Personalized Visualization of the Gestures of Parkinson’s Disease Patients with Virtual Reality
Abstract
:1. Introduction
2. Background and Related Work
2.1. Data Sources and Search Keywords
2.2. Analysis of the Literature
- The PubMed search engine found 51 articles;
- The IEEE Xplore search engine found 17 articles;
- The ScienceDirect search engine found 633 articles.
2.3. Current State-of-the-Art: Conclusions
3. Materials and Methods
3.1. The SmartGlove
- The glove fabric, which includes special conductive areas in the fingers and palm;
- The system-on-chip (SoC), which includes a small-sized computer model with built-in Bluetooth 5.0 for low power consumption;
- The sensors, which record hand movements, finger flexion, finger contact, and a nine-axis inertial measurement unit (IMU) board to monitor hand rotation.
3.2. The PD Data Visualization Application in Virtual Reality
3.2.1. The Application Data
- Gyroscope measurements (X,Y,Z);
- Accelerometer measurements (X,Y,Z);
- Magnetometer measurements (X,Y,Z);
- Finger sensor measurements (Thumb, Index, Middle, Ring, Pinky).
3.2.2. Application Analysis
- Initialization of virtual hand positions;
- Transferring user data selection from the previous room;
- Data upload;
- Calculation of new positions based on data;
- Applying new positions to the virtual hand.
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.G.; Goetz, C.G. History of Parkinson’s disease. Handb. Clin. Neurol. 2007, 83, 107–128. [Google Scholar] [CrossRef] [PubMed]
- Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet 2009, 373, 2055–2066. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Kouli, A.; Torsney, K.M.; Kuan, W.-L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Singapore, 2018; pp. 3–26. [Google Scholar] [CrossRef]
- Wohlgenannt, I.; Simons, A.; Stieglitz, S. Virtual Reality. Bus. Inf. Syst. Eng. 2020, 62, 455–461. [Google Scholar] [CrossRef]
- Wiederhold, B.K.; Riva, G. Virtual Reality Therapy: Emerging Topics and Future Challenges. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 3–6. [Google Scholar] [CrossRef]
- Mirelman, A.; Maidan, I.; Deutsch, J.E. Virtual reality and motor imagery: Promising tools for assessment and therapy in Parkinson’s disease. Mov. Disord. 2013, 28, 1597–1608. [Google Scholar] [CrossRef]
- De Oliveira, L.C.; Lamounier, E.A.; Andrade, A.O.; Lopes, R.A.; da Costa, S.C.; de Oliveira, I.S.; Carneiro, J.A.S.; Daibert, P.; Cardoso, A. Application of Serious Games based on Virtual Reality for Rehabilitation of Patients with Parkinson’s Disease through a Wrist Orthosis. In Proceedings of the 2020 22nd Symposium on Virtual and Augmented Reality (SVR), Porto de Galinhas, Brazil, 7–10 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 306–312. [Google Scholar] [CrossRef]
- Orlosky, J.; Itoh, Y.; Ranchet, M.; Kiyokawa, K.; Morgan, J.; Devos, H. Emulation of Physician Tasks in Eye-Tracked Virtual Reality for Remote Diagnosis of Neurodegenerative Disease. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1302–1311. [Google Scholar] [CrossRef]
- Wei, B.; Fan, Y.; Wu, Y.; Huang, S.; Sun, L.; You, Y.; Yu, N. Virtual Reality-Induced Symptoms and Effects (VRISE): A Balance Assessment Approach for Parkinson’s Disease. In Proceedings of the 2023 IEEE 13th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Qinhuangdao, China, 11–14 July 2023; pp. 962–967. [Google Scholar] [CrossRef]
- Gallagher, R.; Werner, W.G.; Damodaran, H.; Deutsch, J.E. Influence of cueing, feedback and directed attention on cycling in a virtual environment: Preliminary findings in healthy adults and persons with Parkinson’s disease. In Proceedings of the 2015 International Conference on Virtual Rehabilitation (ICVR), Valencia, Spain, 9–12 June 2015; pp. 11–17. [Google Scholar] [CrossRef]
- Cidota, M.A.; Bank, P.J.M.; Ouwehand, P.W.; Lukosch, S.G. Assessing Upper Extremity Motor Dysfunction Using an Augmented Reality Game. In Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Nantes, France, 9–13 October 2017; pp. 144–154. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Chen, C.-H.; Lin, Y.-C. Balance Rehabilitation System for Parkinson’s Disease Patients based on Augmented Reality. In Proceedings of the 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 23–25 October 2020; pp. 191–194. [Google Scholar] [CrossRef]
- Turner, T.H.; Atkins, A.; Keefe, R.S.E. Virtual Reality Functional Capacity Assessment Tool (VRFCAT-SL) in Parkinson’s Disease. J. Park. Dis. 2021, 11, 1917–1925. [Google Scholar] [CrossRef]
- Hawkins, K.E.; Paul, S.S.; Chiarovano, E.; Curthoys, I.S. Using virtual reality to assess vestibulo-visual interaction in people with Parkinson’s disease compared to healthy controls. Exp. Brain Res. 2021, 239, 3553–3564. [Google Scholar] [CrossRef]
- Badarny, S.; Aharon-Peretz, J.; Susel, Z.; Habib, G.; Baram, Y. Virtual reality feedback cues for improvement of gait in patients with Parkinson’s disease. Tremor Other Hyperkinet. Mov. 2014, 4, 225. [Google Scholar] [CrossRef]
- Yelshyna, D.; Gago, M.F.; Bicho, E.; Fernandes, V.; Gago, N.F.; Costa, L.; Silva, H.; Rodrigues, M.L.; Rocha, L.; Sousa, N. Compensatory postural adjustments in Parkinson’s disease assessed via a virtual reality environment. Behav. Brain Res. 2016, 296, 384–392. [Google Scholar] [CrossRef]
- Janeh, O.; Fründt, O.; Schönwald, B.; Gulberti, A.; Buhmann, C.; Gerloff, C.; Steinicke, F.; Pötter-Nerger, M. Gait Training in Virtual Reality: Short-Term Effects of Different Virtual Manipulation Techniques in Parkinson’s Disease. Cells 2019, 8, 419. [Google Scholar] [CrossRef]
- Fundarò, C.; Maestri, R.; Ferriero, G.; Chimento, P.; Taveggia, G.; Casale, R. Self-selected speed gait training in Parkinson’s disease: Robot-assisted gait training with virtual reality versus gait training on the ground. Eur. J. Phys. Rehabil. Med. 2019, 55, 456–462. [Google Scholar] [CrossRef]
- Cornejo Thumm, P.; Giladi, N.; Hausdorff, J.M.; Mirelman, A. Tele-Rehabilitation with Virtual Reality. Am. J. Phys. Med. Rehabil. 2021, 100, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Ehgoetz Martens, K.A.; Ellard, C.G.; Almeida, Q.J. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson’s disease? Exp. Brain Res. 2015, 233, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Valipoor, S.; Ahrentzen, S.; Srinivasan, R.; Akiely, F.; Gopinadhan, J.; Okun, M.S.; Ramirez-Zamora, A.; Wagle Shukla, A.A. The use of virtual reality to modify and personalize interior home features in Parkinson’s disease. Exp. Gerontol. 2022, 159, 111702. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, Y.; Taghizadeh, G.; Azad, A.; Behzadipour, S. The effects of supervised and non-supervised upper limb virtual reality exercises on upper limb sensory-motor functions in patients with idiopathic Parkinson’s disease. Hum. Mov. Sci. 2022, 85, 102977. [Google Scholar] [CrossRef]
- Mao, J.; Zhou, P.; Wang, X.; Yao, H.; Liang, L.; Zhao, Y.; Zhang, J.; Ban, D.; Zheng, H. A health monitoring system based on flexible triboelectric sensors for intelligence medical internet of things and its applications in virtual reality. Nano Energy 2023, 118, 108984. [Google Scholar] [CrossRef]
- Cidota, M.A.; Bank, P.J.M.; Lukosch, S.G. Design Recommendations for Augmented Reality Games for Objective Assessment of Upper Extremity Motor Dysfunction. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 1430–1438. [Google Scholar] [CrossRef]
- Ružický, E.; Lacko, J.; Štefanovič, J.; Hlaváč, J.; Šramka, M. Processing and Visualization of Medical Data in a Multiuser Environment Using Artificial Intelligence. In Proceedings of the 2020 Cybernetics & Informatics (K&I), Velke Karlovice, Czech Republic, 29 January–1 February 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Hu, B.; Chomiak, T.; Yau, S.-Y.; So, K.-F. Chapter Three—Wearable technological platform for multidomain diagnostic and exercise interventions in Parkinson’s disease. Exerc. Brain Health 2019, 147, 75–93. [Google Scholar] [CrossRef]
- Amirthalingam, J.; Paidi, G.; Alshowaikh, K.; Iroshani Jayarathna, A.; Salibindla, D.B.A.M.R.; Karpinska-Leydier, K.; Ergin, H.E. Virtual Reality Intervention to Help Improve Motor Function in Patients Undergoing Rehabilitation for Cerebral Palsy, Parkinson’s Disease, or Stroke: A Systematic Review of Randomized Controlled Trials. Cureus 2021, 13, e16763. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, K.; Hayward, J.A.; Pachana, N.A.; Byrne, G.J.; Mitchell, L.K.; Wallis, G.M.; Au, T.R.; Dissanayaka, N.N. Designing Virtual Reality Assisted Psychotherapy for Anxiety in Older Adults Living with Parkinson’s Disease: Integrating Literature for Scoping. Clin. Gerontol. 2022, 45, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Nardi, F.; Haar, S.; Faisal, A.A. Bill-EVR: An Embodied Virtual Reality Framework for Reward-and-Error-Based Motor Rehab-Learning. In Proceedings of the 2023 International Conference on Rehabilitation Robotics (ICORR), Singapore, 24–28 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, Y.; Heida, T.; van Wegen, E.E.H.; Bloem, B.R.; van Wezel, R.J.A. E-health Support in People with Parkinson’s Disease with Smart Glasses: A Survey of User Requirements and Expectations in the Netherlands. J. Park. Dis. 2015, 5, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.G.; Luca, A.; Cicero, C.E.; Calabrò, R.S.; Drago, F.; Zappia, M.; Nicoletti, A. Effectiveness of telerehabilitation plus virtual reality (Tele-RV) in cognitive e social functioning: A randomized clinical study on Parkinson’s disease. Parkinsonism Relat. Disord. 2024, 119, 105970. [Google Scholar] [CrossRef]
- Mota, J.M.; Baena-Pérez, R.; Ruiz-Rube, I.; Duarte, M.J.P.; Ruiz-Castellanos, A.; Correro-Barquín, J.M. Spatial Augmented Reality System with functions focused on the rehabilitation of Parkinson’s patients. In Proceedings of the 2021 International Symposium on Computers in Education (SIIE), Malaga, Spain, 23–24 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Cidota, M.A.; Lukosch, S.G.; Bank, P.J.M.; Ouwehand, P.W. Towards Engaging Upper Extremity Motor Dysfunction Assessment Using Augmented Reality Games. In Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), Nantes, France, 9–13 October 2017; pp. 275–278. [Google Scholar] [CrossRef]
- Losey, D.P.; Blumenschein, L.H.; O’Malley, M.K. Improving the retention of motor skills after reward-based reinforcement by incorporating haptic guidance and error augmentation. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Fiska, V.; Giannakeas, N.; Katertsidis, N.; Tzallas, A.T.; Kalafatakis, K.; Tsipouras, M.G. Motor data analysis of Parkinson’s disease patients. In Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, 26–28 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 946–950. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakkas, K.; Dimitriou, E.G.; Ntagka, N.E.; Giannakeas, N.; Kalafatakis, K.; Tzallas, A.T.; Glavas, E. Personalized Visualization of the Gestures of Parkinson’s Disease Patients with Virtual Reality. Future Internet 2024, 16, 305. https://doi.org/10.3390/fi16090305
Sakkas K, Dimitriou EG, Ntagka NE, Giannakeas N, Kalafatakis K, Tzallas AT, Glavas E. Personalized Visualization of the Gestures of Parkinson’s Disease Patients with Virtual Reality. Future Internet. 2024; 16(9):305. https://doi.org/10.3390/fi16090305
Chicago/Turabian StyleSakkas, Konstantinos, Eirini Georgia Dimitriou, Niki Eleni Ntagka, Nikolaos Giannakeas, Konstantinos Kalafatakis, Alexandros T. Tzallas, and Evripidis Glavas. 2024. "Personalized Visualization of the Gestures of Parkinson’s Disease Patients with Virtual Reality" Future Internet 16, no. 9: 305. https://doi.org/10.3390/fi16090305
APA StyleSakkas, K., Dimitriou, E. G., Ntagka, N. E., Giannakeas, N., Kalafatakis, K., Tzallas, A. T., & Glavas, E. (2024). Personalized Visualization of the Gestures of Parkinson’s Disease Patients with Virtual Reality. Future Internet, 16(9), 305. https://doi.org/10.3390/fi16090305