Explainable Artificial Intelligence Approach for Improving Head-Mounted Fault Display Systems
Abstract
:1. Introduction
2. Explicative Head-Mounted Fault Display System Design
2.1. System Architecture
2.2. User Interface Design
2.3. Fault Diagnoser Model Computation
2.3.1. LSTM Diagnoser Model
- These equations apply to a single time step only. They need to be recalculated for each subsequent time step.
- The weight matrices (, , , , , , , ) and biases (, , , ) are fixed and do not vary with time. This implies that the same weight matrices are used across different time steps to compute the outputs.
2.3.2. Predicting the Future Normal Expected Turbine Behavior
- Input Gate : modulates the incorporation of input signal into the cell state [10].
- Forget Gate : applies a decay factor to the cell state, allowing the model to forget irrelevant past information as depicted in [10].
- Output Gate : determines the contribution of the cell state to the output signal [9].
- Cell State : serves as the memory component of the LSTM, updated by the input and forget gates [38].
2.3.3. Selecting Reliable Sensor Data
2.3.4. Failure Analysis and Processing
3. Results and Discussion
3.1. Diagnoser Model Validation
3.2. Fault Diagnosis
3.3. Persistent Feature Selection
3.4. Customized HMFD Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VR | Virtual reality |
AR | Augmented reality |
MSE | Mean squared error |
MAE | Mean absolute error |
MRE | Mean relative error |
HMFD | Head mounted fault display |
AI | Artificial Intelligence |
XPM | eXplainable Predictive Maintenance |
XAI | eXplainable Artificial Intelligence |
SHAP | SHapley Additive exPlanation |
LIME | Local Interpretable Model-Agnostic Explanations |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
LUX | Local Uncertain Explanation |
LORE | LOcal Rule-based Explanation |
PdM | Predictive Maintenance |
LSTM | Long short-term memory |
PSO | Particle Swarm Optimization |
PoC | Proof of concept |
RNN | Recursive neural network |
HMI | Human–machine interface |
References
- Udo, W.; Muhammad, Y. Data-Driven Predictive Maintenance of Wind Turbine Based on SCADA Data. IEEE Access 2021, 9, 162370–162388. [Google Scholar] [CrossRef]
- Sayed-Mouchaweh, M.; Rajaoarisoa, L. Explainable Decision Support Tool for IoT Predictive Maintenance within the context of Industry 4.0. In Proceedings of the 21st IEEE ICMLA, Nassau, Bahamas, 12–14 December 2022; pp. 1492–1497. [Google Scholar] [CrossRef]
- Fitouri, C.; Fnaiech, N.; Varnier, C.; Fnaiech, F.; Zerhouni, N. A Decison-Making Approach for Job Shop Scheduling with Job Depending Degradation and Predictive Maintenance. IFAC-PapersOnLine 2016, 49, 1490–1495. [Google Scholar] [CrossRef]
- Gow, R.; Rabhi, F.A.; Venugopal, S. Anomaly detection in complex real-world application systems. IEEE TNSM 2017, 15, 83–96. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Yan, R.; Gao, R.X. Deep Learning for Improved System Remaining Life Prediction. Procedia CIRP 2018, 72, 1033–1038. [Google Scholar] [CrossRef]
- Rhodes, J.S. Supervised Manifold Learning via Random Forest Geometry-Preserving Proximities. arXiv 2023, arXiv:2307.01077. [Google Scholar]
- Wang, H.; Yao, L.; Wang, H.; Liu, Y.; Li, Z.; Wang, D.; Hu, R.; Tao, L. Supervised Manifold Learning Based on Multi-Feature Information Discriminative Fusion within an Adaptive Nearest Neighbor Strategy Applied to Rolling Bearing Fault Diagnosis. Sensors 2023, 23, 9820. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Bajpai, M.; Pamula, R. A Modified DBSCAN Algorithm for Anomaly Detection in Time-Series Data with Seasonality. Int. Arab JIT 2022, 19, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Rajaoarisoa, L.; Kuk, M.; Bobek, S.; Sayed-Mouchaweh, M. Hybrid and co-learning approach for anomalies prediction and explanation of wind turbine systems. Eng. Appl. Artif. Intell. 2024, 133, 108046. [Google Scholar] [CrossRef]
- Bobek, S.; Nowaczyk, S.; Gama, J.; Pashami, S.; Ribeiro, R.P.; Taghiyarrenani, Z.; Veloso, B.; Rajaoarisoa, L.; Szelazėk, M.; Nalepa, G.J. Why Industry 5.0 Needs XAI 2.0? In Proceedings of the Conference on eXplainable Artificial Intelligence (xAI-2023), Lisbon, Portugal, 26–28 July 2023. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Anchors: High-precision model-agnostic explanations. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence (AAAI’18/IAAI’18/EAAI’18), New Orleans, LA, USA, 2–7 February 2018; pp. 1527–1535. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), New York, NY, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar] [CrossRef]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Pedreschi, D.; Turini, F.; Giannotti, F. Local Rule-Based Explanations of Black Box Decision Systems. arXiv 2018, arXiv:1805.10820[cs]. [Google Scholar] [CrossRef]
- Bobek, S.; Nalepa, G.J. Introducing Uncertainty into Explainable AI Methods. In Proceedings of the Computational Science—ICCS 2021, Krakow, Poland, 16–18 June 2021; Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 444–457. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Randriarison, J.; Rajaoarisoa, L.; Sayed-Mouchaweh, M. Faults explanation based on a machine learning model for predictive maintenance purposes. In Proceedings of the 7th Edition in the Series of the International Conference on Control, Automation and Diagnosis, Rome, Italy, 10–12 May 2023; pp. 01–06. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization. arXiv 2016, arXiv:1610.02391. [Google Scholar]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Caruana, R.; Gehrke, J.; Hooker, G. Accurate Intelligible Models with Pairwise Interactions. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’13), New York, NY, USA, 11–14 August 2013; pp. 623–631. [Google Scholar] [CrossRef]
- Kuk, M.; Bobek, S.; Veloso, B.; Rajaoarisoa, L.; Nalepa, G.J. Feature Importances as a Tool for Root Cause Analysis in Time-Series Events. In Proceedings of the Computational Science—ICCS 2023, Prague, Czech Republic, 3–5 July 2023; Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 408–416. [Google Scholar] [CrossRef]
- Kostoláni, M.; Murín, J.; Kozák, Š. Intelligent predictive maintenance control using augmented reality. In Proceedings of the 22nd ICPC19, Strbske Pleso, Slovakia, 11–14 June 2019; pp. 131–135. [Google Scholar] [CrossRef]
- Cachada, A.; Barbosa, J.; Leitño, P.; Gcraldcs, C.A.; Deusdado, L.; Costa, J.; Teixeira, C.; Teixeira, J.; Moreira, A.H.; Moreira, P.M.; et al. Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Torino, Italy, 4–7 September 2018; Volume 1, pp. 139–146. [Google Scholar] [CrossRef]
- Alves, F.; Badikyan, H.; Antonio Moreira, H.J.; Azevedo, J.; Moreira, P.M.; Romero, L.; Leitao, P. Deployment of a Smart and Predictive Maintenance System in an Industrial Case Study. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 493–498. [Google Scholar] [CrossRef]
- Wolfartsberger, J.; Zenisek, J.; Wild, N. Data-Driven Maintenance: Combining PdM and Mixed Reality-Supported Remote Assistance. Procedia Manuf. 2020, 45, 307–312. [Google Scholar] [CrossRef]
- Bouzidi, A.; Claeys, L.; Randrianandraina, R.; Rajaoarisoa, L.; Wannous, H.; Sayed-Mouchaweh, M. Deep learning for a customised head-mounted fault display system for the maintenance of wind turbines. In Proceedings of the 2024 International Conference on Control, Automation and Diagnosis (ICCAD), Paris, France, 15–17 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Alm, C. Language as Sensor in Human-Centered Computing: Clinical Contexts as Use Cases. Lang. Linguist. Compass 2016, 10, 105–119. [Google Scholar] [CrossRef]
- Hanheide, M.; Bauckhage, C.; Sagerer, G. Combining environmental cues & head gestures to interact with wearable devices. In Proceedings of the 7th International Conference on Multimodal Interfaces, ICMI ’05, New York, NY, USA, 4–6 October 2005; pp. 25–31. [Google Scholar] [CrossRef]
- Luo, H.; Du, J.; Yang, P.; Shi, Y.; Liu, Z.; Yang, D.; Zheng, L.; Chen, X.; Wang, Z.L. Human–Machine Interaction via Dual Modes of Voice and Gesture Enabled by Triboelectric Nanogenerator and Machine Learning. ACS Appl. Mater. Interfaces 2023, 15, 17009–17018. [Google Scholar] [CrossRef] [PubMed]
- Wambsganss, T. Designing Adaptive Argumentation Learning Systems Based on Artificial Intelligence. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (CHI EA ’21), New York, NY, USA, 8–13 May 2021. [Google Scholar] [CrossRef]
- Kyösti, P.; Reed, S.; Sjödin, S. A Decision Support Tool for Optimising Support Site Configuration of Functional Products. Procedia CIRP 2014, 22, 175–180. [Google Scholar] [CrossRef]
- Galanti, R.; de Leoni, M.; Monaro, M.; Navarin, N.; Marazzi, A.; Di Stasi, B.; Maldera, S. An explainable decision support system for predictive process analytics. Eng. Appl. Artif. Intell. 2023, 120, 105904. [Google Scholar] [CrossRef]
- Lachekhab, F.; Benzaoui, M.; Tadjer, S.A.; Bensmaine, A.; Hamma, H. LSTM-Autoencoder Deep Learning Model for Anomaly Detection in Electric Motor. Energies 2024, 17, 2340. [Google Scholar] [CrossRef]
- Kothadiya, D.; Bhatt, C.; Sapariya, K.; Patel, K.; Gil-González, A.B.; Corchado, J.M. Deepsign: Sign Language Detection and Recognition Using Deep Learning. Electronics 2022, 11, 1780. [Google Scholar] [CrossRef]
- Lindemann, B.; Müller, T.; Vietz, H.; Jazdi, N.; Weyrich, M. A survey on long short-term memory networks for time series prediction. Procedia CIRP 2021, 99, 650–655. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 24 February 2020; IEEE: Piscataway, NJ, USA, 2019; pp. 3285–3292. [Google Scholar]
- Staudemeyer, R.C.; Morris, E.R. Understanding LSTM—A tutorial into long short-term memory recurrent neural networks. arXiv 2019, arXiv:1909.09586. [Google Scholar]
- Teimourzadeh Baboli, P.; Babazadeh, D.; Raeiszadeh, A.; Horodyvskyy, S.; Koprek, I. Optimal temperature-based condition monitoring system for wind turbines. Infrastructures 2021, 6, 50. [Google Scholar] [CrossRef]
Component | Variable | Average Value | MAE | MRE |
---|---|---|---|---|
Generator | Rotation per Minute | 1121.74 | 95.18 | 8.48% |
Generator | Bearing Temperature | 48.46 | 3.63 | 7.5% |
Generator | Phase 1 Temperature | 63.10 | 3.41 | 5.4% |
Generator | Phase 2 Temperature | 63.59 | 2.96 | 4.66% |
Generator | Phase 3 Temperature | 63.31 | 2.89 | 4.57% |
Hydraulic group | Oil Temperature | 34.46 | 1.16 | 3.38% |
Gear box | Oil Temperature | 49.20 | 1.65 | 3.36% |
Gear box | Bearing Temperature | 54.76 | 2.23 | 4.07% |
Turbine ID | Component | Timestamp | Remarks |
---|---|---|---|
T07 | GENERATOR_BEARING | 30 April 2016 T12:40:00 | High temperature in generator bearing (replaced sensor) |
TRANSFORMER | 10 July 2016 T03:46:00 | High-temperature transformer | |
TRANSFORMER | 23 August 2016 T02:21:00 | High-temperature transformer. Transformer refrigeration repaired | |
HYDRAULIC_GROUP | 17 June 2017 T11:35:00 | Oil leakage in hub | |
GENERATOR_BEARING | 20 August 2017 T06:08:00 | Generator bearings damaged | |
GENERATOR | 21 August 2017 T14:47:00 | Generator damaged |
Feature ID | Component | Feature Descriptor | Unit | Feature Description |
---|---|---|---|---|
01 | Generator | Gen_RPM_Max | [rpm] | Maximum generator rpm in latest average period |
02 | Generator | Gen_RPM_Std | [rpm] | Std. generator rpm in latest average |
03 | Generator | Gen_Phase1_Temp_Avg | [°C] | Average temperature inside generator in stator windings phase 1 |
04 | Generator | Gen_Phase3_Temp_Avg | [°C] | Average temperature inside generator in stator windings phase 3 |
05 | Generator | Hyd_Oil_Temp_Avg | [°C] | Oil Average temperature in Humidification system |
06 | Rotor | Rtr_RPM_Avg | [rpm] | Average speed of the Rotor |
07 | Production | Prod_LatestAvg_ActPwrGen0 | [Wh] | Active power - generator disconnected (yaw motor hydraulic motor etc.) |
08 | Production | Prod_LatestAvg_ActPwrGen1 | [Wh] | Active power—generator connected in delta |
09 | Production | Prod_LatestAvg_ActPwrGen2 | [Wh] | Active power—generator connected in star |
10 | Transformer | HVTrafo_Phase1_Temp_Avg | [°C] | Average temperature in HV transformer phase L1 |
11 | Transformer | HVTrafo_Phase2_Temp_Avg | [°C] | Average temperature in HV transformer phase L2 |
12 | Grid | Grd_InverterPhase1_Temp_Avg | [°C] | Average temperature measured by the IGBT-driver on the grid side inverter |
13 | Spinner | Spin_Temp_Avg | [°C] | Average temperature in the nose cone |
14 | Blades | Blds_PitchAngle_Min | [°] | Average angle |
15 | Controller | Cont_VCP_WtrTemp_Avg | [°C] | Average temperature on the VCP-board |
16 | Grid | Grd_Prod_ReactPwr_Max | [kVAr] | Maximum grid reactive power |
17 | Grid | Grd_Prod_PsblePwr_Max | [kW] | Maximum possible grid active power |
18 | Grid | Grd_Prod_PsbleInd_Max | [kVar] | Maximum possible inductive reactive power |
19 | Grid | Grd_Prod_PsbleCap_Max | [kVar] | Maximum possible capacitive reactive power |
20 | Grid | Grd_Prod_CurPhse2_Avg | [A] | Averaged current in phase 2 |
21 | Grid | Grd_Prod_CurPhse3_Avg | [A] | Averaged current in phase 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzidi, A.; Rajaoarisoa, L.; Claeys, L. Explainable Artificial Intelligence Approach for Improving Head-Mounted Fault Display Systems. Future Internet 2024, 16, 282. https://doi.org/10.3390/fi16080282
Bouzidi A, Rajaoarisoa L, Claeys L. Explainable Artificial Intelligence Approach for Improving Head-Mounted Fault Display Systems. Future Internet. 2024; 16(8):282. https://doi.org/10.3390/fi16080282
Chicago/Turabian StyleBouzidi, Abdelaziz, Lala Rajaoarisoa, and Luka Claeys. 2024. "Explainable Artificial Intelligence Approach for Improving Head-Mounted Fault Display Systems" Future Internet 16, no. 8: 282. https://doi.org/10.3390/fi16080282
APA StyleBouzidi, A., Rajaoarisoa, L., & Claeys, L. (2024). Explainable Artificial Intelligence Approach for Improving Head-Mounted Fault Display Systems. Future Internet, 16(8), 282. https://doi.org/10.3390/fi16080282