A Micro-Segmentation Method Based on VLAN-VxLAN Mapping Technology
Abstract
:1. Introduction
- The efficiency and convenience offered by cloud computing have blurred traditional security boundaries, thereby presenting a significant challenge.
- The ability of cloud computing to seamlessly transition between various hosts to achieve high availability or dynamic resource balancing has rendered conventional security policies ineffective and obsolete.
- While the scalability of cloud computing facilitates the creation of on-demand resources, the batch-wise construction of cloud infrastructure introduces a challenge pertaining to device brand compatibility. Consequently, this incompatibility impedes the enforcement of security policies across cloud hosts.
- The inherent invisibility of in-cloud traffic represents a substantial obstacle for ensuring robust in-cloud security measures. Addressing this challenge requires innovative approaches and solutions that can effectively monitor and safeguard the flow of traffic within cloud environments.
- We propose a hardware-brand agnostic micro-segmentation approach based on VLAN and VxLAN mapping that effectively removes blind spots in the “zero trust” architecture with minimal service interruptions and high suitability for real-time service demands.
- We demonstrate the effectiveness of our approach through comprehensive evaluation of network aggregation and the share of visible traffic.
- We design an enhanced asset behavioural profiling algorithm with a time dimension that significantly improves traditional trust assessment models.
2. Relation Work
2.1. Zero Trust Architecture
2.2. Micro-Segmentation
2.3. VxLAN
3. Proposed Method
3.1. Micro-Segmentation
3.1.1. Micro-Segmentation
3.1.2. VxLAN
3.1.3. Evaluation of the Effect of Differential Segmentation
3.2. Enhanced Behavioural Profiling Algorithm
Algorithm 1 Enhanced Behavioural Profiling Algorithm |
Input: Intranet traffic captured separately by asset Output: Anomalies in the behaviour of each intranet asset
|
4. Comparison Algorithms
4.1. Experimental Topology
4.2. Business Interruption Time
4.3. Asset Correlation Analysis
4.4. Asset Abnormal Behaviour Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Tang, X.; Li, K. Energy-Efficient Stochastic Task Scheduling on Heterogeneous Computing Systems. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2867–2876. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.; Li, K.; Buyya, R. A New Service Mechanism for Profit Optimizations of a Cloud Provider and Its Users. IEEE Trans. Cloud Comput. 2021, 9, 14–26. [Google Scholar] [CrossRef]
- Liu, S.; Liu, J.; Wang, H.; Xian, M. Research on the Development of Cloud Computing. In Proceedings of the 2020 International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China, 17–19 April 2020; pp. 212–215. [Google Scholar] [CrossRef]
- CAICT. Cloud Computing White Paper; Technical Report; China Academy of Information and Communications Technology: Beijing, China; Available online: http://www.caict.ac.cn/kxyj/qwfb/bps/202407/t20240723_488241.htm (accessed on 1 September 2024).
- Jericho Forum. Jericho Forum Commandments Version 1.2; Technical Report; Jericho Forum. 2007. Available online: https://collaboration.opengroup.org/jericho/commandments_v1.2.pdf (accessed on 1 September 2024).
- Kindervag, J.; Balaouras, S.; Mak, K.; Blackborow, J. No more chewy centers: The zero trust model of information security. Forrester 2016, 23, 18. [Google Scholar]
- Wylde, A. Zero trust: Never trust, always verify. In Proceedings of the 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, 14–18 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Gutmann, A.; Renaud, K.; Maguire, J.; Mayer, P.; Volkamer, M.; Matsuura, K.; Mullerquade, J. ZETA—Zero-Trust Authentication: Relying on Innate Human Ability, not Technology. In Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P), Saarbruecken, Germany, 21–24 March 2016; pp. 357–371. [Google Scholar] [CrossRef]
- Li, D.; Hu, Y.; Xiao, G.; Duan, M.; Li, K. An active defense model based on situational awareness and firewalls. Concurr. Comput. Pract. Exp. 2023, 35, 1. [Google Scholar] [CrossRef]
- Eidle, D.; Ni, S.Y.; DeCusatis, C.; Sager, A. Autonomic security for zero trust networks. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 288–293. [Google Scholar] [CrossRef]
- DeCusatis, C.; Liengtiraphan, P.; Sager, A.; Pinelli, M. Implementing Zero Trust Cloud Networks with Transport Access Control and First Packet Authentication. In Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 18–20 November 2016; pp. 5–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, R.; Ding, R.; Gu, Y. Unravel Anomalies: An End-to-End Seasonal-Trend Decomposition Approach for Time Series Anomaly Detection. In Proceedings of the ICASSP 2024—IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 5415–5419. [Google Scholar] [CrossRef]
- Singh, O.P.; Anand, A.; Agrawal, A.K.; Singh, A.K. Electronic Health Data Security in the Internet of Things through Watermarking: An Introduction. IEEE Internet Things Mag. 2022, 5, 55–58. [Google Scholar] [CrossRef]
- Hussain, S.; Chaudhry, S.A. Comments on “Biometrics-Based Privacy-Preserving User Authentication Scheme for Cloud-Based Industrial Internet of Things Deployment”. IEEE Internet Things J. 2019, 6, 10936–10940. [Google Scholar] [CrossRef]
- Syed, N.F.; Shah, S.W.; Shaghaghi, A.; Anwar, A.; Baig, Z.; Doss, R. Zero Trust Architecture (ZTA): A Comprehensive Survey. IEEE Access 2022, 10, 57143–57179. [Google Scholar] [CrossRef]
- He, Y.; Huang, D.; Chen, L.; Ni, Y.; Ma, X. A survey on zero trust architecture: Challenges and future trends. Wirel. Commun. Mob. Comput. 2022, 2022, 6476274. [Google Scholar] [CrossRef]
- Jayasinghe, U.; Lee, G.M.; Um, T.W.; Shi, Q. Machine Learning Based Trust Computational Model for IoT Services. IEEE Trans. Sustain. Comput. 2019, 4, 39–52. [Google Scholar] [CrossRef]
- Lim, W.; Yong, K.S.C.; Lau, B.T.; Tan, C.C.L. Future of generative adversarial networks (GAN) for anomaly detection in network security: A review. Comput. Secur. 2024, 139, 103733. [Google Scholar] [CrossRef]
- Klein, D. Micro-segmentation: Securing complex cloud environments. Netw. Secur. 2019, 2019, 6–10. [Google Scholar] [CrossRef]
- A Al-Ofeishat, H.; Alshorman, R. Build a Secure Network using Segmentation and Micro-segmentation Techniques. Int. J. Comput. Digit. Syst. 2023, 16, 1499–1508. [Google Scholar] [CrossRef]
- Ni, L.; Cui, H.; Wang, M.; Zhi, D.; Han, K.; Kou, W. Construction of Data Center Security System Based on Micro Isolation under Zero Trust Architecture. In Proceedings of the 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), Shenyang, China, 25–27 February 2022; pp. 113–116. [Google Scholar] [CrossRef]
- Kang, C.; Li, Y.; Gao, L.; Li, X.; Wang, L.; Gao, Y. Automatic Generation Model of Host Micro-Segmentation in Distribution Master Station Based on Distributed Intrusion Detection. In Proceedings of the 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Nanjing, China, 23–25 September 2022; pp. 54–59. [Google Scholar] [CrossRef]
- Sheikh, N.; Pawar, M.; Lawrence, V. Zero trust using Network Micro Segmentation. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 10–13 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Basta, N.; Ikram, M.; Kaafar, M.A.; Walker, A. Towards a Zero-Trust Micro-segmentation Network Security Strategy: An Evaluation Framework. In Proceedings of the NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, T.; Zheng, Y.; Song, E.; Huang, T.; Liu, Y. VXLAN-based INT: In-band Network Telemetry for Overlay Network Monitoring. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 10–13 May 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Alvarado-Unamuno, E.A.; Arizaga-Gamboa, J.E. Design and Implementation of Traffic Balancer over Overlay Networks with Vxlan Tunneling. In Proceedings of the International Conference on Technologies and Innovation; Springer: Cham, Switzerland, 2021; pp. 125–139. [Google Scholar] [CrossRef]
- Zhao, Z.; Hong, F.; Li, R. SDN Based VxLAN Optimization in Cloud Computing Networks. IEEE Access 2017, 5, 23312–23319. [Google Scholar] [CrossRef]
- Rădoi, A.E.; Rincu, C.I. Integration of Data Center Network Technologies VxLAN, BGP, EVPN. In Proceedings of the 2022 14th International Conference on Communications (COMM), Bucharest, Romania, 16–18 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.; Duan, M.; Chen, Y.; Li, K. PH-CF: A Phased Hybrid Algorithm for Accelerating Subgraph Matching based on CPU-FPGA Heterogeneous Platform. IEEE Trans. Ind. Inform. 2022, 19, 8362–8373. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Mallipeddi, R.; Lee, D.G. High-density cluster core-based k-means clustering with an unknown number of clusters. Appl. Soft Comput. 2024, 155, 111419. [Google Scholar] [CrossRef]
- Chen, C.; Li, K.; Teo, S.G.; Zou, X.; Li, K.; Zeng, Z. Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-Temporal Convolutional Neural Networks. ACM Trans. Knowl. Discov. Data 2020, 14, 1–23. [Google Scholar] [CrossRef]
- Weng, T.; Zhou, X.; Li, K.; Tan, K.L.; Li, K. Distributed Approaches to Butterfly Analysis on Large Dynamic Bipartite Graphs. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 431–445. [Google Scholar] [CrossRef]
IP Address | VLAN ID | VxLAN ID | Gateway |
---|---|---|---|
10.0.0.1 | 10 | 10 | 10.0.0.254 |
10.0.0.2 | 10 | 10 | 10.0.0.254 |
10.1.0.1 | 20 | 20 | 10.1.0.254 |
10.2.0.1 | 30 | 30 | 10.2.0.254 |
10.0.0.3 | 10 | 10 | 10.0.0.254 |
IP Address | Original VLAN ID | New VLAN ID | VxLAN ID | Gateway |
---|---|---|---|---|
10.0.0.1 | 10 | 101 | 10 | 10.0.0.254 |
10.0.0.2 | 10 | 102 | 10 | 10.0.0.254 |
10.1.0.1 | 20 | 111 | 20 | 10.1.0.254 |
10.2.0.1 | 30 | 121 | 30 | 10.2.0.254 |
10.0.0.3 | 10 | 103 | 10 | 10.0.0.254 |
Asset | Number of Adjacent Nodes | Out Degrees & In Degrees | IdAC | OdAC | ||||
---|---|---|---|---|---|---|---|---|
Without Micro-Segmentation | With Micro-Segmentation | Without Micro-Segmentation | With Micro-Segmentation | Without Micro-Segmentation | With Micro-Segmentation | Without Micro-Segmentation | With Micro-Segmentation | |
Va1 | 3 | 1 | 6 | 2 | 1 | 0 | 1 | 0 |
Va2 | 3 | 1 | 6 | 2 | 1 | 0 | 1 | 0 |
Va3 | 3 | 1 | 6 | 2 | 1 | 0 | 1 | 0 |
Vr | 6 | 6 | 12 | 12 | 0.4 | 0 | 0.4 | 0 |
Vb1 | 3 | 1 | 6 | 2 | 1 | 0 | 1 | 0 |
Vb2 | 3 | 1 | 6 | 2 | 1 | 0 | 1 | 0 |
Vb3 | 3 | 1 | 6 | 2 | 1 | 0 | 1 | 0 |
IP Address | Communication Objects | Communication Time |
---|---|---|
10.8.6.122 | 10.8.6.0/24 | All day |
10.8.6.123 | 10.8.6.0/24 10.8.9.0/24 | All day All day |
10.8.6.124 | 10.8.6.0/24 | All day |
10.8.6.125 | 10.8.6.0/24 | All day |
10.8.6.126 | 10.8.6.0/24 | All day |
10.8.6.127 | 10.8.6.0/24 | All day |
10.8.6.129 | 10.8.6.0/24 | All day |
10.8.6.130 | 10.8.6.0/24 10.7.2.0/24 | All day 1st minute of each hour |
10.7.1.194 | 10.7.1.0/24 10.255.73.0/24 | All day All day |
Asset | Flows in the Inbound Direction | Flows in the Outbound Direction | Number of Assets Generating Flow | |||
---|---|---|---|---|---|---|
Minimum (KB) | Maximum (KB) | Minimum (KB) | Maximum (KB) | Minimum | Maximum | |
10.8.6.122 | 10,059 | 12,140 | 19,632 | 21,865 | 14 | 17 |
10.8.6.123 | 34,999 | 52,488 | 1890 | 2664 | 10 | 11 |
10.8.6.124 | 4005 | 5250 | 1136 | 3050 | 9 | 10 |
10.8.6.125 | 3798 | 16,606 | 536 | 1467 | 10 | 12 |
10.8.6.126 | 8.32 | 2380 | 569 | 1310 | 8 | 10 |
10.8.6.127 | 1035 | 3192 | 450 | 1965 | 9 | 13 |
10.8.6.129 | 10,182 | 11,741 | 2107 | 3550 | 10 | 11 |
10.8.6.130 | 11,748 | 13,152 | 247 | 787 | 4 | 8 |
10.7.1.194 | 733 | 41,545 | 1647 | 81,846 | 58 | 212 |
Asset | Mathematical Expectations of Flow | Normalised Variance | ||
---|---|---|---|---|
Inbound (KB) | Outbound (KB) | Inbound | Outbound | |
10.8.6.122 | 10,902.85 | 20,732.19 | 0.00311 | 0.00081 |
10.8.6.123 | 44,667.23 | 2247.58 | 0.00701 | 0.00989 |
10.8.6.124 | 4410.26 | 1925.29 | 0.00332 | 0.11181 |
10.8.6.125 | 7931.14 | 925.28 | 0.16435 | 0.12141 |
10.8.6.126 | 1601.29 | 906.16 | 0.09843 | 0.05740 |
10.8.6.127 | 1675.31 | 835.64 | 0.11009 | 0.15907 |
10.8.6.129 | 10,973.02 | 2641.84 | 0.00184 | 0.02124 |
10.8.6.130 | 12,453.85 | 388.22 | 0.00083 | 0.10644 |
10.7.1.194 | 6193.93 | 33,048.71 | 1.71190 | 0.41452 |
Asset | Flows in the Inbound Direction | Flows in the Outbound Direction | Number of Assets Generating Flow | |||
---|---|---|---|---|---|---|
Minimum (KB) | Maximum (KB) | Minimum (KB) | Maximum (KB) | Minimum | Maximum | |
10.8.6.122 | 2576 | 3527 | 2935 | 3037 | 3 | 3 |
10.8.6.123 | 24,739 | 36,081 | 42 | 93 | 2 | 3 |
10.8.6.124 | 169 | 207 | 125 | 203 | 1 | 2 |
10.8.6.125 | 2099 | 4742 | 61 | 68 | 3 | 4 |
10.8.6.126 | 178 | 227 | 148 | 201 | 1 | 2 |
10.8.6.127 | 101 | 163 | 675B | 9 | 1 | 2 |
10.8.6.129 | 124 | 404 | 604B | 17 | 1 | 2 |
10.8.6.130 | 4074 | 5652 | 224 | 239 | 3 | 4 |
10.7.1.194 | 2750 | 3744 | 23,917 | 39,256 | 182 | 209 |
Asset | Mathematical Expectations of Flow | Normalised Variance | ||
---|---|---|---|---|
Inbound (KB) | Outbound (KB) | Inbound | Outbound | |
10.8.6.122 | 2927.14 | 2986.19 | 0.01157 | 0.00016 |
10.8.6.123 | 26,869.21 | 66.25 | 0.02526 | 0.09519 |
10.8.6.124 | 188.44 | 177.66 | 0.00534 | 0.02532 |
10.8.6.125 | 3,305.01 | 65.37 | 0.08198 | 0.00150 |
10.8.6.126 | 196.48 | 176.20 | 0.00963 | 0.01061 |
10.8.6.127 | 145.54 | 2.14 | 0.01957 | 2.264039 |
10.8.6.129 | 206.44 | 4.47 | 0.19849 | 1.89553 |
10.8.6.130 | 4686.33 | 228.94 | 0.01274 | 0.00050 |
10.7.1.194 | 2938.88 | 27,981.31 | 0.01637 | 0.03405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Yang, Z.; Yu, S.; Duan, M.; Yang, S. A Micro-Segmentation Method Based on VLAN-VxLAN Mapping Technology. Future Internet 2024, 16, 320. https://doi.org/10.3390/fi16090320
Li D, Yang Z, Yu S, Duan M, Yang S. A Micro-Segmentation Method Based on VLAN-VxLAN Mapping Technology. Future Internet. 2024; 16(9):320. https://doi.org/10.3390/fi16090320
Chicago/Turabian StyleLi, Di, Zhibang Yang, Siyang Yu, Mingxing Duan, and Shenghong Yang. 2024. "A Micro-Segmentation Method Based on VLAN-VxLAN Mapping Technology" Future Internet 16, no. 9: 320. https://doi.org/10.3390/fi16090320
APA StyleLi, D., Yang, Z., Yu, S., Duan, M., & Yang, S. (2024). A Micro-Segmentation Method Based on VLAN-VxLAN Mapping Technology. Future Internet, 16(9), 320. https://doi.org/10.3390/fi16090320