# A New Methodology for Smoothing Power Peaks Produced by Electricity Demand and a Hydrokinetic Turbine for a Household Load on Grid Using Supercapacitors

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Motivation and Incitement

#### 1.2. Related Works

#### 1.3. Contributions and Paper Organization

## 2. Methodology

#### 2.1. Background

#### 2.1.1. Load Demand

#### 2.1.2. River Speed

#### 2.2. Energy Control

- State 1:

- State 2:

- State 3:

- State 4:

#### 2.3. Power Smoothing

#### 2.4. Mathematical Modeling

#### 2.4.1. HKT Modeling

#### 2.4.2. SC Modeling

#### 2.4.3. Utility Grid Modeling

## 3. Results

#### 3.1. Electric Flow Balance

#### 3.2. Power Smoothing and Self-Consumption Results

#### 3.3. Economic Results

## 4. Concluding Remarks

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Ullah, S.; Haidar, A.M.A.; Hoole, P.; Zen, H.; Ahfock, T. The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. J. Clean. Prod.
**2020**, 273, 122777. [Google Scholar] [CrossRef] - Xu, Z.; Liu, H.; Sun, H.; Ge, S.; Wang, C. Power supply capability evaluation of distribution systems with distributed generations under differentiated reliability constraints. Int. J. Electr. Power Energy Syst.
**2022**, 134, 107344. [Google Scholar] [CrossRef] - Zeynali, S.; Rostami, N.; Feyzi, M.R. Multi-objective optimal short-term planning of renewable distributed generations and capacitor banks in power system considering different uncertainties including plug-in electric vehicles. Int. J. Electr. Power Energy Syst.
**2020**, 119, 105885. [Google Scholar] [CrossRef] - Jaszczur, M.; Hassan, Q.; Palej, P.; Abdulateef, J. Multi-Objective optimisation of a micro-grid hybrid power system for household application. Energy
**2020**, 202, 117738. [Google Scholar] [CrossRef] - Panhwar, I.H.; Ahmed, K.; Seyedmahmoudian, M.; Stojcevski, A.; Horan, B.; Mekhilef, S.; Aslam, A.; Asghar, M. Mitigating Power Fluctuations for Energy Storage in Wind Energy Conversion System Using Supercapacitors. IEEE Access.
**2020**, 8, 189747–189760. [Google Scholar] [CrossRef] - Jayalakshmi, N.S.; Gaonkar, D.N. A new control method to mitigate power fluctuations for grid integrated PV/wind hybrid power system using ultracapacitors. Int. J. Emerg. Electr. Power Syst.
**2016**, 17, 451–461. [Google Scholar] [CrossRef] - Dizqah, A.M.; Maheri, A.; Busawon, K.; Kamjoo, A. A Multivariable Optimal Energy Management Strategy for Standalone DC Microgrids. IEEE Trans. Power Syst.
**2015**, 30, 2278–2287. [Google Scholar] [CrossRef] - Abbassi, A.; Dami, M.A.; Jemli, M. A statistical approach for hybrid energy storage system sizing based on capacity distributions in an autonomous PV/Wind power generation system. Renew. Energy
**2017**, 103, 81–93. [Google Scholar] [CrossRef] - Esmaili, A.; Novakovic, B.; Nasiri, A.; Abdel-Baqi, O. A hybrid system of li-ion capacitors and flow battery for dynamic wind energy support. IEEE Trans. Ind. Appl.
**2013**, 49, 1649–1657. [Google Scholar] [CrossRef] - Miñambres-Marcos, V.M.; Guerrero-Martínez, M.Á.; Barrero-González, F.; Milanés-Montero, M.I. A grid connected photovoltaic inverter with battery-supercapacitor hybrid energy storage. Sensors
**2017**, 17, 1856. [Google Scholar] [CrossRef] [Green Version] - Khalid, M. A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids. Energies
**2019**, 12, 4559. [Google Scholar] [CrossRef] [Green Version] - Abbey, C.; Joos, G. Supercapacitor Energy Storage for Wind Energy Applications. IEEE Trans. Ind. Appl.
**2007**, 43, 769–776. [Google Scholar] [CrossRef] - Qu, L.; Qiao, W. Constant Power Control of DFIG Wind Turbines with Supercapacitor Energy Storage. IEEE Trans. Ind. Appl.
**2011**, 47, 359–367. [Google Scholar] [CrossRef] [Green Version] - Tani, A.; Camara, M.B.; Dakyo, B. Energy Management in the Decentralized Generation Systems Based on Renewable Energy—Ultracapacitors and Battery to Compensate the Wind/Load Power Fluctuations. IEEE Trans. Ind. Appl.
**2015**, 51, 1817–1827. [Google Scholar] [CrossRef] - González, L.G.; Chacon, R.; Delgado, B.; Benavides, D.; Espinoza, J. Study of Energy Compensation Techniques in Photovoltaic Solar Systems with the Use of Supercapacitors in Low-Voltage Networks. Energies
**2020**, 13, 3755. [Google Scholar] [CrossRef] - JHernández, C.; Gomez-Gonzalez, M.; Sanchez-Sutil, F.; Jurado, F. Optimization of battery/supercapacitor-based photovoltaic household-prosumers providing self-consumption and frequency containment reserve as influenced by temporal data granularity. J. Energy Storage
**2021**, 36, 102366. [Google Scholar] [CrossRef] - Schmid, F.; Winzer, J.; Pasemann, A.; Behrendt, F. An open-source modeling tool for multi-objective optimization of renewable nano/micro-off-grid power supply system: Influence of temporal resolution, simulation period, and location. Energy
**2021**, 219, 119545. [Google Scholar] [CrossRef] - Jaszczur, M.; Hassan, Q. An optimisation and sizing of photovoltaic system with supercapacitor for improving self-consumption. Appl. Energy
**2020**, 279, 115776. [Google Scholar] [CrossRef] - Linssen, J.; Stenzel, P.; Fleer, J. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Appl. Energy
**2017**, 185, 2019–2025. [Google Scholar] [CrossRef] - Hassan, Q. Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renew. Energy
**2021**, 164, 375–390. [Google Scholar] [CrossRef] - Jaszczur, M.; Hassan, Q.; Abdulateef, A.M.; Abdulateef, J. Assessing the temporal load resolution effect on the photovoltaic energy flows and self-consumption. Renew. Energy
**2021**, 169, 1077–1090. [Google Scholar] [CrossRef] - Claessens, B.; Engels, J.; Deconinck, G. Combined stochastic optimization of frequency control and self-consumption with a battery. IEEE Trans. Smart Grid.
**2019**, 10, 1971–1981. [Google Scholar] [CrossRef] [Green Version] - Zhou, Z.; Benbouzid, M.; Charpentier, J.F.; Scuiller, F.; Tang, T. A review of energy storage technologies for marine current energy systems. Renew. Sustain. Energy Rev.
**2013**, 18, 390–400. [Google Scholar] [CrossRef] [Green Version] - Chen, W.; Adnanses, A.K.; Hansen, J.F.; Lindtjorn, J.O.; Tang, T. Super-capacitors based hybrid converter in marine electric propulsion system. XIX Int. Conf. Electr. Mach. -ICEM
**2010**, 2010, 1–6. [Google Scholar] - John, B.; Thomas, R.N.; Varghese, J. Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition. Renew. Energy
**2020**, 149, 361–373. [Google Scholar] [CrossRef] - Baruah, A.; Basu, M.; Amuley, D. Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India. Renew. Sustain. Energy Rev.
**2021**, 135, 110158. [Google Scholar] [CrossRef] - John, B.; Varghese, J. Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems. Energy
**2021**, 221, 119717. [Google Scholar] [CrossRef] - Khan, J.; Bhuyan, G.; Moshref, A. Potential Opportunities and Differences Associated with Integration of Ocean Wave and Marine Current Energy Plants in Comparison to Wind Energy. 2009. Available online: https://hal.archives-ouvertes.fr/hal-01265985/document (accessed on 10 October 2021).
- Espinoza, J.L.; Gonzalez, L.G.; Sempertegui, R. Micro grid laboratory as a tool for research on non-conventional energy sources in Ecuador. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing, Ixtapa, Mexico, 8–10 November 2017; pp. 1–7. [Google Scholar] [CrossRef]
- National Institute of Meteorology and Hydrology—INAMHI. Available online: http://186.42.174.236/InamhiEmas/ (accessed on 20 August 2019).
- Cano, A.; Arévalo, P.; Jurado, F. Energy analysis and techno-economic assessment of a hybrid PV/HKT/BAT system using biomass gasifier: Cuenca-Ecuador case study. Energy
**2020**, 202, 117727. [Google Scholar] [CrossRef] - Arévalo, P.; Cano, A.; Benavides, J.; Jurado, F. Feasibility study of a renewable system (PV/HKT/GB) for hybrid tramway based on fuel cell and super capacitor. IET Renew. Power Gener.
**2021**, 15, 491–503. [Google Scholar] [CrossRef] - Tostado-Véliz, M.; Icaza-Alvarez, D.; Jurado, F. A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response. Renew. Energy
**2021**, 170, 884–896. [Google Scholar] [CrossRef] - Public Electricity Service of Ecuador, Tariff Schedule for Electric Distribution Companies. Available online: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2019/07/P-Tarifario-SPEE-2019_Codif.pdf (accessed on 30 September 2021).
- Munoz-Vixhnay, J.P.; Rojas-Moncayo, M.V.; Barreto-Calle, C.R. Incentive Pertaining to Energy the Generation Distributed in Ecuador. Ingenius. Rev. Cienc. y Tecnol.
**2018**, 19, 60–68. Available online: http://scielo.senescyt.gob.ec/scielo.php?script=sci_abstract&pid=S1390-860X2018000100060&lng=es&nrm=iso&tlng=en (accessed on 10 June 2021).

**Figure 7.**Energy balance of the renewable system connected to the grid. Data sampling at different time intervals: (

**a**) 1 min, (

**b**) 15 min, (

**c**) 30 min and (

**d**) every hour (60 min).

**Figure 8.**State of charge in SC. Data sampling at different time intervals: (

**a**) 1 min, (

**b**) 15 min, (

**c**) 30 min and (

**d**) every hour.

**Figure 9.**Electric power from the utility grid in case of unmet load by HKT. Data sampling at different time intervals: (

**a**) 1 min, (

**b**) 15 min, (

**c**) 30 min and (

**d**) every hour.

**Figure 10.**Electricity surplus peaks smoothed and sent to the grid. Data sampling at different time intervals: (

**a**) 1 min, (

**b**) 15 min, (

**c**) 30 min and (

**d**) every hour.

Data Sampling Intervals | Load Demand (kWh/Day) | HKT Power Output (kWh/Day) | SC Power Output (kWh/Day) |
---|---|---|---|

1 | 27.56 | 34.97 | 6.89 |

15 | 28.02 | 35.02 | 6.92 |

30 | 28.96 | 35.36 | 7.51 |

60 | 29.52 | 36.06 | 7.63 |

Data Sampling Intervals | Energy from Grid without SC (kWh/Day) | Energy Sent to Grid without SC (kWh/Day) | Energy from Grid with SC (kWh/Day) | Energy Sent to Grid with SC (kWh/Day) |
---|---|---|---|---|

1 | 12.36 | 20.51 | 4.96 | 20.53 |

15 | 11.95 | 19.24 | 3.52 | 19.27 |

30 | 11.1 | 18.37 | 3.05 | 18.39 |

60 | 10.5 | 17.03 | 2.87 | 17.04 |

Data Sampling Intervals | Increase in Self-Consumption (%) | Increase in Electricity Send to Grid (%) |
---|---|---|

1 | 60 | 0.10 |

15 | 71 | 0.16 |

30 | 73 | 0.11 |

60 | 73 | 0.06 |

Data Sampling Intervals | Cost of Energy from Grid without SC (USD/Day) | Cost of Energy Send to Grid without SC (USD/Day) | Cost of Energy from Grid with SC (USD/Day) | Cost of Energy Send to Grid with SC (USD/Day) |
---|---|---|---|---|

1 | 1.17 | 1.34 | 0.47 | 1.35 |

15 | 1.13 | 1.26 | 0.33 | 1.26 |

30 | 1.05 | 1.20 | 0.28 | 1.21 |

60 | 0.99 | 1.12 | 0.27 | 1.12 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Arévalo, P.; Tostado-Véliz, M.; Jurado, F.
A New Methodology for Smoothing Power Peaks Produced by Electricity Demand and a Hydrokinetic Turbine for a Household Load on Grid Using Supercapacitors. *World Electr. Veh. J.* **2021**, *12*, 235.
https://doi.org/10.3390/wevj12040235

**AMA Style**

Arévalo P, Tostado-Véliz M, Jurado F.
A New Methodology for Smoothing Power Peaks Produced by Electricity Demand and a Hydrokinetic Turbine for a Household Load on Grid Using Supercapacitors. *World Electric Vehicle Journal*. 2021; 12(4):235.
https://doi.org/10.3390/wevj12040235

**Chicago/Turabian Style**

Arévalo, Paul, Marcos Tostado-Véliz, and Francisco Jurado.
2021. "A New Methodology for Smoothing Power Peaks Produced by Electricity Demand and a Hydrokinetic Turbine for a Household Load on Grid Using Supercapacitors" *World Electric Vehicle Journal* 12, no. 4: 235.
https://doi.org/10.3390/wevj12040235