Integrating AIoT Technologies in Aquaculture: A Systematic Review
Abstract
:1. Introduction
2. Systematic Review Approaches
- ‘Artificial intelligence’ OR ‘AI’ OR ‘machine learning’ OR ‘deep learning’ OR ‘Internet of Things’ OR ‘IoT’ AND ‘aquaculture’.
- ‘Aquaculture’ OR ‘fish farming’ OR ‘shrimp farming’ OR ‘aquatic farming’ OR ‘smart aquaculture’ AND ‘monitoring’ OR ‘automation’ OR ‘disease detection’ OR ‘water quality’ OR ‘feeding optimization’.
- I.
- Identification: An initial search across three databases—PubMed (320), Scopus (192), and Web of Science (129)—yielded a total of 641 records after duplicate removal.
- II.
- Screening: Titles and abstracts of all 641 articles were reviewed for relevance. At this stage, 346 articles were excluded based on predefined exclusion criteria such as domain mismatch, language restrictions, or lack of AI/IoT relevance in aquaculture.
- III.
- Eligibility Assessment: The remaining 295 articles were reviewed in full to assess their alignment with the study’s objectives and inclusion criteria. During this phase, 135 full-text articles were excluded due to methodological limitations, lack of practical implementation, or insufficient detail.
- IV.
- Inclusion: Finally, 150+ full-text articles were selected for detailed analysis in the systematic review, representing the most relevant and high-quality studies addressing AIoT applications in aquaculture.
2.1. Inclusion and Exclusion Criteria
2.2. Data Extraction and Synthesis
3. Components of AIoT in Aquaculture
3.1. IoT Sensors
3.1.1. Water Quality Monitoring Sensors
3.1.2. Optical Sensors in Aquaculture
3.1.3. Motion Sensors in Aquaculture
3.1.4. Deployment Strategies
- I.
- Distance: The physical extent of the aquaculture operation significantly influences the choice. Long-range technologies like LoRa or NB-IoT are necessary for expansive farms, while short-range technologies may suffice for smaller, contained systems.
- II.
- Data rate: The volume and frequency of transmitting data are crucial considerations. High-bandwidth applications, such as real-time video monitoring, demand technologies like 5G, whereas LoRa or NB-IoT can adequately serve low-data-rate applications.
- III.
- Power consumption: The power needs of the sensors and the availability of power sources (e.g., grid power, batteries, solar) are essential factors. Low-power technologies are vital for remote deployments where frequent battery replacements are impractical.
- IV.
- Cost: Implementing and maintaining the communication infrastructure is a significant consideration, especially for small-scale aquaculture operations.
- V.
- Interference: The potential for interference from other wireless devices or environmental factors (e.g., water absorption) can affect communication reliability.
- VI.
- Environmental conditions: The harshness of the aquaculture environment, including humidity, salinity, and temperature variations, can influence the suitability of different wireless technologies.
3.2. AI Algorithms in Aquaculture
3.2.1. Machine Learning (ML) Approaches in Aquaculture
Supervised Learning for Classification and Regression
Unsupervised Learning for Pattern Discovery
Reinforcement Learning for Adaptive Decision-Making
3.2.2. Deep Learning (DL)
3.2.3. Advanced Techniques in Visual Data Processing
3.2.4. Application of Fuzzy Logic in Aquaculture
4. AIoT Applications in Aquaculture
4.1. Smart Feeding Systems
4.2. Water Quality Management
4.3. Disease Detection and Classification
4.4. Fish Behaviour Detection
4.5. AI-Driven Approaches for Automated Counting in Aquaculture
5. Research Gaps
- (i)
- Limited AI Integration for Broodstock Management: While much attention has been given to monitoring fish health, growth, and environmental conditions during the grow-out phases of aquaculture production, there is a notable lack of research on AI-driven broodstock management. Broodstock management, the critical process of selecting and caring for parent fish for breeding, significantly influences aquaculture operations’ overall success and sustainability. Effective broodstock selection, breeding optimization, and tracking physiological health are essential for improving aquaculture productivity. AI has the potential to revolutionise this area. For instance, AI could analyse extensive genetic datasets from broodstock to predict optimal breeding pairs, thereby accelerating selective breeding programs and enhancing desirable traits in offspring. Furthermore, AI can contribute to monitoring broodstock’s physiological health by analysing sensor data related to hormone levels and activity patterns, enabling more precise timing of breeding interventions and improving reproductive success rates. The limited exploration of AI in broodstock management represents a significant opportunity to enhance aquaculture practices.
- (ii)
- Lack of Real-Time, Multimodal AI Systems: Many existing AI solutions in aquaculture operate as isolated applications, focusing on data from single sources. For example, CNNs might be used for disease detection based on images, or YOLO models might be applied for biomass estimation. However, there is a lack of real-time, multimodal AI systems that integrate information from multiple sensor inputs to provide a more holistic understanding of the aquaculture environment. Such systems would combine data from sources such as water quality sensors (measuring parameters like temperature, pH, and dissolved oxygen), video cameras (for observing fish behaviour), acoustic sensors (for detecting fish sounds related to stress or disease), and even genetic profiling. Integrating these diverse data streams through AI analysis would allow for identifying subtle correlations and patterns that single-source analysis might miss. This capability would enable more accurate and timely decision-making, for example, by predicting disease outbreaks early through the correlation of water quality changes and behavioural anomalies, or by optimizing feeding strategies based on genetic information and growth rates. The development of these multimodal AI systems is crucial for advancing aquaculture management.
- (iii)
- Scarcity of AI Solutions for Crustacean Aquaculture: While numerous studies have explored AI applications for fish species, AI solutions are relatively scarce and tailored to crustacean aquaculture, particularly for species like mud crabs. Crustacean aquaculture presents unique challenges that necessitate specialised AI approaches. For instance, the complex life cycle of crustaceans, with its multiple larval stages, demands specific monitoring techniques. AI offers the potential to develop automated systems for monitoring crustacean broodstock, tracking reproductive cycles, and assessing health. It can also be applied to analyse microscopic images of larvae to evaluate their health and predict survival rates, enabling early interventions to improve production yields. Moreover, AI can contribute to optimizing environmental conditions for crustacean growth and survival by predicting the effects of temperature and salinity. Developing AI solutions designed explicitly for crustacean aquaculture is essential for enhancing this important sector’s sustainability and economic viability.
- (iv)
- Limited AI-Driven Predictive Analytics for Sustainability: Many current AI applications in aquaculture focus on classification and detection tasks, such as identifying diseased fish. However, there is a need to move beyond these applications and develop more advanced AI-driven predictive analytics to enhance the sustainability of aquaculture practices. AI has the potential to create forecasting models that predict future events, enabling proactive management strategies. Examples of such applications include the early prediction of disease outbreaks, which would allow farmers to implement preventive measures and minimise losses, and the automated adjustment of breeding conditions based on predicted environmental changes, optimising reproductive success and reducing resource waste. Furthermore, AI can forecast yields, assisting farmers in production planning and marketing. Developing and implementing AI-driven predictive analytics is crucial for promoting environmentally and economically sustainable aquaculture.
- (v)
- Challenges in AI Model Generalization and Transferability: AI models’ limited generalisation and transferability is a significant challenge in applying AI to aquaculture. Many models are developed for specific environments or datasets, which restricts their applicability to diverse aquaculture settings. Aquaculture environments vary significantly regarding species, geographic location, environmental conditions, and management practices. Therefore, there is a pressing need for research on adaptive AI models that can generalise across these different contexts. This includes developing robust AI models that are less sensitive to variations in input data and employing techniques such as transfer learning, which enables models trained on one dataset to be adapted for use with another. Creating adaptive learning systems that continuously adjust their parameters based on new data is essential for achieving generalization across diverse aquaculture environments. Overcoming these limitations in model generalization and transferability is vital for the widespread and effective adoption of AI in aquaculture.
6. Challenges to AIoT Implementation in Aquaculture
7. Future Directions in AIoT for Aquaculture
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024: Blue Transformation in Action; FAO: Rome, Italy, 2024; Volume 2025. [Google Scholar]
- Araujo, G.S.; Silva, J.W.A.d.; Cotas, J.; Pereira, L. Fish farming techniques: Current situation and trends. J. Mar. Sci. Eng. 2022, 10, 1598. [Google Scholar] [CrossRef]
- Barreto, M.O.; Rey Planellas, S.; Yang, Y.; Phillips, C.; Descovich, K. Emerging indicators of fish welfare in aquaculture. Rev. Aquac. 2022, 14, 343–361. [Google Scholar] [CrossRef]
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Eguiraun, H.; Watson, W.; Stahl, A.; Sunde, L.M. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- Tonachella, N.; Martini, A.; Martinoli, M.; Pulcini, D.; Romano, A.; Capoccioni, F. An affordable and easy-to-use tool for automatic fish length and weight estimation in mariculture. Sci. Rep. 2022, 12, 15642. [Google Scholar] [CrossRef]
- Ubina, N.A.; Lan, H.-Y.; Cheng, S.-C.; Chang, C.-C.; Lin, S.-S.; Zhang, K.-X.; Lu, H.-Y.; Cheng, C.-Y.; Hsieh, Y.-Z. Digital twin-based intelligent fish farming with Artificial Intelligence Internet of Things (AIoT). Smart Agric. Technol. 2023, 5, 100285. [Google Scholar] [CrossRef]
- Singh, M.; Sahoo, K.S.; Nayyar, A. Sustainable iot solution for freshwater aquaculture management. IEEE Sens. J. 2022, 22, 16563–16572. [Google Scholar] [CrossRef]
- Hu, W.-C.; Chen, L.-B.; Wang, B.-H.; Li, G.-W.; Huang, X.-R. Design and implementation of a full-time artificial intelligence of things-based water quality inspection and prediction system for intelligent aquaculture. IEEE Sens. J. 2023, 24, 3811–3821. [Google Scholar] [CrossRef]
- Sun, M.; Yang, X.; Xie, Y. Deep learning in aquaculture: A review. J. Comput. 2020, 31, 294–319. [Google Scholar]
- Yue, G.H.; Tay, Y.X.; Wong, J.; Shen, Y.; Xia, J. Aquaculture species diversification in China. Aquac. Fish. 2024, 9, 206–217. [Google Scholar] [CrossRef]
- Liu, D.; Xu, B.; Cheng, Y.; Chen, H.; Dou, Y.; Bi, H.; Zhao, Y. Shrimpseed_Net: Counting of shrimp seed using deep learning on smartphones for aquaculture. IEEE Access 2023, 11, 85441–85450. [Google Scholar] [CrossRef]
- Vembarasi, K.; Thotakura, V.P.; Senthilkumar, S.; Ramachandran, L.; Praba, V.L.; Vetriselvi, S.; Chinnadurai, M. White spot syndrome detection in shrimp using neural network model. In Proceedings of the 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 28 February–1 March 2024; pp. 212–217. [Google Scholar]
- Shen, Y.; Arablouei, R.; de Hoog, F.; Xing, H.; Malan, J.; Sharp, J.; Shouri, S.; Clark, T.D.; Lefevre, C.; Kroon, F. In-Situ fish heart-rate estimation and feeding event detection using an implantable biologger. IEEE Trans. Mob. Comput. 2021, 22, 968–982. [Google Scholar] [CrossRef]
- Tricas, T.C.; Boyle, K.S. Acoustic behaviors in Hawaiian coral reef fish communities. Mar. Ecol. Prog. Ser. 2014, 511, 1–16. [Google Scholar] [CrossRef]
- Kim, H.; Koo, J.; Kim, D.; Jung, S.; Shin, J.-U.; Lee, S.; Myung, H. Image-based monitoring of jellyfish using deep learning architecture. IEEE Sens. J. 2016, 16, 2215–2216. [Google Scholar] [CrossRef]
- Weihong, B.; Yun, J.; Jiaxin, L.; Lingling, S.; Guangwei, F.; Wa, J. In-situ detection method of jellyfish based on improved faster R-CNN and FP16. IEEE Access 2023, 11, 81803–81814. [Google Scholar] [CrossRef]
- Dunker, S.; Boho, D.; Wäldchen, J.; Mäder, P. Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton. BMC Ecol. 2018, 18, 51. [Google Scholar] [CrossRef]
- Collos, Y.; Harrison, P.J. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar. Pollut. Bull. 2014, 80, 8–23. [Google Scholar] [CrossRef]
- Pedraza, A.; Bueno, G.; Deniz, O.; Cristóbal, G.; Blanco, S.; Borrego-Ramos, M. Automated diatom classification (Part B): A deep learning approach. Appl. Sci. 2017, 7, 460. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: Recent advancements and future trends. Sensors 2023, 23, 5206. [Google Scholar] [CrossRef]
- Hou, K.M.; Diao, X.; Shi, H.; Ding, H.; Zhou, H.; de Vaulx, C. Trends and challenges in AIoT/IIoT/IoT implementation. Sensors 2023, 23, 5074. [Google Scholar] [CrossRef]
- Matin, A.; Islam, M.R.; Wang, X.; Huo, H.; Xu, G. AIoT for sustainable manufacturing: Overview, challenges, and opportunities. Internet Things 2023, 24, 100901. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, R. IoT and AIoT: Applications, Challenges and Optimization. In The Future of Computing: Ubiquitous Applications and Technologies; Bentham Science Publishers: Sharjah, United Arab Emirates, 2024; pp. 126–137. [Google Scholar]
- Sung, T.-W.; Tsai, P.-W.; Gaber, T.; Lee, C.-Y. Artificial Intelligence of Things (AIoT) technologies and applications. Wirel. Commun. Mob. Comput. 2021, 2021, 9781271. [Google Scholar] [CrossRef]
- Daoliang, L.; Chang, L. Recent advances and future outlook for artificial intelligence in aquaculture. Smart Agric. 2020, 2, 1–20. [Google Scholar]
- Tamim, A.T.; Begum, H.; Shachcho, S.A.; Khan, M.M.; Yeboah-Akowuah, B.; Masud, M.; Al-Amri, J.F. Development of IoT Based Fish Monitoring System for Aquaculture. Intell. Autom. Soft Comput. 2022, 32, 021559. [Google Scholar] [CrossRef]
- Prapti, D.R.; Mohamed Shariff, A.R.; Che Man, H.; Ramli, N.M.; Perumal, T.; Shariff, M. Internet of Things (IoT)-based aquaculture: An overview of IoT application on water quality monitoring. Rev. Aquac. 2022, 14, 979–992. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wang, J.-H.; Wu, J.-L.; Hsieh, Y.-Z.; Wu, T.-D.; Cheng, S.-C.; Chang, C.-C.; Juang, J.-G.; Liou, C.-H.; Hsu, T.-H. Applying artificial intelligence (AI) techniques to implement a practical smart cage aquaculture management system. J. Med. Biol. Eng. 2021, 41, 652–658. [Google Scholar] [CrossRef]
- Rastegari, H.; Nadi, F.; Lam, S.S.; Ikhwanuddin, M.; Kasan, N.A.; Rahmat, R.F.; Mahari, W.A.W. Internet of Things in aquaculture: A review of the challenges and potential solutions based on current and future trends. Smart Agric. Technol. 2023, 4, 100187. [Google Scholar] [CrossRef]
- Encinas, C.; Ruiz, E.; Cortez, J.; Espinoza, A. Design and implementation of a distributed IoT system for the monitoring of water quality in aquaculture. In Proceedings of the 2017 Wireless Telecommunications Symposium (WTS), Chicago, IL, USA, 26–28 April 2017; pp. 1–7. [Google Scholar]
- Yadav, A.; Noori, M.T.; Biswas, A.; Min, B. A concise review on the recent developments in the internet of things (IoT)-based smart aquaculture practices. Rev. Fish. Sci. Aquac. 2023, 31, 103–118. [Google Scholar] [CrossRef]
- Vo, T.T.E.; Ko, H.; Huh, J.-H.; Kim, Y. Overview of smart aquaculture system: Focusing on applications of machine learning and computer vision. Electronics 2021, 10, 2882. [Google Scholar] [CrossRef]
- Bates, H.; Pierce, M.; Benter, A. Real-time environmental monitoring for aquaculture using a LoRaWAN-based IoT sensor network. Sensors 2021, 21, 7963. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wu, Y.-C.; Zhang, J.-X.; Chen, Y.-H. IoT-based fish farm water quality monitoring system. Sensors 2022, 22, 6700. [Google Scholar] [CrossRef]
- Baena-Navarro, R.; Carriazo-Regino, Y.; Torres-Hoyos, F.; Pinedo-López, J. Intelligent prediction and continuous monitoring of water quality in aquaculture: Integration of machine learning and Internet of Things for sustainable management. Water 2025, 17, 82. [Google Scholar] [CrossRef]
- Kanwal, S.; Abdullah, M.; Kumar, S.; Arshad, S.; Shahroz, M.; Zhang, D.; Kumar, D. An Optimal Internet of Things-Driven Intelligent Decision-Making System for Real-Time Fishpond Water Quality Monitoring and Species Survival. Sensors 2024, 24, 7842. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.W.; Byun, Y.C. Optimized dissolved oxygen prediction using genetic algorithm and bagging ensemble learning for smart fish farm. IEEE Sens. J. 2023, 23, 15153–15164. [Google Scholar] [CrossRef]
- Haq, K.R.A.; Harigovindan, V. Water quality prediction for smart aquaculture using hybrid deep learning models. IEEE Access 2022, 10, 60078–60098. [Google Scholar]
- Liu, J.; Zhang, T.; Han, G.; Gou, Y. TD-LSTM: Temporal dependence-based LSTM networks for marine temperature prediction. Sensors 2018, 18, 3797. [Google Scholar] [CrossRef]
- Pham, T.-N.; Nguyen, V.-H.; Kwon, K.-R.; Kim, J.-H.; Huh, J.-H. Improved YOLOv5 Based Deep Learning System for Jellyfish Detection; IEEE: New York, NY, USA, 2024. [Google Scholar]
- Khabusi, S.P.; Huang, Y.-P.; Lee, M.-F.; Tsai, M.-C. Enhanced U-Net and PSO-optimized ANFIS for classifying fish diseases in underwater images. Int. J. Fuzzy Syst. 2024, 26, 2518–2535. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Y.; Sun, X.; Liu, J.; Yang, X.; Zhou, C. Composited FishNet: Fish detection and species recognition from low-quality underwater videos. IEEE Trans. Image Process. 2021, 30, 4719–4734. [Google Scholar] [CrossRef]
- Anjum, S.S.; Shruthi, K.; HS, N.F.; Anusha, M. Ensemble neural network based fish species identification for emerging aquaculture application. In Proceedings of the 2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), Mysuru, India, 10 December 2023; pp. 1–6. [Google Scholar]
- Huang, Y.-P.; Khabusi, S.P. Artificial Intelligence of Things (AIoT) Advances in Aquaculture: A Review. Processes 2025, 13, 73. [Google Scholar] [CrossRef]
- Aung, T.; Abdul Razak, R.; Rahiman Bin Md Nor, A. Artificial intelligence methods used in various aquaculture applications: A systematic literature review. J. World Aquac. Soc. 2025, 56, e13107. [Google Scholar] [CrossRef]
- Mandal, A.; Ghosh, A.R. Role of artificial intelligence (AI) in fish growth and health status monitoring: A review on sustainable aquaculture. Aquac. Int. 2024, 32, 2791–2820. [Google Scholar] [CrossRef]
- Li, P.; Han, H.; Zhang, S.; Fang, H.; Fan, W.; Zhao, F.; Xu, C. Reviews on the development of digital intelligent fisheries technology in aquaculture. Aquac. Int. 2025, 33, 191. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Wang, T.; Xu, X.; Zhang, X.; Li, D. Intelligent fish farm—The future of aquaculture. Aquac. Int. 2021, 29, 2681–2711. [Google Scholar] [CrossRef]
- PRISMA. PRISMA Guideline. Available online: https://www.prisma-statement.org/prisma-2020-flow-diagram (accessed on 1 March 2025).
- Pasika, S.; Gandla, S.T. Smart water quality monitoring system with cost-effective using IoT. Heliyon 2020, 6, e04096. [Google Scholar] [CrossRef]
- Liu, S.; Yin, B.; Sang, G.; Lv, Y.; Wang, M.; Xiao, S.; Yan, R.; Wu, S. Underwater temperature and salinity fiber sensor based on semi-open cavity structure of asymmetric MZI. IEEE Sens. J. 2023, 23, 18219–18233. [Google Scholar] [CrossRef]
- Parra, L.; Lloret, G.; Lloret, J.; Rodilla, M. Physical sensors for precision aquaculture: A review. IEEE Sens. J. 2018, 18, 3915–3923. [Google Scholar] [CrossRef]
- Zhu, H.; Lu, Z.; Zhang, C.; Yang, Y.; Zhu, G.; Zhang, Y.; Liu, H. Remote sensing classification of offshore seaweed aquaculture farms on sample dataset amplification and semantic segmentation model. Remote Sens. 2023, 15, 4423. [Google Scholar] [CrossRef]
- Akindele, A.A.; Sartaj, M. The toxicity effects of ammonia on anaerobic digestion of organic fraction of municipal solid waste. Waste Manag. 2018, 71, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Matos, T.; Pinto, V.; Sousa, P.; Martins, M.; Fernández, E.; Henriques, R.; Gonçalves, L.M. Design and in situ validation of low-cost and easy to apply anti-biofouling techniques for oceanographic continuous monitoring with optical instruments. Sensors 2023, 23, 605. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-T.; Chen, T.-Y.; Wu, Y.-T. Design of a water salinity difference detector for monitoring instantaneous salinity changes in aquaculture. IEEE Sens. J. 2019, 20, 3242–3248. [Google Scholar] [CrossRef]
- Chiang, C.-T.; Chang, C.-W. Design of a calibrated salinity sensor transducer for monitoring salinity of ocean environment and aquaculture. IEEE Sens. J. 2015, 15, 5151–5157. [Google Scholar] [CrossRef]
- Chen, F.; Qiu, T.; Xu, J.; Zhang, J.; Du, Y.; Duan, Y.; Zeng, Y.; Zhou, L.; Sun, J.; Sun, M. Rapid real-time prediction techniques for ammonia and nitrite in high-density shrimp farming in recirculating aquaculture systems. Fishes 2024, 9, 386. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, D.; Li, X.; Wang, W. Prediction model of ammonia nitrogen concentration in aquaculture based on improved AdaBoost and LSTM. Mathematics 2024, 12, 627. [Google Scholar] [CrossRef]
- Delgado, A.; Briciu-Burghina, C.; Regan, F. Antifouling strategies for sensors used in water monitoring: Review and future perspectives. Sensors 2021, 21, 389. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-H.; Lee, S.-K.; Lai, Y.-C.; Lin, C.-C.; Wang, T.-Y.; Lin, Y.-R.; Hsu, T.-H.; Huang, C.-W.; Chiang, C.-P. Anomalous behaviors detection for underwater fish using AI techniques. IEEE Access 2020, 8, 224372–224382. [Google Scholar] [CrossRef]
- Chen, P.; Wang, F.; Liu, S.; Yu, Y.; Yue, S.; Song, Y.; Lin, Y. Modeling collective behavior for fish school with deep Q-networks. IEEE Access 2023, 11, 36630–36641. [Google Scholar] [CrossRef]
- Rosell-Moll, E.; Piazzon, M.; Sosa, J.; Ferrer, M.Á.; Cabruja, E.; Vega, A.; Calduch-Giner, J.A.; Sitjà-Bobadilla, A.; Lozano, M.; Montiel-Nelson, J.A. Use of accelerometer technology for individual tracking of activity patterns, metabolic rates and welfare in farmed gilthead sea bream (Sparus aurata) facing a wide range of stressors. Aquaculture 2021, 539, 736609. [Google Scholar] [CrossRef]
- Muhammed, D.; Ahvar, E.; Ahvar, S.; Trocan, M.; Montpetit, M.-J.; Ehsani, R. Artificial Intelligence of Things (AIoT) for smart agriculture: A review of architectures, technologies and solutions. J. Netw. Comput. Appl. 2024, 228, 103905. [Google Scholar] [CrossRef]
- Zhou, Z.-H. Machine Learning; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Alpaydin, E. Machine Learning; MIT Press: Cambridge, MA, UK, 2021. [Google Scholar]
- Ahmed, M.S.; Aurpa, T.T.; Azad, M.A.K. Fish disease detection using image based machine learning technique in aquaculture. J. King Saud Univ. -Comput. Inf. Sci. 2022, 34, 5170–5182. [Google Scholar] [CrossRef]
- Dridi, S. Supervised learning-a systematic literature review. arXiv 2021. [Google Scholar] [CrossRef]
- Nasteski, V. An overview of the supervised machine learning methods. Horizons B 2017, 4, 56. [Google Scholar] [CrossRef]
- Igual, L.; Seguí, S. Supervised learning. In Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications; Springer: Cham, Switzerland, 2024; pp. 67–97. [Google Scholar]
- Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B.D. Regression models. In Regression: Models, Methods and Applications; Springer: Cham, Switzerland, 2022; pp. 23–84. [Google Scholar]
- Tengtrairat, N.; Woo, W.L.; Parathai, P.; Rinchumphu, D.; Chaichana, C. Non-intrusive fish weight estimation in turbid water using deep learning and regression models. Sensors 2022, 22, 5161. [Google Scholar] [CrossRef] [PubMed]
- Celebi, M.E.; Aydin, K. Unsupervised Learning Algorithms; Springer: Cham, Switzerland, 2016; Volume 1. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Unsupervised learning. In An introduction to Statistical Learning: With Applications in Python; Springer: Cham, Switzerland, 2023; pp. 503–556. [Google Scholar]
- Wang, X.; Zhou, J.; Fan, J. IDUDL: Incremental double unsupervised deep learning model for marine aquaculture SAR images segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4209412. [Google Scholar] [CrossRef]
- Dong, H.; Dong, H.; Ding, Z.; Zhang, S.; Chang, T. Deep Reinforcement Learning; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Agrawal, S.; Dubey, S.; Naik, K.J. Deep reinforcement learning for forecasting fish survival in open aquaculture ecosystem. Environ. Monit. Assess. 2023, 195, 1389. [Google Scholar] [CrossRef]
- Huang, Y. Deep Q-networks. In Deep Reinforcement Learning: Fundamentals, Research and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 135–160. [Google Scholar]
- Agarwal, A.; Kakade, S.M.; Lee, J.D.; Mahajan, G. On the theory of policy gradient methods: Optimality, approximation, and distribution shift. J. Mach. Learn. Res. 2021, 22, 1–76. [Google Scholar]
- Chen, T.; Zhang, K.; Giannakis, G.B.; Başar, T. Communication-efficient policy gradient methods for distributed reinforcement learning. IEEE Trans. Control Netw. Syst. 2021, 9, 917–929. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, UK, 2016; Volume 1. [Google Scholar]
- Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, UK, 2017; Volume 1. [Google Scholar]
- Al Duhayyim, M.; Alshahrani, H.M.; Al-Wesabi, F.N.; Alamgeer, M.; Hilal, A.M.; Hamza, M.A. Intelligent deep learning based automated fish detection model for UWSN. CMC-Comput. Mater. Contin. 2022, 70, 5871–5887. [Google Scholar] [CrossRef]
- Ojha, V.K.; Abraham, A.; Snášel, V. Metaheuristic design of feedforward neural networks: A review of two decades of research. Eng. Appl. Artif. Intell. 2017, 60, 97–116. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Wu, J. Introduction to Convolutional Neural Networks; National Key Lab for Novel Software Technology, Nanjing University: Nanjing, China, 2017; Volume 5, p. 495. [Google Scholar]
- Dash, S.; Ojha, S.; Muduli, R.K.; Patra, S.P.; Barik, R.C. Fish Type and Disease Classification Using Deep Learning Model Based Customized CNN with Resnet 50 Technique. J. Adv. Zool. 2024, 45, 32. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, C.; Sun, D.; Hu, J.; Ye, H. An automated lightweight approach for detecting dead fish in a recirculating aquaculture system. Aquaculture 2025, 594, 741433. [Google Scholar] [CrossRef]
- Feng, S.; Yang, X.; Liu, Y.; Zhao, Z.; Liu, J.; Yan, Y.; Zhou, C. Fish feeding intensity quantification using machine vision and a lightweight 3D ResNet-GloRe network. Aquac. Eng. 2022, 98, 102244. [Google Scholar] [CrossRef]
- Cui, B.; Fei, D.; Shao, G.; Lu, Y.; Chu, J. Extracting raft aquaculture areas from remote sensing images via an improved U-net with a PSE structure. Remote Sens. 2019, 11, 2053. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. In Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook; Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 353–374. [Google Scholar]
- Pinaya, W.H.L.; Vieira, S.; Garcia-Dias, R.; Mechelli, A. Autoencoders. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 193–208. [Google Scholar]
- Petkovski, A.; Shehu, V. Anomaly Detection on Multivariate Sensing Time Series Data for Smart Aquaculture. In Proceedings of the International Scientific Conference on Business and Economics, Vila Real, Portugal, 24–26 June 2024; pp. 273–283. [Google Scholar]
- Sundararajan, S.C.M.; Shankar, Y.B.; Selvam, S.P.; Manogaran, N.; Seerangan, K.; Natesan, D.; Selvarajan, S. IoT-based prediction model for aquaponic fish pond water quality using multiscale feature fusion with convolutional autoencoder and GRU networks. Sci. Rep. 2025, 15, 1925. [Google Scholar] [CrossRef]
- Gusmawati, N.F.; Zhi, C.; Soulard, B.; Lemonnier, H.; Selmaoui-Folcher, N. Aquaculture Pond Precise Mapping in Perancak Estuary, Bali, Indonesia. J. Coast. Res. 2016, 1, 637–641. [Google Scholar] [CrossRef]
- Akram, W.; Hassan, T.; Toubar, H.; Ahmed, M.; Miškovic, N.; Seneviratne, L.; Hussain, I. Aquaculture defects recognition via multi-scale semantic segmentation. Expert Syst. Appl. 2024, 237, 121197. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, S.; Wang, M.; Liu, W.; Liu, T.; Cao, L.; Guo, J.; Feng, D.; Zhang, H.; Hassan, S.G. A hybrid method for identifying the feeding behavior of tilapia. IEEE Access 2023, 12, 76022–76037. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, Y.-G.; Yang, X.-G.; Gao, Q.-F.; Chen, Y.-N.; Ren, Y.-C.; Dong, S.-L. Optimizing feeding frequencies in fish: A meta-analysis and machine learning approach. Aquaculture 2025, 595, 741678. [Google Scholar] [CrossRef]
- Li, H.; Chatzifotis, S.; Lian, G.; Duan, Y.; Li, D.; Chen, T. Mechanistic model based optimization of feeding practices in aquaculture. Aquac. Eng. 2022, 97, 102245. [Google Scholar] [CrossRef]
- Wei, M.; Lin, Y.; Chen, K.; Su, W.; Cheng, E. Study on feeding activity of Litopenaeus vannamei based on passive acoustic detection. IEEE Access 2020, 8, 156654–156662. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Liu, J.; Wang, H.; Zhu, J.; Li, D.; Zhao, R. Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 2021, 540, 736724. [Google Scholar] [CrossRef]
- Lu, H.-Y.; Cheng, C.-Y.; Cheng, S.-C.; Cheng, Y.-H.; Lo, W.-C.; Jiang, W.-L.; Nan, F.-H.; Chang, S.-H.; Ubina, N.A. A low-cost AI buoy system for monitoring water quality at offshore aquaculture cages. Sensors 2022, 22, 4078. [Google Scholar] [CrossRef]
- Chen, F.; Sun, M.; Du, Y.; Xu, J.; Zhou, L.; Qiu, T.; Sun, J. Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system. Aquac. Res. 2022, 53, 4401–4413. [Google Scholar] [CrossRef]
- Adhikary, A.; Roy, J.; Kumar, A.G.; Banerjee, S.; Biswas, K. An impedimetric Cu-polymer sensor-based conductivity meter for precision agriculture and aquaculture applications. IEEE Sens. J. 2019, 19, 12087–12095. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Sun, J.; Feng, Y. Radial basis function neural network model for dissolved oxygen concentration prediction based on an enhanced clustering algorithm and Adam. IEEE Access 2021, 9, 44521–44533. [Google Scholar] [CrossRef]
- Li, D.; Sun, J.; Yang, H.; Wang, X. An enhanced naive Bayes model for dissolved oxygen forecasting in shellfish aquaculture. IEEE Access 2020, 8, 217917–217927. [Google Scholar] [CrossRef]
- Park, Y.; Cho, K.H.; Park, J.; Cha, S.M.; Kim, J.H. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Sci. Total Environ. 2015, 502, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Bae, J.; Lee, S.; Jang, M.; Park, H. Monthly chlorophyll-a prediction using neuro-genetic algorithm for water quality management in Lakes. Desalination Water Treat. 2016, 57, 26783–26791. [Google Scholar]
- Gambín, Á.F.; Angelats, E.; González, J.S.; Miozzo, M.; Dini, P. Sustainable marine ecosystems: Deep learning for water quality assessment and forecasting. IEEE Access 2021, 9, 121344–121365. [Google Scholar] [CrossRef]
- Cho, H.; Choi, U.-J.; Park, H. Deep learning application to time-series prediction of daily chlorophyll-a concentration. WIT Trans. Ecol. Environ. 2018, 215, 157–163. [Google Scholar]
- Mia, M.J.; Mahmud, R.B.; Sadad, M.S.; Al Asad, H.; Hossain, R. An in-depth automated approach for fish disease recognition. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 7174–7183. [Google Scholar] [CrossRef]
- Khabusi, S.P.; Huang, Y.-P.; Lee, M.-F. Attention-based mechanism for fish disease classification in aquaculture. In Proceedings of the 2023 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh, Vietnam, 27–28 July 2023; pp. 95–100. [Google Scholar]
- Huang, Y.-P.; Khabusi, S.P. A CNN-OSELM multi-layer fusion network with attention mechanism for fish disease recognition in aquaculture. IEEE Access 2023, 11, 58729–58744. [Google Scholar] [CrossRef]
- Kumaar, A.S.; Vignesh, A.V.; Deepak, K. FishNet freshwater fish disease detection using deep learning techniques. In Proceedings of the 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT), Gharuan, India, 2–3 May 2024; pp. 368–373. [Google Scholar]
- Nayan, A.-A.; Mozumder, A.N.; Saha, J.; Mahmud, K.R.; Azad, A.K.A.; Kibria, M.G. A machine learning approach for early detection of fish diseases by analyzing water quality. arXiv 2021, arXiv:2102.09390. [Google Scholar] [CrossRef]
- Moni, J.; Jacob, P.M.; Sudeesh, S.; Nair, M.J.; George, M.S.; Thomas, M.S. A smart aquaculture monitoring system with automated fish disease identification. In Proceedings of the 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST), Kochi, India, 11–13 April 2024; pp. 1–06. [Google Scholar]
- Mendieta, M.; Romero, D. A cross-modal transfer approach for histological images: A case study in aquaculture for disease identification using zero-shot learning. In Proceedings of the 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; pp. 1–6. [Google Scholar]
- Vijayalakshmi, M.; Sasithradevi, A.; Prakash, P. Transfer learning approach for epizootic ulcerative syndrome and Ichthyophthirius disease classification in fish species. In Proceedings of the 2023 International Conference on Bio Signals, Images, and Instrumentation (ICBSII), Chennai, India, 16–17 March 2023; pp. 1–5. [Google Scholar]
- Al Maruf, A.; Fahim, S.H.; Bashar, R.; Rumy, R.A.; Chowdhury, S.I.; Aung, Z. Classification of freshwater fish diseases in Bangladesh using a novel ensemble deep learning model: Enhancing accuracy and interpretability. IEEE Access 2024, 12, 96411–96435. [Google Scholar] [CrossRef]
- Vasumathi, A.; Rathore, P.S.; Vignesh, N.; Harsith, S. Fish disease detection using machine learning. In Proceedings of the 2024 International Conference on Science Technology Engineering and Management (ICSTEM), Melbourne, VIC, Australia, 6–7 September 2024; pp. 1–4. [Google Scholar]
- Gu, J.; Deng, C.; Lin, X.; Yu, D. Expert system for fish disease diagnosis based on fuzzy neural network. In Proceedings of the 2012 Third International Conference on Intelligent Control and Information Processing, Dalian, China, 15–17 July 2012; pp. 146–149. [Google Scholar]
- Darapaneni, N.; Sreekanth, S.; Paduri, A.R.; Roche, A.S.; Murugappan, V.; Singha, K.K.; Shenwai, A.V. AI based farm fish disease detection system to help micro and small fish farmers. In Proceedings of the 2022 Interdisciplinary Research in Technology and Management (IRTM), Kolkata, India, 24–26 February 2022; pp. 1–5. [Google Scholar]
- Bodaragama, B.T.; Miyurangana, E.M.; Jayakod, Y.T.L.; Vipulasiri, D.D.; Rajapaksha, U.S.; Krishara, J. IoT-Based Solution for Fish Disease Detection and Controlling a Fish Tank Through a Mobile Application. In Proceedings of the 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), Pune, India, 5–7 April 2024; pp. 1–6. [Google Scholar]
- Prządka, M.P.; Wojcieszak, D.; Pala, K. Optimization of Au electrode parameters for pathogen detection in aquaculture. IEEE Sens. J. 2024, 24, 5785–5796. [Google Scholar] [CrossRef]
- Hu, W.-C.; Chen, L.-B.; Lin, H.-M. A Method for Abnormal Behavior Recognition in Aquaculture Fields Using Deep Learning Une méthode de reconnaissance des comportements anormaux dans l’aquaculture à l’aide de l’apprentissage profond. IEEE Can. J. Electr. Comput. Eng. 2024, 47, 118–126. [Google Scholar] [CrossRef]
- Chen, L.; Yin, X. Recognition method of abnormal behavior of marine fish swarm based on in-depth learning network model. J. Web Eng. 2021, 20, 575–596. [Google Scholar] [CrossRef]
- Hassan, W.; Føre, M.; Pedersen, M.O.; Alfredsen, J.A. A new method for measuring free-ranging fish swimming speed in commercial marine farms using Doppler principle. IEEE Sens. J. 2020, 20, 10220–10227. [Google Scholar] [CrossRef]
- Osterloff, J.; Nilssen, I.; Järnegren, J.; Buhl-Mortensen, P.; Nattkemper, T.W. Polyp activity estimation and monitoring for cold water corals with a deep learning approach. In Proceedings of the 2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI), Cancun, Mexico, 4 December 2016; pp. 1–6. [Google Scholar]
- Måløy, H. EchoBERT: A transformer-based approach for behavior detection in echograms. IEEE Access 2020, 8, 218372–218385. [Google Scholar] [CrossRef]
- Le Quinio, A.; Martignac, F.; Girard, A.; Guillard, J.; Roussel, J.-M.; De Oliveira, E. Fish as a deformable solid: An innovative method to characterise fish swimming behaviour on acoustic videos. IEEE Access 2024, 12, 134486–134497. [Google Scholar] [CrossRef]
- Shoaib Ahmed, M.; Taharat Aurpa, T.; Abul Kalam Azad, M. Fish Disease Detection Using Image Based Machine Learning Technique in Aquaculture. arXiv 2021, arXiv:2105.03934. [Google Scholar]
- Chang, C.-C.; Ubina, N.A.; Cheng, S.-C.; Lan, H.-Y.; Chen, K.-C.; Huang, C.-C. A two-mode underwater smart sensor object for precision aquaculture based on AIoT technology. Sensors 2022, 22, 7603. [Google Scholar] [CrossRef]
- Mei, S.; Chen, Y.; Qin, H.; Yu, H.; Li, D.; Sun, B.; Yang, L.; Liu, Y. A Method Based on Knowledge Distillation for Fish School Stress State Recognition in Intensive Aquaculture. CMES-Comput. Model. Eng. Sci. 2022, 131, 1315. [Google Scholar] [CrossRef]
- Ranjan, R.; Tsukuda, S.; Good, C. MortCam: An Artificial Intelligence-aided fish mortality detection and alert system for recirculating aquaculture. Aquac. Eng. 2023, 102, 102341. [Google Scholar] [CrossRef]
- Soltanzadeh, R.; Hardy, B.; Mcleod, R.D.; Friesen, M.R. A prototype system for real-time monitoring of arctic char in indoor aquaculture operations: Possibilities & challenges. IEEE Access 2020, 8, 180815–180824. [Google Scholar]
- Wang, G.; Muhammad, A.; Liu, C.; Du, L.; Li, D. Automatic recognition of fish behavior with a fusion of RGB and optical flow data based on deep learning. Animals 2021, 11, 2774. [Google Scholar] [CrossRef]
- Bowman, M.; McManamay, R.A.; Perez, A.R.; Hamerly, G.; Arnold, W.; Steimle, E.; Kramer, K.; Norris, B.; Prangnell, D.; Matthews, M. Analysis of an optical imaging system prototype for autonomously monitoring zooplankton in an aquaculture facility. Aquac. Eng. 2024, 104, 102389. [Google Scholar] [CrossRef]
- Ferriby, H.; Nejadhashemi, A.P.; Hernandez-Suarez, J.S.; Moore, N.; Kpodo, J.; Kropp, I.; Eeswaran, R.; Belton, B.; Haque, M.M. Harnessing machine learning techniques for mapping aquaculture waterbodies in Bangladesh. Remote Sens. 2021, 13, 4890. [Google Scholar] [CrossRef]
- Fu, Y.; You, S.; Zhang, S.; Cao, K.; Zhang, J.; Wang, P.; Bi, X.; Gao, F.; Li, F. Marine aquaculture mapping using GF-1 WFV satellite images and full resolution cascade convolutional neural network. Int. J. Digit. Earth 2022, 15, 2047–2060. [Google Scholar] [CrossRef]
- Gerlo, J.; Kooijman, D.G.; Wieling, I.W.; Heirmans, R.; Vanlanduit, S. Seaweed growth monitoring with a low-cost vision-based system. Sensors 2023, 23, 9197. [Google Scholar] [CrossRef] [PubMed]
- Hamzaoui, M.; Ould-Elhassen Aoueileyine, M.; Romdhani, L.; Bouallegue, R. An improved deep learning model for underwater species recognition in aquaculture. Fishes 2023, 8, 514. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X.; Dong, J.; Song, S.; Zhang, T.; Liu, D.; Zhang, H.; Han, S. Developing a microscopic image dataset in support of intelligent phytoplankton detection using deep learning. ICES J. Mar. Sci. 2020, 77, 1427–1439. [Google Scholar] [CrossRef]
- Lin, F.-S.; Yang, P.-W.; Tai, S.-K.; Wu, C.-H.; Lin, J.-L.; Huang, C.-H. A machine-learning-based ultrasonic system for monitoring white shrimps. IEEE Sens. J. 2023, 23, 23846–23855. [Google Scholar] [CrossRef]
- Lin, X.; Wu, M.; Shao, X.; Li, G.; Hong, Y. Water turbidity dynamics using random forest in the Yangtze River Delta Region, China. Sci. Total Environ. 2023, 903, 166511. [Google Scholar] [CrossRef] [PubMed]
- Paolo, F.S.; Kroodsma, D.; Raynor, J.; Hochberg, T.; Davis, P.; Cleary, J.; Marsaglia, L.; Orofino, S.; Thomas, C.; Halpin, P. Satellite mapping reveals extensive industrial activity at sea. Nature 2024, 625, 85–91. [Google Scholar] [CrossRef]
- Shin, J.; Jo, Y.-H.; Ryu, J.-H.; Khim, B.-K.; Kim, S.M. High spatial-resolution red tide detection in the southern coast of Korea using u-net from planetscope imagery. Sensors 2021, 21, 4447. [Google Scholar] [CrossRef]
- Ubina, N.; Cheng, S.; Chen, H.; Chang, C.; Lan, H. A Visual Aquaculture System Using a Cloud-Based Autonomous Drones. Drones 2021, 5, 109. [Google Scholar] [CrossRef]
- Wang, J.; Fan, J.; Wang, J. MDOAU-Net: A lightweight and robust deep learning model for SAR image segmentation in aquaculture raft monitoring. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4504505. [Google Scholar] [CrossRef]
- Wang, L.; Yue, X.; Wang, H.; Ling, K.; Liu, Y.; Wang, J.; Hong, J.; Pen, W.; Song, H. Dynamic inversion of inland aquaculture water quality based on UAVs-WSN spectral analysis. Remote Sens. 2020, 12, 402. [Google Scholar] [CrossRef]
- Zeng, D.; Liu, I.; Bi, Y.; Vennell, R.; Briscoe, D.; Xue, B.; Zhang, M. A new multi-object tracking pipeline based on computer vision techniques for mussel farms. J. R. Soc. N. Z. 2025, 55, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shi, Y.; Wang, X. Detection Method of Fry Feeding Status Based on YOLO Lightweight Network by Shallow Underwater Images. Electronics 2022, 11, 3856. [Google Scholar] [CrossRef]
- Chen, H.-C.; Xu, S.-Y.; Deng, K.-H. Water color identification system for monitoring aquaculture farms. Sensors 2022, 22, 7131. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-T.; Liu, C.-S.; Yen, J.-H. Development of water-wheel tail measurement system based on image projective transformation. Water 2023, 15, 3889. [Google Scholar] [CrossRef]
- Liang, C.; Cheng, B.; Xiao, B.; He, C.; Liu, X.; Jia, N.; Chen, J. Semi-/weakly-supervised semantic segmentation method and its application for coastal aquaculture areas based on multi-source remote sensing images—Taking the Fujian coastal area (mainly Sanduo) as an example. Remote Sens. 2021, 13, 1083. [Google Scholar] [CrossRef]
- Natsuike, M.; Natsuike, Y.; Kanamori, M.; Honke, K. Semi-automatic recognition of juvenile scallops reared in lantern nets from time-lapse images using a deep learning technique. Plankton Benthos Res. 2022, 17, 91–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Bloecher, N.; Evjemo, L.D.; Føre, M.; Su, B.; Eilertsen, E.; Mulelid, M.A.; Kelasidi, E. Farmed Atlantic salmon (Salmo salar L.) avoid intrusive objects in cages: The influence of object shape, size and colour, and fish length. Aquaculture 2024, 581, 740429. [Google Scholar] [CrossRef]
- Chen, Y.; He, G.; Yin, R.; Zheng, K.; Wang, G. Comparative study of marine ranching recognition in multi-temporal high-resolution remote sensing images based on DeepLab-v3+ and U-Net. Remote Sens. 2022, 14, 5654. [Google Scholar] [CrossRef]
- Dang, K.B.; Nguyen, M.H.; Nguyen, D.A.; Phan, T.T.H.; Giang, T.L.; Pham, H.H.; Nguyen, T.N.; Tran, T.T.V.; Bui, D.T. Coastal wetland classification with deep u-net convolutional networks and sentinel-2 imagery: A case study at the tien yen estuary of vietnam. Remote Sens. 2020, 12, 3270. [Google Scholar] [CrossRef]
- Slonimer, A.L.; Dosso, S.E.; Albu, A.B.; Cote, M.; Marques, T.P.; Rezvanifar, A.; Ersahin, K.; Mudge, T.; Gauthier, S. Classification of herring, salmon, and bubbles in multifrequency echograms using U-Net neural networks. IEEE J. Ocean. Eng. 2023, 48, 1236–1254. [Google Scholar] [CrossRef]
- Banno, K.; Kaland, H.; Crescitelli, A.M.; Tuene, S.A.; Aas, G.H.; Gansel, L.C. A novel approach for wild fish monitoring at aquaculture sites: Wild fish presence analysis using computer vision. Aquac. Environ. Interact. 2022, 14, 97–112. [Google Scholar] [CrossRef]
- Rothschild, C.; Aflalo, E.D.; Kedem, I.; Farjon, G.; Yitzhaky, Y.; Sagi, A.; Edan, Y. Computer vision system for counting crustacean larvae by detection. Smart Agric. Technol. 2023, 5, 100289. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Z.; Qin, H.; Chen, Y. An automatic detection and counting method for fish lateral line scales of underwater fish based on improved YOLOv5. IEEE Access 2023, 11, 143616–143627. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Liu, Y.; Liu, C.; Zhao, R.; Li, D.; Shi, C. Fully automatic system for fish biomass estimation based on deep neural network. Ecol. Inform. 2024, 79, 102399. [Google Scholar] [CrossRef]
- Ienaga, N.; Higuchi, K.; Takashi, T.; Gen, K.; Tsuda, K.; Terayama, K. Vision-based egg quality prediction in Pacific bluefin tuna (Thunnus orientalis) by deep neural network. Sci. Rep. 2021, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Bastiaansen, J.W.; Khan, H.A.; Komen, H. An analytical framework to predict slaughter traits from images in fish. Aquaculture 2023, 566, 739175. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Karthe, D.; Kumar, N.M. Web-based decision support system for managing the food–water–soil–ecosystem nexus in the Kolleru freshwater Lake of Andhra Pradesh in South India. Sustainability 2022, 14, 2044. [Google Scholar] [CrossRef]
- Ai, B.; Xiao, H.; Xu, H.; Yuan, F.; Ling, M. Coastal aquaculture area extraction based on self-attention mechanism and auxiliary loss. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 2250–2261. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Z.; Zhang, C.; Wu, W. Remote sensing image segmentation of mariculture cage using ensemble learning strategy. Appl. Sci. 2022, 12, 8234. [Google Scholar] [CrossRef]
- Zhang, Z.; Gui, F.; Qu, X.; Feng, D.S. Netting damage detection for marine aquaculture facilities based on improved mask r-cnn. J. Mar. Sci. Eng. 2022, 10, 996. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, C.; Liu, Z.; Zhang, Z.; Liang, J.; Chen, H.; Wang, L. Extraction of aquaculture ponds along coastal region using u2-net deep learning model from remote sensing images. Remote Sens. 2022, 14, 4001. [Google Scholar] [CrossRef]
Feature | LoRa | NB-IoT | 5G | Zigbee | Wi-Fi |
---|---|---|---|---|---|
Range | Long (Several km) | Long (Several km) | Short to Medium (Up to several km) | Short (10–100 m) | Short to Medium (Up to 100 m) |
Data Rate | Low (0.3–50 kbps) | Low (20–250 kbps) | High (Gbps) | Low to Medium (20–250 kbps) | High (Up to Gbps) |
Power Consumption | Very Low | Very Low | High | Low | Medium to High |
Mobility | High | High | High | Low | High |
Complexity | Low | Low | High | Medium | High |
Cost | Low to Medium | Low to Medium | High | Low | Medium |
Typical Use Cases in Aquaculture | Remote water quality monitoring, large-scale farms | Periodic data from distributed sensors | Real-time video monitoring, automated feeding | Localised sensor networks within tanks | Local monitoring, data transfer near base station |
Strengths | Long range, low power, cost-effective | Long range, low power, good coverage | High data rate, low latency, high bandwidth | Low power, mesh networking | High data rate, widely available |
Limitations | Low data rate | Low data rate | High power consumption, limited range | Short range | Power consumption, limited range |
Aquaculture Domain | Specific Application | AI/Machine Learning Techniques | Data Sources and Methods | References |
---|---|---|---|---|
Fish health and behaviour | Disease detection and monitoring | Computer vision, support vector machines (SVMs), convolutional neural networks (CNNs), attention mechanisms, online sequential extreme learning machine (OSELM), knowledge distillation, YOLOv7 | Imaging systems, sonar, video, annotated datasets, feature extraction, model training, and classification | [67,134] |
Feeding behaviour and growth analysis | Gaussian mixture models (GMMs), k-nearest neighbour (KNN), CNNs | Sonar imaging, length and weight estimation, distribution analysis | [135] | |
Stress state recognition | Knowledge distillation, GhostNet, ResNeXt101 | Video analysis, lightweight network training, transfer learning | [136] | |
Mortality detection | Computer vision, machine learning, sensor integration, YOLOv7 | Image data, annotated datasets, and real-time monitoring | [137] | |
Behaviour analysis (general) | Acoustic technology, computer vision, deep learning, FlowNet2, 3D CNN | Real-time monitoring systems, RGB and optical flow data, and data fusion | [138,139] | |
Aquaculture monitoring (general) | Zooplankton monitoring | Optical imaging, computer vision, SVM | Imaging systems, feature extraction, classification | [140] |
Aquaculture site extent and location | Machine learning (random forest, SVM), GIS, CNN | Satellite imagery, geospatial data, model training, visualisation | [141,142] | |
Seaweed growth and health | Image processing, computer vision, DeepLabV3+ | Image/video capture, annotation, segmentation, hyperparameter tuning | [143] | |
Underwater species monitoring | Computer vision, YOLOv5, transfer learning | Underwater imagery, model training, feature extraction | [144] | |
Phytoplankton detection | CNN, Fast R-CNN | Microscopic images, dataset curation, image analysis, classification | [145] | |
Shrimp monitoring | Machine learning, ultrasonic imaging, YOLOv4 | Ultrasound images, image augmentation, model training | [146] | |
Water turbidity prediction | Random forest | Remote sensing data, modelling | [147] | |
Vessel activity and infrastructure monitoring | Satellite imagery, remote sensing, convolutional networks (ConvNet) | Multi-band satellite images, model training | [148] | |
Red tide detection | Computer vision, deep learning, U-Net | High-resolution satellite imagery analysis | [149] | |
Aquaculture site surveillance | Computer vision, deep learning (Mask R-CNN) | Drone-captured visual data, cloud-based processing, semantic segmentation | [135,150] | |
Aquaculture raft monitoring | Multi-scaled attention U-Net, dilated convolution, offset convolution | SAR image segmentation, deep neural network modelling | [151] | |
Water quality and turbidity forecasting | Dynamic network surgery–deep neural networks (DNS–DNNs) | UAV multispectral imagery, ground sensor data, spectral analysis, and model training | [152] | |
Marine aquaculture characterization | Incremental double unsupervised deep learning (IDUDL) | SAR image segmentation, unsupervised Learning | [75] | |
Mussel float monitoring | Computer vision, multi-object tracking | Image processing, machine learning, tracking pipeline | [153] | |
Aquaculture management and production | Feeding management and status | AlexNet, ResNet34, convolutional block attention module (CBAM), YOLOv4-Tiny-ECA | Underwater imagery, feature representation, object detection | [100,154] |
Water quality identification | Computer vision | Water colour analysis | [155,156] | |
Water-wheel tail measurement | Computer vision, YOLOv8 | Image calibration, projective transformation | [156] | |
Aquaculture area identification | Supervised semantic segmentation, CNN | Multisource remote sensing images, feature extraction, and classification | [157] | |
Scallop recognition | Deep learning (semantic segmentation) | Time-lapse images and automated identification | [158] | |
Fish response analysis | CNN, U-Net++ | Sonar data, image segmentation, fish distribution pattern analysis | [159] | |
Raft and cage aquaculture area identification | Computer vision, deep learning (CNN) | High-resolution remote sensing images | [160] | |
Wetland classification and monitoring | ResU-Net | Multi-temporal satellite images, digital elevation models | [161] | |
Marine organism classification | U-Net | Multifrequency echograms, semantic segmentation | [162] | |
Wild fish monitoring | Deep learning (YOLOv4) | Underwater video, object detection | [163] | |
Underwater fish detection | Mask R-CNN, Gaussian mixture models (GMMs) | Underwater wireless sensor network data, background subtraction | [84] | |
Crustacean larvae counting | Computer vision, YOLOv5s | Image processing, object detection | [164] | |
Fish counting | Improved YOLOv5, transformer module | Fish scale detection, model enhancement | [165] | |
Fish biomass estimation | Deep learning (YOLOv5n), stereo vision | Real-time image detection and object extraction | [166] | |
Tuna egg quality prediction | Vision-based CNN, R-CNN | Pre-trained images and object detection | [167] | |
Shrimp seed counting | Modified CSRNet | Smartphone images, crowded scene recognition | [11] | |
Fish weight estimation | Mask R-CNN, regression models | Image dimension extraction, regression learning | [72] | |
Slaughter trait prediction | Image analysis, statistical modelling | Fish images, feature analysis | [168] | |
Decision support systems | Geospatial techniques, cloud computing, GIS | Landsat imagery, database management, web-based applications | [169] | |
Aquaculture area extraction | SAMALNet, RADNet, DeepLabV3+, dense residual U-Net, U-Net, R3Det, SegNet, U-Net++, marker-controlled watershed segmentation | Satellite image segmentation, feature fusion, model training, and accuracy assessment | [170] | |
Cage segmentation | Swin transformer, ensemble learning | Remote sensing images, feature extraction, segmentation | [171] | |
Object detection | Mask R-CNN, recursive feature pyramid (RFP), DCN | Computer vision, object detection | [172] | |
Seaweed farm classification | Deep learning (DCGAN, U-Net, DeepLabv3, SegNet) | Time series dataset, feature enhancement, sample amplification | [53] | |
Pond extraction | U2-Net | Remote sensing images, model training | [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tina, F.W.; Afsarimanesh, N.; Nag, A.; Alahi, M.E.E. Integrating AIoT Technologies in Aquaculture: A Systematic Review. Future Internet 2025, 17, 199. https://doi.org/10.3390/fi17050199
Tina FW, Afsarimanesh N, Nag A, Alahi MEE. Integrating AIoT Technologies in Aquaculture: A Systematic Review. Future Internet. 2025; 17(5):199. https://doi.org/10.3390/fi17050199
Chicago/Turabian StyleTina, Fahmida Wazed, Nasrin Afsarimanesh, Anindya Nag, and Md Eshrat E. Alahi. 2025. "Integrating AIoT Technologies in Aquaculture: A Systematic Review" Future Internet 17, no. 5: 199. https://doi.org/10.3390/fi17050199
APA StyleTina, F. W., Afsarimanesh, N., Nag, A., & Alahi, M. E. E. (2025). Integrating AIoT Technologies in Aquaculture: A Systematic Review. Future Internet, 17(5), 199. https://doi.org/10.3390/fi17050199