Vehicle State Estimation Based on Sage–Husa Adaptive Unscented Kalman Filtering
Abstract
1. Introduction
- (1)
- The Sage–Husa algorithm is improved to avoid non-positive definiteness of the covariance matrix and to ensure its positivity.
- (2)
- The improved Sage–Husa algorithms are adopted to dynamically update the mean and covariance matrices of the measurement noise, which effectively improves the filtering accuracy and prevents its divergence.
- (3)
- Sage–Husa algorithm is integrated with the UKF algorithm to form the AUKF algorithm for dynamic vehicle state estimation. The simulation results demonstrate that AUKF increases estimation accuracy by 19.13%, 32.8%, and 39.46% in yaw rate, side-slip angle, and longitudinal velocity, respectively, proving the algorithm’s validity in providing accurate vehicle state information for active vehicle safety control.
2. Vehicle State Parameter Estimation Model
2.1. 3-DOF Vehicle Dynamics Model
2.2. Tire Model
3. Vehicle State Parameter Estimation Based on AUKF
3.1. UKF Algorithm
- (1)
- Obtain a set of sampling points (sigma points) and calculate the corresponding weights of these sampling pointsIt is assumed that the and variance of the n-dimensional random variable state vector are known. Then, by obtaining 2n + 1 sigma points and the appropriate weights via the subsequent unscented transformation, the statistical properties of may be computed.These sampling sites’ related weights are determined aswhere is used to reduce the overall prediction error, which can be chosen based on experience but should ensure that the matrix is a positive semi-definite. The subscripts and stand for the mean and covariance, respectively.
- (2)
- According to Equations (15) and (16), a set of sampling points and their corresponding weights are calculated
- (3)
- One-step prediction of the set of 2n + 1 sigma points using the state equation
- (4)
- Calculation of one-step prediction and covariance matrix of the system state variables
- (5)
- The predicted observations are calculated by bringing sigma points into the observation equation
- (6)
- The mean, covariance and cross-covariance are calculated analogously to Equations (19) and (20)
- (7)
- Kalman gain matrix is calculated
- (8)
- System status and covariance matrix are updated
3.2. AUKF Algorithm
4. Simulation Results and Analyses
4.1. Steering Angle Step-Input Condition
4.2. Sinusoidal Steering Condition
4.3. Double-Lane Change Condition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Indu, K.; Aswatha Kumar, M. Electric Vehicle Control and Driving Safety Systems: A Review. IETE J. Res. 2023, 69, 482–498. [Google Scholar] [CrossRef]
- Guo, H.; Cao, D.; Chen, H.; Lv, C.; Wang, H.; Yang, S. Vehicle dynamic state estimation: State of the art schemes and perspectives. IEEE/CAA J. Autom. Sin. 2018, 5, 418–431. [Google Scholar] [CrossRef]
- Mazzilli, V.; Ivone, D.; De Pinto, S.; Pascali, L.; Contrino, M.; Tarquinio, G.; Gruber, P.; Sorniotti, A. On the benefit of smart tyre technology on vehicle state estimation. Veh. Syst. Dyn. 2022, 60, 3694–3719. [Google Scholar] [CrossRef]
- Jin, X.; Yin, G.; Chen, N. Advanced estimation techniques for vehicle system dynamic state: A survey. Sensors 2019, 19, 4289. [Google Scholar] [CrossRef]
- Chen, B.C.; Hsieh, F.C. Sideslip angle estimation using extended Kalman filter. Veh. Syst. Dyn. 2008, 46, 353–364. [Google Scholar] [CrossRef]
- Piyabongkarn, D.; Rajamani, R.; Grogg, J.A.; Lew, J.Y. Development and experimental evaluation of a slip angle estimator for vehicle stability control. IEEE Trans. Control Syst. Technol. 2009, 17, 78–88. [Google Scholar] [CrossRef]
- Viehweger, M.; Vaseur, C.; Aalst, S.; Acosta, M.; Regolin, E.; Alatorre, A.; Desmet, W.; Naets, F.; Ivanov, V.; Ferrara, A.; et al. Vehicle state and tyre force estimation: Demonstrations and guidelines. Veh. Syst. Dyn. 2021, 59, 675–702. [Google Scholar] [CrossRef]
- González, L.P.P.; Sánchez, S.S.S.; Garcia-Guzman, J.; Boada, M.J.L.; Boada, B.L. Simultaneous Estimation of Vehicle Roll and Sideslip Angles through a Deep Learning Approach. Sensors 2020, 20, 3679. [Google Scholar] [CrossRef]
- Novi, T.; Capitani, R.; Annicchiarico, C. An integrated artificial neural network–unscented Kalman filter vehicle sideslip angle estimation based on inertial measurement unit measurements. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 1864–1878. [Google Scholar] [CrossRef]
- Yang, S.; Lu, Y.; Li, S. An overview on vehicle dynamics. Int. J. Dyn. Control 2013, 1, 385–395. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Z.; Wang, J.; Wang, X.; Liu, L. Research on a Real-Time Estimation Method of Vehicle Sideslip Angle Based on EKF. Sensors 2022, 22, 3386. [Google Scholar] [CrossRef]
- Jeong, D.; Ko, G.; Choi, S.B. Estimation of sideslip angle and cornering stiffness of an articulated vehicle using a constrained lateral dynamics model. Mechatronics 2022, 85, 102810. [Google Scholar] [CrossRef]
- Song, R.; Fang, Y. Estimation of Vehicle Sideslip Angle based on Modified Sliding Mode Observer and Recurrent Neural Network. In Proceedings of the 2022 7th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Tianjin, China, 1–3 July 2022; pp. 135–139. [Google Scholar]
- Zhang, F.; Wang, Y.; Hu, J.; Yin, G.; Chen, S.; Zhang, H.; Zhou, D. A novel comprehensive scheme for vehicle state estimation using dual extended H-infinity kalman filter. Electronics 2021, 10, 1526. [Google Scholar] [CrossRef]
- Venhovens, P.J.T.; Naab, K. Vehicle dynamics estimation using Kalman filters. Veh. Syst. Dyn. 1999, 32, 171–184. [Google Scholar] [CrossRef]
- Zong, C.F.; Hu, D.; Yang, X.; Pan, Z.; Xu, Y. Vehicle driving state estimation based on extended Kalman filter. J. Jilin Univ. (Eng. Technol. Ed.) 2009, 39, 7–11. [Google Scholar]
- Singh, K.B.; Arat, M.A.; Taheri, S. Literature review and fundamental approaches for vehicle and tire state estimation. Veh. Syst. Dyn. 2019, 57, 1643–1665. [Google Scholar] [CrossRef]
- Heidfeld, H.; Schünemann, M.; Kasper, R. Experimental Validation of a GPS-Aided Model-Based UKF Vehicle State Estimator. In Proceedings of the 2019 IEEE International Conference on Mechatronics (ICM), Ilmenau, Germany, 18–20 March 2019; pp. 537–543. [Google Scholar]
- Villano, E.; Lenzo, B.; Sakhnevych, A. Cross-combined UKF for vehicle sideslip angle estimation with a modified Dugoff tire model: Design and experimental results. Meccanica 2021, 56, 2653–2668. [Google Scholar] [CrossRef]
- Huang, Y. Estimation of Vehicle Status and Parameters Based on Nonlinear Kalman Filtering. In Proceedings of the 2022 6th International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 9–11 June 2022; pp. 200–205. [Google Scholar]
- Xiao, Z.; Xiao, D.; Havyarimana, V.; Jiang, H.; Liu, D.; Wang, D.; Zeng, F. Toward accurate vehicle state estimation under non-Gaussian noises. IEEE Internet Things J. 2019, 6, 10652–10664. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Lin, F.; Zhang, C.; Deng, H. Integrated control for distributed in-wheel motor drive electric vehicle based on states estimation and nonlinear MPC. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 893–906. [Google Scholar] [CrossRef]
- Chu, W.; Luo, Y.; Dai, Y.; Li, K. In–wheel motor electric vehicle state estimation by using unscented particle filter. Int. J. Veh. Des. 2015, 67, 115–136. [Google Scholar] [CrossRef]
- Wang, Z.P.; Xue, X.; Wang, Y.C. State parameter estimation of distributed drive electric vehicle based on adaptive unscented Kalman filter. J. Beijing Inst. Technol. 2018, 38, 698–702. [Google Scholar]
- Fan, T.E.; Liu, S.M.; Tang, X.; Qu, B.H. Simultaneously estimating two battery states by combining a long short-term memory network with an adaptive unscented Kalman filter. J. Energy Storage 2022, 50, 104553. [Google Scholar] [CrossRef]
- Li, G.; Zhao, D.; Xie, R.; Han, H.; Zong, C. Vehicle State Estimation Based on Improved Sage–Husa Adaptive Extended Kalman Filtering. Automot. Eng. 2015, 37, 1426–1432. [Google Scholar]
- Zhou, B.; Li, T.; Wu, X.; Lei, F. Semi-trailer State Estimation Based on Double Adaptive Unscented Kalman Filter. J. Hunan Univ. (Nat. Sci.) 2022, 49, 63–73. [Google Scholar]
- Xu, D.; Wang, B.; Zhang, L.; Chen, Z. A New Adaptive High-Degree Unscented Kalman Filter with Unknown Process Noise. Electronics 2022, 11, 1863. [Google Scholar] [CrossRef]
- Luo, Z.; Fu, Z.; Xu, Q. An Adaptive multi-dimensional vehicle driving state observer based on modified Sage–Husa UKF algorithm. Sensors 2020, 20, 6889. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, A.; Zhang, L. A novel adaptive H-Infinity cubature Kalman filter algorithm based on Sage-Husa estimator for unmanned underwater vehicle. Math. Probl. Eng. 2020, 9, 456–463. [Google Scholar] [CrossRef]
- Bian, H.; Jin, Z.; Wang, J. The innovation-based estimation adaptive Kalman filter algorithm for INS/GPS integrated navigation system. J. Shanghai Jiaotong Univ. 2006, 40, 1000. [Google Scholar]
- Dey, A.; Sadhu, S.; Ghoshal, T.K. Adaptive Gauss–Hermite filter for non-linear systems with unknown measurement noise covariance. IET Sci. Meas. Technol. 2015, 9, 1007–1015. [Google Scholar] [CrossRef]
- Narasimhappa, M.; Mahindrakar, A.D.; Guizilini, V.C.; Terra, M.H.; Sabat, S.L. MEMS-based IMU drift minimization: Sage Husa adaptive robust Kalman filtering. IEEE Sens. J. 2019, 20, 250–260. [Google Scholar] [CrossRef]
- Yu, Z. Automobile Theory, 5th ed.; China Machine Press: Beijing, China, 2009; pp. 144–146. [Google Scholar]
- Pacejka, H. Tire and Vehicle Dynamics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2012; pp. 593–601. [Google Scholar]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter. In Kalman Filtering and Neural Networks; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. 221–280. [Google Scholar]
- Liu, K.; Zhao, W.; Sun, B.; Wu, P.; Zhu, D.; Zhang, P. Application of updated Sage–Husa adaptive Kalman filter in the navigation of a translational sprinkler irrigation machine. Water 2019, 11, 1269. [Google Scholar] [CrossRef]























| Parameter | Value |
|---|---|
| 1410 kg | |
| 1.015 m | |
| 1.895 m | |
| −122,540 N·rad−1 | |
| −100,500 N·rad−1 | |
| 1536.7 kg·m2 |
| Algorithm | Yaw Rate (rad/s) | Side-Slip Angle (rad) | Longitudinal Velocity (km/h) |
|---|---|---|---|
| UKF | 0.0012 | 0.000462 | 0.3726 |
| AUKF | 0.0009 | 0.000140 | 0.1982 |
| Algorithm | Yaw Rate (rad/s) | Side-Slip Angle (rad) | Longitudinal Velocity (km/h) |
|---|---|---|---|
| UKF | 0.0063 | 0.000907 | 0.4644 |
| AUKF | 0.0061 | 0.000821 | 0.3133 |
| Algorithm | Yaw Rate (rad/s) | Side-Slip Angle (rad) | Longitudinal Velocity (km/h) |
|---|---|---|---|
| UKF | 0.000726 | 0.000176 | 0.557 |
| AUKF | 0.000551 | 0.000141 | 0.154 |
| Algorithm | Yaw Rate (rad/s) | Side-Slip Angle (rad) | Longitudinal Velocity (km/h) |
|---|---|---|---|
| UKF | 0.000916 | 0.000219 | 0.6434 |
| AUKF | 0.000689 | 0.000176 | 0.2356 |
| Algorithm | Yaw Rate (rad/s) | Side-Slip Angle (rad) | Longitudinal Velocity (km/h) |
|---|---|---|---|
| UKF | 0.0020 | 0.000363 | 0.348 |
| AUKF | 0.0016 | 0.000116 | 0.234 |
| Algorithm | Yaw Rate (rad/s) | Side-Slip Angle (rad) | Longitudinal Velocity (km/h) |
|---|---|---|---|
| UKF | 0.0034 | 0.000578 | 0.4289 |
| AUKF | 0.0024 | 0.000177 | 0.3321 |
| Algorithm | Total Running Time (s) | Single-Step Running Time (s) | Computational Complexity |
|---|---|---|---|
| UKF | 23.433 | 0.00117 | O(n2) |
| AUKF | 24.026 | 0.00120 | O(n2) |
| Algorithm | Total Running Time (s) | Single-Step Running Time (s) | Computational Complexity |
|---|---|---|---|
| UKF | 52.716 | 0.00132 | O(n2) |
| AUKF | 56.439 | 0.00141 | O(n2) |
| Algorithm | Total Running Time (s) | Single-Step Running Time (s) | Computational Complexity |
|---|---|---|---|
| UKF | 24.892 | 0.00124 | O(n2) |
| AUKF | 26.214 | 0.00131 | O(n2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yan, H.; Li, Y. Vehicle State Estimation Based on Sage–Husa Adaptive Unscented Kalman Filtering. World Electr. Veh. J. 2023, 14, 167. https://doi.org/10.3390/wevj14070167
Chen Y, Yan H, Li Y. Vehicle State Estimation Based on Sage–Husa Adaptive Unscented Kalman Filtering. World Electric Vehicle Journal. 2023; 14(7):167. https://doi.org/10.3390/wevj14070167
Chicago/Turabian StyleChen, Yong, Hao Yan, and Yuecheng Li. 2023. "Vehicle State Estimation Based on Sage–Husa Adaptive Unscented Kalman Filtering" World Electric Vehicle Journal 14, no. 7: 167. https://doi.org/10.3390/wevj14070167
APA StyleChen, Y., Yan, H., & Li, Y. (2023). Vehicle State Estimation Based on Sage–Husa Adaptive Unscented Kalman Filtering. World Electric Vehicle Journal, 14(7), 167. https://doi.org/10.3390/wevj14070167

