.1. Research Findings
8.2. Research Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NEV | New energy vehicle |
GTFP | Green total factor productivity |
Pea | Public environmental attention |
Gti | Green technology innovation |
GDP | Gross Domestic Product |
TFP | Total factor productivity |
References
- Wang, X.; Li, C.; Shang, J.; Yang, C.; Zhang, B.; Ke, X. Strategic choices of China’s new energy vehicle industry: An analysis based on ANP and SWOT. Energies 2017, 10, 537. [Google Scholar] [CrossRef]
- Qiu, L.-S.; Yang, D.-X.; Hong, K.-R.; Wu, W.-P.; Zeng, W.-K. The Prospect of China’s Renewable Automotive Industry Upon Shrinking Subsidies. Front. Energy Res. 2021, 9, 661585. [Google Scholar] [CrossRef]
- Ren, J. New energy vehicle in China for sustainable development: Analysis of success factors and strategic implications. Transp. Res. Part D Transp. Environ. 2018, 59, 268–288. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, X.; Zuo, J. The development of new energy vehicles for a sustainable future: A review. Renew. Sustain. Energy Rev. 2015, 42, 298–305. [Google Scholar] [CrossRef]
- Dey, K.; Saha, S. Influence of procurement decisions in two-period green supply chain. J. Clean. Prod. 2018, 190, 388–402. [Google Scholar] [CrossRef]
- Nielsen, I.E.; Majumder, S.; Saha, S. Exploring the intervention of intermediary in a green supply chain. J. Clean. Prod. 2019, 233, 1525–1544. [Google Scholar] [CrossRef]
- Jin, G.; Shen, K.; Li, J. Interjurisdiction political competition and green total factor productivity in China: An inverted-U relationship. China Econ. Rev. 2020, 61, 101224. [Google Scholar] [CrossRef]
- Dargay, J.; Gately, D. Vehicle ownership to 2015: Implications for energy use and emissions. Energy Policy 1997, 25, 1121–1127. [Google Scholar] [CrossRef]
- Su, C.-W.; Yuan, X.; Shao, X.; Moldovan, N.-C. Explore the environmental benefits of new energy vehicles: Evidence from China. Ann. Oper. Res. 2023, 1–20. [Google Scholar] [CrossRef]
- Li, J.; Jiao, J.; Xu, Y.; Chen, C. Impact of the latent topics of policy documents on the promotion of new energy vehicles: Empirical evidence from Chinese cities. Sustain. Prod. Consum. 2021, 28, 637–647. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, L.; Liu, X.; Wang, W.; Song, H. Optimal strategies in electric vehicle battery closed-loop supply chain considering government subsidies and echelon utilization. J. Energy Storage 2024, 99, 113341. [Google Scholar] [CrossRef]
- Yang, T.; Xing, C.; Li, X. Evaluation and analysis of new-energy vehicle industry policies in the context of technical innovation in China. J. Clean. Prod. 2021, 281, 125126. [Google Scholar] [CrossRef]
- Meng, F.; Jin, X. Evaluation of the development capability of the new energy vehicle industry: An empirical study from China. Sustainability 2019, 11, 2635. [Google Scholar] [CrossRef]
- Meng, W.; Ma, M.; Li, Y.; Huang, B. New energy vehicle R&D strategy with supplier capital constraints under China’s dual credit policy. Energy Policy 2022, 168, 113099. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Y.; Quan, T.; Ran, R.; Hua, L. Influence and effect of industrial agglomeration on urban green total factor productivity—On the regulatory role of innovation agglomeration and institutional distance. Econ. Anal. Policy 2023, 78, 1158–1173. [Google Scholar] [CrossRef]
- Xu, N. Industrial Co-Agglomeration and Urban Green Total Factor Productivity: Multidimensional Mechanism and Spatial Effect. Sustainability 2024, 16, 9415. [Google Scholar] [CrossRef]
- Ge, L.; Li, C.; Sun, L.; Hu, W.; Ban, Q. The relationship between high-tech industrial agglomeration and regional innovation: A meta-analysis investigation in China. Sustainability 2023, 15, 16545. [Google Scholar] [CrossRef]
- Liang, Y.; Hao, X. Can the Agglomeration of New Energy Industries Improve Environmental Efficiency?—Evidence from China. Sustainability 2022, 14, 8961. [Google Scholar] [CrossRef]
- Han, B.; Wu, H.; Diao, Y.; Han, D. Research on the influence of the new energy industry agglomeration on the collaborative governance of pollution reduction and carbon reduction. Energy Strategy Rev. 2024, 55, 101540. [Google Scholar] [CrossRef]
- Su, Y.; Yu, Y.-q. Spatial agglomeration of new energy industries on the performance of regional pollution control through spatial econometric analysis. Sci. Total Environ. 2020, 704, 135261. [Google Scholar] [CrossRef]
- Huang, Y.; Sheng, K.; Sun, W. Influencing factors of manufacturing agglomeration in the Beijing-Tianjin-Hebei region based on enterprise big data. J. Geogr. Sci. 2022, 32, 2105–2128. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, W.-L.; Wen, J.; Wang, J.-S. TFP growth in Chinese cities: The role of factor-intensity and industrial agglomeration. Econ. Model. 2020, 91, 534–549. [Google Scholar] [CrossRef]
- Pearce, D.; Markandya, A.; Barbier, E. Blueprint 1: For a Green Economy; Routledge: London, UK, 2013. [Google Scholar]
- Deakin, M.; Reid, A. Sustainable urban development: Use of the environmental assessment methods. Sustain. Cities Soc. 2014, 10, 39–48. [Google Scholar] [CrossRef]
- Yang, Q.; Wan, X.; Ma, H. Assessing green development efficiency of municipalities and provinces in China integrating models of super-efficiency DEA and malmquist index. Sustainability 2015, 7, 4492–4510. [Google Scholar] [CrossRef]
- Cao, J.; Ge, C. Research on the Impact of Technology Innovation on Quantity and Quality of Economic Growth in the Yangtze River Delta of China: A Comparative Study. Int. J. Sustain. Dev. Plan. 2021, 16, 1455–1464. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, J.; Yang, S.; Li, Q. The driving effect of technological innovation on green development: From the perspective of efficiency. Energy Policy 2024, 188, 114089. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, D. How much does financial development contribute to renewable energy growth and upgrading of energy structure in China? Energy Policy 2019, 128, 114–124. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Geng, S. How do environmental regulation and foreign investment behavior affect green productivity growth in the industrial sector? An empirical test based on Chinese provincial panel data. J. Environ. Manag. 2021, 287, 112282. [Google Scholar] [CrossRef]
- Yu, D.; Li, X.; Yu, J.; Li, H. The impact of the spatial agglomeration of foreign direct investment on green total factor productivity of Chinese cities. J. Environ. Manag. 2021, 290, 112666. [Google Scholar] [CrossRef]
- Yuan, H.; Feng, Y.; Lee, J.; Liu, H.; Li, R. The spatial threshold effect and its regional boundary of financial agglomeration on green development: A case study in China. J. Clean. Prod. 2020, 244, 118670. [Google Scholar] [CrossRef]
- Greenstone, M.; Hanna, R. Environmental regulations, air and water pollution, and infant mortality in India. Am. Econ. Rev. 2014, 104, 3038–3072. [Google Scholar] [CrossRef]
- Song, M.; Zhao, X.; Shang, Y. The impact of low-carbon city construction on ecological efficiency: Empirical evidence from quasi-natural experiments. Resour. Conserv. Recycl. 2020, 157, 104777. [Google Scholar] [CrossRef]
- Zhang, D.; Vigne, S.A. How does innovation efficiency contribute to green productivity? A financial constraint perspective. J. Clean. Prod. 2021, 280, 124000. [Google Scholar] [CrossRef]
- Wu, Y.; Song, J. Impact of New Energy Industry Agglomeration on Green Innovation Efficiency—Based on the Regulative Effect of Green Finance. Sustainability 2024, 16, 3311. [Google Scholar] [CrossRef]
- Asghari, M.; Al-e-hashem, S.M.J.M. Green vehicle routing problem: A state-of-the-art review. Int. J. Product. Econ. 2021, 231, 107899. [Google Scholar] [CrossRef]
- Deng, Y.; Ma, M.; Zhou, N.; Ma, Z.; Yan, R.; Ma, X. Chinas plug-in hybrid electric vehicle transition: An operational carbon perspective. Energy Convers. Manag. 2024, 320, 119011. [Google Scholar] [CrossRef]
- Xie, W.; Li, X. Can industrial agglomeration facilitate green development? Evidence from China. Front. Env. Sci. 2021, 9, 745465. [Google Scholar] [CrossRef]
- Guo, Y.; Xia, X.; Zhang, S.; Zhang, D. Environmental regulation, government R&D funding and green technology innovation: Evidence from China provincial data. Sustainability 2018, 10, 940. [Google Scholar] [CrossRef]
- Hong, M.; Li, Z.; Drakeford, B. Do the green credit guidelines affect corporate green technology innovation? Empirical research from China. Int. J. Environ. Res. Public Health 2021, 18, 1682. [Google Scholar] [CrossRef]
- Yue, J.; Duan, H. The Influence of New Energy Industry Agglomeration on Regional Green Innovation Performance—Evidence from China. Sustainability 2024, 16, 2029. [Google Scholar] [CrossRef]
- Zhao, J.; Shahbaz, M.; Dong, K. How does energy poverty eradication promote green growth in China? The role of technological innovation. Technol. Forecast. Soc. Change 2022, 175, 121384. [Google Scholar] [CrossRef]
- Pan, K.; He, F. Does public environmental attention improve green investment efficiency?—Based on the perspective of environmental regulation and environmental responsibility. Sustainability 2022, 14, 12861. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, L.; Hossain, M.E.; Haseeb, M.; Ran, Q. Unveiling the trajectory of corporate green innovation: The roles of the public attention and government. J. Clean. Prod. 2024, 444, 141119. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Q. City size and urban labor productivity in China: New evidence from spatial city-level panel data analysis. Econ. Syst. 2017, 41, 165–178. [Google Scholar] [CrossRef]
- Wang, Y.; Li, A.; Cheng, S. Harmonious development and dynamic correlation analysis of new energy industry agglomeration innovative human capital and green economic growth. In Proceedings of the 2021 International Conference on Environmental Engineering, Agricultural Pollution and Hydraulical Studies (EEAPHS 2021)—E3S Web of Conferences, Wuhan, China, 29–30 May 2021. [Google Scholar]
- Du, J.; Zhong, Z.; Shi, Q.; Wang, L.; Liu, Y.; Ying, N. Does government environmental attention drive green total factor productivity? Evidence from China. J. Environ. Manag. 2024, 366, 121766. [Google Scholar] [CrossRef]
- Quan, T.; Quan, T. A study of the spatial mechanism of financial agglomeration affecting green low-carbon development: Evidence from china. Sustainability 2023, 15, 965. [Google Scholar] [CrossRef]
- Chen, C.; Sun, Y.; Lan, Q.; Jiang, F. Impacts of industrial agglomeration on pollution and ecological efficiency-A spatial econometric analysis based on a big panel dataset of China’s 259 cities. J. Clean. Prod. 2020, 258, 120721. [Google Scholar] [CrossRef]
- Bai, J.; Li, S.; Wang, N.; Shi, J.; Li, X. Spatial spillover effect of new energy development on economic growth in developing areas of China—An empirical test based on the spatial Dubin model. Sustainability 2020, 12, 3249. [Google Scholar] [CrossRef]
- Liu, Y. Impacts of industrial agglomeration on the energy consumption structure’s low-carbon transition process: A spatial and nonlinear perspective. PLoS ONE 2024, 19, e0307893. [Google Scholar] [CrossRef]
- Oh, D.-h. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Pasurka, J.; Carl, A. Accounting for air pollution emissions in measures of state manufacturing productivity growth. J. Reg. Sci. 2001, 41, 381–409. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Kotyza, P.; Cabelkova, I.; Pieranski, B.; Malec, K.; Borusiak, B.; Smutka, L.; Nagy, S.; Gawel, A.; Lluch, D.B.L.P.; Kis, K. The predictive power of environmental concern, perceived behavioral control and social norms in shaping proenvironmental intentions: A multicountry study. Front. Ecol. Evol. 2024, 12, 1289139. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Chen, A.; Chen, H. Decomposition analysis of green technology innovation from green patents in China. Math. Probl. Eng. 2021, 2021, 6672656. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, J.; Mo, J. Government Intervention, Land Market, and Urban Development: Evidence from Chinese Cities. Econ. Inq. 2017, 55, 115–136. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Lee, D.; Seomun, G.; Woosnam, K.M. Climate gentrification and green infrastructure in the U.S. Great Lakes region: Engaging with heat exposure and adaptation policy. Habitat Int. 2025, 163, 103453. [Google Scholar] [CrossRef]
- Seker, M.; Saliola, F. A cross-country analysis of total factor productivity using micro-level data. Cent. Bank Rev. 2018, 18, 13–27. [Google Scholar] [CrossRef]
- Arrow, K.J. The economic implications of learning by doing. Rev. Econ. Stud. 1962, 29, 155–173. [Google Scholar] [CrossRef]
- Hayes, A.F. Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, P.; Wang, D.; Wu, J. Can smart city construction facilitate green total factor productivity? A quasi-natural experiment based on China’s pilot smart city. Sustain. Cities Soc. 2021, 69, 102809. [Google Scholar] [CrossRef]
- Gomez, L.M.B.; Filippini, M.; Heimsch, F. Regional impact of changes in disposable income on Spanish electricity demand: A spatial econometric analysis. Energy Econ. 2013, 40, S58–S66. [Google Scholar] [CrossRef]
- Lesage, J.; Pace, R.K. Introduction to Spatial Econometrics. J. R. Stat. Soc. Ser. A Stat. Soc. 2008, 174, 19–44. [Google Scholar] [CrossRef]
- Yan, W.; Tao, Z.; Juan, W.; Fang, G.; Xu, K.; Rong, Y. Spatial analysis on carbon emission abatement capacity at provincial level in China from 1997 to 2014: An empirical study based on SDM model. Atmos. Pollut. Res. 2019, 10, 97–104. [Google Scholar] [CrossRef]
Variables | Symbol | Interpretation | Obs | Max | Min | Mean | Std |
---|---|---|---|---|---|---|---|
Explained variable | GTFP | High-quality green development | 312 | 2.192 | 0.687 | 1.052 | 0.147 |
Explanatory and threshold variable | Score | new energy vehicle industry agglomeration | 312 | 0.870 | 0.003 | 0.313 | 0.205 |
Mediating variables | Pea | Public environmental attention | 312 | 5.882 | 5.035 | 5.619 | 0.144 |
Gti | Green technology innovation | 312 | 10.927 | 3.135 | 8.063 | 1.466 | |
Control variables | Gov | Government intervention | 312 | 0.758 | 0.105 | 0.248 | 0.115 |
City | Urbanization | 312 | 0.899 | 0.350 | 0.608 | 0.124 | |
INC | Infrastructure construction | 312 | 13.57 | 1.100 | 5.769 | 2.235 | |
COL | Consumption level | 312 | 10.71 | 6.024 | 9.070 | 0.879 | |
gdp | Economic development | 312 | 11.77 | 7.223 | 10.01 | 0.818 | |
pop | Population | 312 | 9.448 | 6.342 | 8.330 | 0.659 |
Variables | GTFP (1) | GTFP (2) | GTFP (3) | GTFP (4) | GTFP (5) | GTFP (6) | GTFP (7) |
---|---|---|---|---|---|---|---|
Score | 0.249 *** | 0.253 *** | 0.252 *** | 0.252 *** | 0.248 *** | 0.248 *** | 0.248 *** |
(0.055) | (0.059) | (0.059) | (0.060) | (0.062) | (0.062) | (0.062) | |
Gov | 0.372 | 0.324 | 0.324 | 0.274 | 0.552 | 0.530 | |
(0.556) | (0.560) | (0.571) | (0.624) | (0.687) | (0.694) | ||
City | −0.434 | −0.433 | −0.319 | −0.337 | −0.311 | ||
(0.336) | (0.380) | (0.453) | (0.445) | (0.4561) | |||
INC | −0.000 | −0.002 | 0.000 | −0.000 | |||
(0.012) | (0.013) | (0.014) | (0.014) | ||||
COL | −0.026 | −0.140 * | −0.139 * | ||||
(0.051) | (0.072) | (0.072) | |||||
gdp | 0.348 * | 0.311 | |||||
(0.208) | (0.239) | ||||||
pop | 0.112 | ||||||
(0.315) | |||||||
Constant | 0.974 *** | 0.880 *** | 1.156 *** | 1.156 *** | 1.350 *** | −1.173 | −1.755 |
(0.016) | (0.144) | (0.266) | (0.261) | (0.506) | (1.713) | (2.270) | |
Observations | 312 | 312 | 312 | 312 | 312 | 312 | 312 |
R-squared | 0.120 | 0.452 | 0.454 | 0.454 | 0.455 | 0.461 | 0.462 |
Province FE | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES |
Variables | GTFP | Mediator: Green Technology Innovation | Mediator: Public Environmental Attention | ||
---|---|---|---|---|---|
Gti | GTFP | Pea | GTFP | ||
(1) | (2) | (3) | (4) | (5) | |
Score | 0.248 *** | 1.300 *** | 0.224 *** | 0.139 *** | 0.215 *** |
(4.02) | (3.10) | (3.68) | (3.66) | (3.62) | |
Gti | 0.019 ** | ||||
(2.36) | |||||
Pea | 0.237 *** | ||||
(2.78) | |||||
Constant | −1.755 | 1.764 | −1.789 | 5.532 *** | −3.065 |
(−0.77) | (0.15) | (−0.80) | (4.68) | (−1.36) | |
Control variables | YES | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES |
Observations | 312 | 312 | 312 | 312 | 312 |
R-squared | 0.462 | 0.700 | 0.472 | 0.299 | 0.485 |
Mediator | Effect | Observed Coefficient | Bootstrap Std. Err. | z | p > |z| | [95% Conf. Interval] |
---|---|---|---|---|---|---|
Gti | Indirect effect | 0.027 | 0.012 | 2.18 | 0.029 | [0.003, 0.051] |
Direct effect | 0.232 | 0.044 | 5.30 | 0.000 | [0.146, 0.318] | |
Pea | Indirect effect | 0.033 | 0.135 | 2.43 | 0.015 | [0.006, 0.059] |
Direct effect | 0.226 | 0.043 | 5.24 | 0.000 | [0.142, 0.311] |
Variables | Eastern | Midwestern | High Green Attention | Low Green Attention | High Financial Development | Low Financial Development |
---|---|---|---|---|---|---|
GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | |
(1) | (2) | (3) | (4) | (5) | (6) | |
Score | 0.117 | 0.286 *** | 0.357 *** | 0.160 ** | 0.497 *** | 0.161 ** |
(0.100) | (0.071) | (0.113) | (0.066) | (0.168) | (0.063) | |
Constant | −1.315 | −0.821 | −5.237 | 0.990 | −0.942 | 1.926 |
(3.436) | (3.481) | (3.521) | (3.501) | (2.695) | (6.105) | |
Control variables | YES | YES | YES | YES | YES | YES |
Province FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Observations | 120 | 192 | 159 | 149 | 154 | 154 |
R-squared | 0.360 | 0.525 | 0.599 | 0.477 | 0.561 | 0.476 |
p | 0.000 | 0.000 | 0.000 |
Variables | GTFP | GTFP |
---|---|---|
DID | PSM-DID | |
(1) | (2) | |
Policy | 0.106 *** | 0.119 ** |
(2.99) | (2.19) | |
Constant | −1.436 | −8.596 |
(−0.60) | (−1.14) | |
Control variables | YES | YES |
Province FE | YES | YES |
Year FE | YES | YES |
Observations | 312 | 86 |
R-squared | 0.418 | 0.510 |
Variables | GTFP | GTFP |
---|---|---|
(1) | (2) | |
Score | 0.034 ** | 0.287 * |
(2.502) | (1.739) | |
Constant | −2.503 | 10.838 |
(−1.042) | (0.993) | |
Control variables | YES | YES |
Province FE | YES | YES |
Year FE | YES | YES |
Observations | 312 | 312 |
R-squared | 0.415 | 0.782 |
Variables | Score | GTFP |
---|---|---|
(1) | (2) | |
Score | 0.425 * | |
(1.80) | ||
IV | 0.057 *** | |
(2.95) | ||
Constant | 1.240 | 1.204 *** |
(0.35) | (4.31) | |
Control variables | YES | YES |
Province FE | YES | YES |
Year FE | YES | YES |
Observations | 312 | 312 |
R-squared | 0.201 | 0.145 |
F-statistic | 11.47 |
Year | Moran’s I | Z-Statistic | p |
---|---|---|---|
2012 | 0.401 | 3.800 | 0.000 |
2013 | 0.379 | 3.718 | 0.000 |
2014 | 0.404 | 3.854 | 0.000 |
2015 | 0.387 | 3.755 | 0.000 |
2016 | 0.443 | 4.096 | 0.000 |
2017 | 0.511 | 4.298 | 0.000 |
2018 | 0.541 | 4.426 | 0.000 |
2019 | 0.534 | 4.353 | 0.000 |
2020 | 0.489 | 4.075 | 0.000 |
2021 | 0.521 | 4.315 | 0.000 |
2022 | 0.497 | 4.190 | 0.000 |
2023 | 0.555 | 4.531 | 0.000 |
Variables | GTFP | GTFP | GTFP |
---|---|---|---|
SDM | SEM | SAR | |
(1) | (2) | (3) | |
c_Score | 0.296 *** | 0.301 *** | 0.299 *** |
(20.32) | (20.54) | (20.05) | |
W*c_Score | −0.106 *** (−2.93) | ||
Direct effect | 0.293 *** | 0.299 *** | |
(19.48) | (19.89) | ||
Indirect effect | −0.075 ** | 0.005 | |
(−2.42) | (0.33) | ||
Total effect | 0.218 *** | 0.304 *** | |
(5.74) | (12.81) | ||
rho | 0.152 ** | 0.147 ** | 0.024 |
(2.10) | (2.00) | (0.41) | |
sigma2_e | 0.005 *** | 0.006 *** | 0.006 *** |
(12.44) | (12.45) | (12.49) | |
Control variables | YES | YES | YES |
Province FE | YES | YES | YES |
Year FE | YES | YES | YES |
Observations | 312 | 312 | 312 |
Number of id | 26 | 26 | 26 |
Log-likelihood | 373.384 | 367.744 | 365.886 |
R-squared | 0.015 | 0.260 | 0.376 |
Variables | Economic Distance Weighting Matrix | Spatial Geographic Distance Weighting Matrix |
---|---|---|
Score | 0.241 *** | 0.239 *** |
(5.31) | (5.50) | |
W* Score | 0.034 | −0.177 * |
(0.29) | (−1.67) | |
rho | −0.103 | −0.089 |
(−1.05) | (−0.94) | |
sigma2_e | 0.011 *** | 0.011 *** |
(12.46) | (12.48) | |
Control variables | YES | YES |
Province FE | YES | YES |
Year FE | YES | YES |
Number of id | 26 | 26 |
Observations | 312 | 312 |
R-squared | 0.000 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xie, T. The Impact of New Energy Vehicle Industry Agglomeration on High-Quality Green Development—Evidence from China. World Electr. Veh. J. 2025, 16, 369. https://doi.org/10.3390/wevj16070369
Liu W, Xie T. The Impact of New Energy Vehicle Industry Agglomeration on High-Quality Green Development—Evidence from China. World Electric Vehicle Journal. 2025; 16(7):369. https://doi.org/10.3390/wevj16070369
Chicago/Turabian StyleLiu, Wenxin, and Tao Xie. 2025. "The Impact of New Energy Vehicle Industry Agglomeration on High-Quality Green Development—Evidence from China" World Electric Vehicle Journal 16, no. 7: 369. https://doi.org/10.3390/wevj16070369
APA StyleLiu, W., & Xie, T. (2025). The Impact of New Energy Vehicle Industry Agglomeration on High-Quality Green Development—Evidence from China. World Electric Vehicle Journal, 16(7), 369. https://doi.org/10.3390/wevj16070369