Top-K Feature Selection for IoT Intrusion Detection: Contributions of XGBoost, LightGBM, and Random Forest
Abstract
Share and Cite
Kouassi, B.M.; Ballo, A.B.; Ayikpa, K.J.; Mamadou, D.; Coulibaly, M.Z.J. Top-K Feature Selection for IoT Intrusion Detection: Contributions of XGBoost, LightGBM, and Random Forest. Future Internet 2025, 17, 529. https://doi.org/10.3390/fi17110529
Kouassi BM, Ballo AB, Ayikpa KJ, Mamadou D, Coulibaly MZJ. Top-K Feature Selection for IoT Intrusion Detection: Contributions of XGBoost, LightGBM, and Random Forest. Future Internet. 2025; 17(11):529. https://doi.org/10.3390/fi17110529
Chicago/Turabian StyleKouassi, Brou Médard, Abou Bakary Ballo, Kacoutchy Jean Ayikpa, Diarra Mamadou, and Minfonga Zié Jérôme Coulibaly. 2025. "Top-K Feature Selection for IoT Intrusion Detection: Contributions of XGBoost, LightGBM, and Random Forest" Future Internet 17, no. 11: 529. https://doi.org/10.3390/fi17110529
APA StyleKouassi, B. M., Ballo, A. B., Ayikpa, K. J., Mamadou, D., & Coulibaly, M. Z. J. (2025). Top-K Feature Selection for IoT Intrusion Detection: Contributions of XGBoost, LightGBM, and Random Forest. Future Internet, 17(11), 529. https://doi.org/10.3390/fi17110529

