# Combined Vector and Direct Controls Based on Five-Level Inverter for High Performance of IM Drive

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Model of Induction Motor

## 3. Five-Level Neutral Point Clamped Inverter

^{3}= 125 switching states, as indicated in the diagram, since each branch has five types of switching states. Because certain switching states are redundant and form the same space vector, the output voltage vector can only take 61 distinct locations in the figure [24].

## 4. Principles of Vector and Direct Torque Control

#### 4.1. Vector Control

#### 4.2. Direct Torque Control

## 5. Improved Combined Vector Control and Direct Torque Control Strategy

## 6. Simulation Results

^{®}. The THD analysis is an effective parameter that must be considered in order to prove the efficiency of the multilevel inverter integration. For this, we studied the harmonic rate of the current Isd and the $\mathsf{\Delta}$Isd, the variation between Isdmax and Isdmin and Isqmax and Isqmin.

#### 6.1. Variable Torque

#### 6.2. High Speed

#### 6.3. Reverse Speed

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

^{2}, and number of pole pairs p = 2.

## References

- Ye, X.; Yang, Z.; Zhu, J.; Guo, Y. Modeling and Operation of a Bearingless Fixed-Pole Rotor Induction Motor. IEEE Trans. Appl. Supercond.
**2019**, 29, 1–4. [Google Scholar] [CrossRef] - Aliaskari, A.; Zarei, B.; Davari, S.A.; Wang, F.; Kennel, R.M. A Modified Closed-Loop Voltage Model Observer Based on Adaptive Direct Flux Magnitude Estimation in Sensorless Predictive Direct Voltage Control of an Induction Motor. IEEE Trans. Power Electron.
**2020**, 35, 630–639. [Google Scholar] [CrossRef] - Abbasi, M.A.; Husain, A.R.; Idris, N.R.N.; Anjum, W.; Bassi, H.; Rawa, M.J.H. Predictive Flux Control for Induction Motor Drives With Modified Disturbance Observer for Improved Transient Response. IEEE Access
**2020**, 8, 112484–112495. [Google Scholar] [CrossRef] - Pacheco, N.O.; Pacheco, J.O.; de Souza, A.B. Vector Control Brushless AC—An approach using power voltage. IEEE Lat. Am. Trans.
**2016**, 14, 4013–4020. [Google Scholar] [CrossRef] - Alsofyani, I.M.; Lee, K.B. Enhanced Performance of Constant Frequency Torque Controller–Based Direct Torque Control of Induction Machines with Increased Torque-Loop Bandwidth. IEEE Trans. Ind. Electron.
**2020**, 67, 10168–10179. [Google Scholar] [CrossRef] - Manohar, M.; Das, S. Direct torque controlled induction motor drive using modified five-level torque controller for reduction in torque ripple. IET Power Electron.
**2020**, 13, 1885–1892. [Google Scholar] [CrossRef] - Halleh, H.; Rahmani, M.; Kimiaghalam, B. Direct Torque Control of induction motors with fuzzy logic controller. In Proceedings of the 2008 International Conference on Control, Automation and Systems, Seoul, Korea, 14–17 October 2008; pp. 345–350. [Google Scholar] [CrossRef]
- Reddy, S.R.P.; Loganathan, U. Robust and High-Dynamic-Performance Control of Induction Motor Drive Using Transient Vector Estimator. IEEE Trans. Ind. Electron.
**2019**, 66, 7529–7538. [Google Scholar] [CrossRef] - Boulghasoul, Z.; Elbacha, A.; Elwarraki, E.; Yousfi, D. Combined Vector Control and Direct Torque Control an experimental review and evaluation. In Proceedings of the 2011 International Conference on Multimedia Computing and Systems, Ouarzazate, Morocco, 7–9 April 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Vaez-Zadeh, S.; Jalali, E. Combined vector control and direct torque control method for high performance induction motor drives. Energy Convers. Manag.
**2007**, 48, 3095–3101. [Google Scholar] [CrossRef] - Vaez-Zadeh, S.; Jalali, E. An Induction Motor Drive System Employing Salient Features of Vector and Direct Torque Controls. In Proceedings of the 2007 IEEE International Electric Machines & Drives Conference, Antalya, Turkey, 3–5 May 2007; pp. 1264–1268. [Google Scholar] [CrossRef]
- Farasat, M.; Rostami, N.; Feyzi, M.R. Speed sensorless hybrid field oriented and direct torque control of induction motor drive for wide speed range applications. In Proceedings of the 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC), Tehran, Iran, 17–18 February 2010; pp. 243–248. [Google Scholar] [CrossRef]
- Boulghasoul, Z.; Elbacha, A.; Elwarraki, E. Intelligent Control for Torque Ripple Minimization in Combined Vector and Direct Controls for High Performance of IM Drive. J. Electr. Eng. Technol.
**2012**, 7, 546–557. [Google Scholar] [CrossRef] [Green Version] - Durgasukumar, G.; Pathak, M.K. THD reduction in performance of multi-level inverter fed induction motor drive. In Proceedings of the India International Conference on Power Electronics 2010 (IICPE2010), New Delhi, India, 28–30 January 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Das, M.K.; Jana, K.C.; Sinha, A. Performance evaluation of an asymmetrical reduced switched multi-level inverter for a grid-connected PV system. IET Renew. Power Gener.
**2018**, 12, 252–263. [Google Scholar] [CrossRef] - Wang, T.; Zhang, J.; Wang, H.; Wang, Y.; Diallo, D.; Benbouzid, M. Multi-mode fault-tolerant control strategy for cascaded H-bridge multilevel inverters. IET Power Electron.
**2020**, 13, 3119–3126. [Google Scholar] [CrossRef] - Li, C.; Wang, S.; Guan, Q.; Xu, D. Hybrid Modulation Concept for Five-Level Active-Neutral-Point-Clamped Converter. IEEE Trans. Power Electron.
**2017**, 32, 8958–8962. [Google Scholar] [CrossRef] - Kim, S.; Kim, R.; Kim, S. Generalized Model Predictive Control Method for Single-Phase N-Level Flying Capacitor Multilevel Rectifiers for Solid State Transformer. IEEE Trans. Ind. Appl.
**2019**, 55, 7505–7514. [Google Scholar] [CrossRef] - Oumaymah, E.; Abdellah, O.; Lhoussain, E. The injection of wind power into a grid using a multi-level inverter controlled by SVPWM. In Proceedings of the 2020 International Conference on Electrical and Information Technologies (ICEIT), Rabat-Salé, Morocco, 4–7 March 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Li, N.; Li, W.; Zhang, H.; Yang, P. Efficiency-optimised modulation technique of three-level NPC inverter. J. Eng.
**2019**, 2019, 938–942. [Google Scholar] [CrossRef] - Le, Q.A.; Lee, D.C. Reduction of Common-Mode Voltages for Five-Level Active NPC Inverters by the Space-Vector Modulation Technique. IEEE Trans. Ind. Appl.
**2017**, 53, 1289–1299. [Google Scholar] [CrossRef] - Rezki, M.; Griche, I. Simulation and Modeling of a Five -Level (NPC) Inverter Fed by a Photovoltaic Generator and Integrated in a Hybrid Wind-PV Power System. Eng. Technol. Appl. Sci. Res.
**2017**, 7, 1759–1764. [Google Scholar] [CrossRef] - Oumaymah, E.; Abdellah, O.; Omar, B.; Lhoussain, E. NPC five level inverter using SVPWM for Grid-Connected Hybrid Wind-Photovoltaic Generation System. Adv. Sci. Technol. Eng. Syst. J.
**2020**, 5, 7. [Google Scholar] [CrossRef] - He, H.; Xing, J. Design of Induction Motor Speed-Sensorless Vector Control System. In Proceedings of the 2016 International Symposium on Computer, Consumer and Control (IS3C), Xi’an, China, 4–6 July 2016; pp. 563–566. [Google Scholar] [CrossRef]
- Vinod, B.R.; Baiju, M.R.; Shiny, G. Five-Level Inverter-Fed Space Vector Based Direct Torque Control of Open-End Winding Induction Motor Drive. IEEE Trans. Energy Convers.
**2018**, 33, 1392–1401. [Google Scholar] [CrossRef] - Oumaymah, E.; Abdellah, O.; Omar, B.; Lhoussain, E. Backstepping Design Control Applied to the Wind PMSG Generator and Grid Connection Using A Multilevel Inverter. In Proceedings of the 2021 8th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 9–11 April 2021; pp. 136–141. [Google Scholar] [CrossRef]

**Figure 12.**FFT analysis of the Isd and the fundamental harmonic THD: (

**a**) conventional inverter; (

**b**) five-level inverter.

**Figure 18.**FFT analysis of the Isd and the fundamental harmonic THD: (

**a**) conventional inverter; (

**b**) five-level inverter.

**Figure 24.**FFT analysis of the Isd and the fundamental harmonic THD: (

**a**) conventional inverter; (

**b**) five-level inverter.

Sector | |||||||
---|---|---|---|---|---|---|---|

${\mathit{C}}_{\mathit{f}\mathit{l}\mathit{x}}$ | ${\mathit{C}}_{\mathit{c}\mathit{p}\mathit{l}}$ | 1 | 2 | 3 | 4 | 5 | 6 |

1 | +1 | 2 | 3 | 4 | 5 | 6 | 1 |

0 | 7 | 0 | 7 | 0 | 7 | 0 | |

−1 | 6 | 1 | 2 | 3 | 4 | 5 | |

−1 | +1 | 3 | 4 | 5 | 6 | 1 | 2 |

0 | 0 | 7 | 0 | 7 | 0 | 7 | |

−1 | 5 | 6 | 1 | 2 | 3 | 4 |

Sector | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

${\mathit{C}}_{\mathit{f}\mathit{l}}$ | ${\mathit{C}}_{\mathit{c}\mathit{p}}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

+1 | +4 | 107 | 101 | 109 | 102 | 111 | 103 | 113 | 104 | 115 | 105 | 117 | 100 |

+3 | 76 | 64 | 78 | 65 | 80 | 66 | 82 | 67 | 84 | 68 | 86 | 63 | |

+2 | 118 | 27 | 119 | 28 | 120 | 29 | 121 | 30 | 122 | 31 | 123 | 26 | |

+1 | 44 | 2 | 45 | 3 | 46 | 4 | 47 | 5 | 48 | 6 | 49 | 1 | |

0 | zero vector | ||||||||||||

−1 | 49 | 1 | 44 | 2 | 45 | 3 | 46 | 4 | 47 | 5 | 48 | 6 | |

−2 | 123 | 26 | 118 | 27 | 119 | 28 | 120 | 29 | 121 | 30 | 122 | 31 | |

−3 | 68 | 85 | 63 | 75 | 64 | 77 | 65 | 79 | 66 | 81 | 67 | 83 | |

−4 | 105 | 116 | 100 | 106 | 101 | 108 | 102 | 110 | 103 | 112 | 104 | 114 | |

0 | +4 | 109 | 102 | 11 | 103 | 113 | 104 | 115 | 105 | 117 | 100 | 107 | 101 |

+3 | 78 | 65 | 80 | 66 | 82 | 67 | 84 | 68 | 86 | 63 | 76 | 64 | |

+2 | 119 | 28 | 120 | 29 | 121 | 30 | 122 | 31 | 123 | 26 | 118 | 27 | |

+1 | 45 | 3 | 46 | 4 | 47 | 5 | 48 | 6 | 49 | 1 | 44 | 2 | |

0 | zero vector | ||||||||||||

−1 | 48 | 6 | 49 | 1 | 44 | 2 | 45 | 3 | 46 | 4 | 47 | 5 | |

−2 | 122 | 31 | 123 | 26 | 118 | 27 | 119 | 28 | 120 | 29 | 121 | 30 | |

−3 | 67 | 83 | 68 | 85 | 63 | 75 | 64 | 77 | 65 | 79 | 66 | 81 | |

−4 | 104 | 114 | 105 | 116 | 100 | 106 | 101 | 108 | 102 | 110 | 103 | 112 | |

−1 | +4 | 102 | 110 | 103 | 112 | 104 | 114 | 105 | 116 | 100 | 106 | 101 | 108 |

+3 | 65 | 79 | 66 | 81 | 67 | 83 | 68 | 85 | 63 | 75 | 64 | 77 | |

+2 | 28 | 120 | 29 | 121 | 30 | 122 | 31 | 123 | 26 | 118 | 27 | 119 | |

+1 | 3 | 46 | 4 | 47 | 5 | 48 | 6 | 49 | 1 | 44 | 2 | 45 | |

0 | zero vector | ||||||||||||

−1 | 5 | 48 | 6 | 49 | 1 | 44 | 2 | 45 | 3 | 46 | 4 | 47 | |

−2 | 30 | 122 | 31 | 123 | 26 | 118 | 27 | 119 | 28 | 120 | 29 | 121 | |

−3 | 67 | 83 | 68 | 85 | 63 | 75 | 64 | 77 | 65 | 79 | 66 | 81 | |

−4 | 104 | 114 | 105 | 116 | 100 | 106 | 101 | 108 | 102 | 110 | 103 | 112 |

Conventional Inverter | Five-Level Inverter | |
---|---|---|

$\mathsf{\Delta}$Isd | 3.23 | 1.43 |

$\mathsf{\Delta}$Isq | 1 | 0.4 |

Conventional Inverter | Five-Level Inverter | |
---|---|---|

$\mathsf{\Delta}$Isd | 3.6 | 0.4 |

$\mathsf{\Delta}$Isq | 1 | 0.5 |

Conventional Inverter | Five-Level Inverter | |
---|---|---|

$\mathsf{\Delta}$Isd | 3.33 | 0.7 |

$\mathsf{\Delta}$Isq | 1.1 | 0.37 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Elamri, O.; Oukassi, A.; El Bahir, L.; El Idrissi, Z.
Combined Vector and Direct Controls Based on Five-Level Inverter for High Performance of IM Drive. *World Electr. Veh. J.* **2022**, *13*, 17.
https://doi.org/10.3390/wevj13010017

**AMA Style**

Elamri O, Oukassi A, El Bahir L, El Idrissi Z.
Combined Vector and Direct Controls Based on Five-Level Inverter for High Performance of IM Drive. *World Electric Vehicle Journal*. 2022; 13(1):17.
https://doi.org/10.3390/wevj13010017

**Chicago/Turabian Style**

Elamri, Oumaymah, Abdellah Oukassi, Lhoussain El Bahir, and Zakariae El Idrissi.
2022. "Combined Vector and Direct Controls Based on Five-Level Inverter for High Performance of IM Drive" *World Electric Vehicle Journal* 13, no. 1: 17.
https://doi.org/10.3390/wevj13010017