Watch the Skies: A Study on Drone Attack Vectors, Forensic Approaches, and Persisting Security Challenges
Abstract
:1. Introduction
1.1. Research Methodology and Selection Criteria
- Query A: ((“drone security” OR “UAV security” OR “unmanned aerial vehicle security”) AND (“forensics” OR “cybersecurity” OR “digital forensics”) AND (“smart cities” OR “urban management”));
- Query B: ((“drone forensics” OR “UAV forensics”) AND (“data integrity” OR “digital evidence” OR “incident response”) AND (“cyber attacks” OR “security threats”));
- Query C: ((“unmanned aerial vehicle” OR “drone technology”) AND (“threat models” OR “attack vectors” OR “security vulnerabilities”) AND (“data protection” OR “encryption” OR “secure communication”));
- Query D: ((“drone operation” OR “UAV deployment”) AND (“security protocols” OR “forensic methodologies”) AND (“case studies” OR “real-world applications”));
- Query E: ((“drone forensic analysis” OR “UAV forensic techniques”) AND (“machine learning” OR “artificial intelligence” OR “predictive analytics”) AND (“emerging trends” OR “future research” OR “innovation”)).
1.2. Comparison to Other Survey Papers and Contributions
2. Overview of Drone Technologies
2.1. Drone Anatomy
- Planning layer: Defines missions or services and develops executable plans; this is essential for disaster management.
- Flight management layer: Executes the planned route, managing dynamic flight, obstacle avoidance, and real-time path modifications to ensure secure mission completion.
- Control layer: Interfaces directly with drone hardware, sending commands to sensors and actuators and handling real-time adjustments to maintain the stability and trajectory.
2.2. Drone Forensics Artifacts
3. Drone Vulnerabilities and Attack Vectors
3.1. GPS Spoofing
3.2. Signal Jamming
3.3. Network Intrusion
3.4. Malicious Code Injection
3.5. Physical Tampering
3.6. Eavesdropping
3.7. Supply Chain Interference
4. Drone Forensics and Security Solutions—Review
5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Research Selection Criteria
Appendix B. Research Inclusion and Exclusion Criteria
References
- FAA Aerospace Forecast FY 2022-2042|Federal Aviation Administration. Available online: https://www.faa.gov/dataresearch/aviation/faa-aerospace-forecast-fy-2022-2042 (accessed on 4 July 2023).
- Sihag, V.; Choudhary, G.; Choudhary, P.; Dragoni, N. Cyber4Drone: A Systematic Review of Cyber Security and Forensics in Next-Generation Drones. Drones 2023, 7, 430. [Google Scholar] [CrossRef]
- Ceviz, O.; Sadioglu, P.; Sen, S. A survey of security in uavs and fanets: Issues, threats, analysis of attacks, and solutions. arXiv 2023, arXiv:2306.14281. [Google Scholar]
- Shafik, W.; Matinkhah, S.M.; Shokoor, F. Cybersecurity in unmanned aerial vehicles: A review. Int. J. Smart Sens. Intell. Syst. 2023, 16, 12. [Google Scholar] [CrossRef]
- Pandey, G.K.; Gurjar, D.S.; Nguyen, H.H.; Yadav, S. Security threats and mitigation techniques in UAV communications: A comprehensive survey. IEEE Access 2022, 10, 112858–112897. [Google Scholar] [CrossRef]
- Siddiqi, M.A.; Iwendi, C.; Jaroslava, K.; Anumbe, N. Analysis on security-related concerns of unmanned aerial vehicle: Attacks, limitations, and recommendations. Math. Biosci. Eng. 2022, 19, 2641–2670. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Gao, R.; Lei, C.; Feng, W.; Ge, N.; Jin, S.; Quek, T.Q. Physical layer security for UAV communications: A comprehensive survey. China Commun. 2022, 19, 77–115. [Google Scholar] [CrossRef]
- Vergouw, B.; Nagel, H.; Bondt, G.; Custers, B. Drone technology: Types, payloads, applications, frequency spectrum issues and future developments. In The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–45. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Amici, C.; Ceresoli, F.; Pasetti, M.; Saponi, M.; Tiboni, M.; Zanoni, S. Review of propulsion system design strategies for unmanned aerial vehicles. Appl. Sci. 2021, 11, 5209. [Google Scholar] [CrossRef]
- Chiper, F.L.; Martian, A.; Vladeanu, C.; Marghescu, I.; Craciunescu, R.; Fratu, O. Drone detection and defense systems: Survey and a software-defined radio-based solution. Sensors 2022, 22, 1453. [Google Scholar] [CrossRef]
- Joshi, D.; Deb, D.; Muyeen, S. Comprehensive review on electric propulsion system of unmanned aerial vehicles. Front. Energy Res. 2022, 10, 752012. [Google Scholar] [CrossRef]
- Velusamy, P.; Rajendran, S.; Mahendran, R.K.; Naseer, S.; Shafiq, M.; Choi, J.G. Unmanned Aerial Vehicles (UAV) in precision agriculture: Applications and challenges. Energies 2021, 15, 217. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.T.; Congalton, R.G. Issues in Unmanned Aerial Systems (UAS) data collection of complex forest environments. Remote Sens. 2018, 10, 908. [Google Scholar] [CrossRef]
- Apostolidis, S.D.; Kapoutsis, P.C.; Kapoutsis, A.C.; Kosmatopoulos, E.B. Cooperative multi-UAV coverage mission planning platform for remote sensing applications. Auton. Robot. 2022, 46, 373–400. [Google Scholar] [CrossRef]
- Rakha, T.; Gorodetsky, A. Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Autom. Constr. 2018, 93, 252–264. [Google Scholar] [CrossRef]
- Sharma, A.; Vanjani, P.; Paliwal, N.; Basnayaka, C.M.W.; Jayakody, D.N.K.; Wang, H.C.; Muthuchidambaranathan, P. Communication and networking technologies for UAVs: A survey. J. Netw. Comput. Appl. 2020, 168, 102739. [Google Scholar] [CrossRef]
- Areias, B.; Martins, A.; Paula, N.; Reis, A.B.; Sargento, S. A control and communications platform for procedural mission planning with multiple aerial drones. Pers. Ubiquitous Comput. 2022, 26, 1105–1115. [Google Scholar] [CrossRef]
- Viswanathan, S.; Baig, Z. Digital forensics for drones: A study of tools and techniques. In Proceedings of the Applications and Techniques in Information Security: 11th International Conference, ATIS 2020, Brisbane, QLD, Australia, 12–13 November 2020; Proceedings 11. Springer: Berlin/Heidelberg, Germany, 2020; pp. 29–41. [Google Scholar] [CrossRef]
- Barton, T.E.A.; Azhar, M.H.B. Forensic analysis of popular UAV systems. In Proceedings of the 7th International Conference on Emerging Security Technologies (EST), Canterbury, UK, 6–8 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 91–96. [Google Scholar] [CrossRef]
- Barton, T.E.A.; Azhar, M.H.B. Open source forensics for a multi-platform drone system. In Proceedings of the Digital Forensics and Cyber Crime: 9th International Conference, ICDF2C 2017, Prague, Czech Republic, 9–11 October 2017; Proceedings 9. Springer: Berlin/Heidelberg, Germany, 2018; pp. 83–96. [Google Scholar] [CrossRef]
- Roder, A.; Choo, K.K.R.; Le-Khac, N.A. Unmanned aerial vehicle forensic investigation process: Dji phantom 3 drone as a case study. arXiv 2018, arXiv:1804.08649. [Google Scholar]
- Mekala, S.H.; Baig, Z. Digital forensics for drone data–intelligent clustering using self organising maps. In Proceedings of the Future Network Systems and Security: 5th International Conference, FNSS 2019, Melbourne, VIC, Australia, 27–29 November 2019; Proceedings 5. Springer: Berlin/Heidelberg, Germany, 2019; pp. 172–189. [Google Scholar] [CrossRef]
- Siddappaji, B.; Akhilesh, K. Role of cyber security in drone technology. In Smart Technologies: Scope and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 169–178. [Google Scholar] [CrossRef]
- Nguyen, H.P.D.; Nguyen, D.D. Drone application in smart cities: The general overview of security vulnerabilities and countermeasures for data communication. In Development and Future of Internet of Drones (IoD): Insights, Trends and Road Ahead; Springer: Berlin/Heidelberg, Germany, 2021; pp. 185–210. [Google Scholar] [CrossRef]
- Yahuza, M.; Idris, M.Y.I.; Ahmedy, I.B.; Wahab, A.W.A.; Nandy, T.; Noor, N.M.; Bala, A. Internet of drones security and privacy issues: Taxonomy and open challenges. IEEE Access 2021, 9, 57243–57270. [Google Scholar] [CrossRef]
- Alhussan, A.A.; Al-Dhaqm, A.; Yafooz, W.M.; Razak, S.B.A.; Emara, A.H.M.; Khafaga, D.S. Towards development of a high abstract model for drone forensic domain. Electronics 2022, 11, 1168. [Google Scholar] [CrossRef]
- Bouafif, H.; Kamoun, F.; Iqbal, F. Towards a better understanding of drone forensics: A case study of parrot AR drone 2.0. Int. J. Digit. Crime Forensics 2020, 12, 35–57. [Google Scholar] [CrossRef]
- Yaacoub, J.P.; Noura, H.; Salman, O.; Chehab, A. Security analysis of drones systems: Attacks, limitations, and recommendations. Internet Things 2020, 11, 100218. [Google Scholar] [CrossRef]
- Khan, S.Z.; Mohsin, M.; Iqbal, W. On GPS spoofing of aerial platforms: A review of threats, challenges, methodologies, and future research directions. PeerJ Comput. Sci. 2021, 7, e507. [Google Scholar] [CrossRef]
- Davidovich, B.; Nassi, B.; Elovici, Y. Towards the detection of GPS spoofing attacks against drones by analyzing camera’s video stream. Sensors 2022, 22, 2608. [Google Scholar] [CrossRef] [PubMed]
- Altaweel, A.; Mukkath, H.; Kamel, I. GPS Spoofing attacks in FANETs: A systematic literature review. IEEE Access 2023, 11, 55233–55280. [Google Scholar] [CrossRef]
- Pardhasaradhi, B.; Cenkeramaddi, L.R. GPS spoofing detection and mitigation for drones using distributed radar tracking and fusion. IEEE Sens. J. 2022, 22, 11122–11134. [Google Scholar] [CrossRef]
- Greco, C.; Pace, P.; Basagni, S.; Fortino, G. Jamming detection at the edge of drone networks using multi-layer perceptrons and decision trees. Appl. Soft Comput. 2021, 111, 107806. [Google Scholar] [CrossRef]
- Arthur, M.P. Detecting signal spoofing and jamming attacks in UAV networks using a lightweight IDS. In Proceedings of the 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), Beijing, China, 28–31 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Di Pietro, R.; Oligeri, G.; Tedeschi, P. Jam-me: Exploiting jamming to accomplish drone mission. In Proceedings of the 2019 IEEE Conference on Communications and Network Security (CNS), Washington, DC, USA, 10–12 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Mekdad, Y.; Acar, A.; Aris, A.; Fergougui, A.E.; Conti, M.; Lazzeretti, R.; Uluagac, S. Exploring Jamming and Hijacking Attacks for Micro Aerial Drones. arXiv 2024, arXiv:2403.03858. [Google Scholar]
- Pawlak, J.; Li, Y.; Price, J.; Wright, M.; Al Shamaileh, K.; Niyaz, Q.; Devabhaktuni, V. A machine learning approach for detecting and classifying jamming attacks against ofdm-based uavs. In Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning, Abu Dhabi, United Arab Emirates, 28 June–2 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Hartmann, K.; Giles, K. UAV exploitation: A new domain for cyber power. In Proceedings of the 8th International Conference on Cyber Conflict (CyCon), Tallinn, Estonia, 31 May–3 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 205–221. [Google Scholar] [CrossRef]
- Kong, P.Y. A survey of cyberattack countermeasures for unmanned aerial vehicles. IEEE Access 2021, 9, 148244–148263. [Google Scholar] [CrossRef]
- Lykou, G.; Moustakas, D.; Gritzalis, D. Defending airports from UAS: A survey on cyber-attacks and counter-drone sensing technologies. Sensors 2020, 20, 3537. [Google Scholar] [CrossRef]
- Mekdad, Y.; Aris, A.; Babun, L.; El Fergougui, A.; Conti, M.; Lazzeretti, R.; Uluagac, A.S. A survey on security and privacy issues of UAVs. Comput. Netw. 2023, 224, 109626. [Google Scholar] [CrossRef]
- Ly, B.; Ly, R. Cybersecurity in unmanned aerial vehicles (UAVs). J. Cyber Secur. Technol. 2021, 5, 120–137. [Google Scholar] [CrossRef]
- Baig, Z.; Syed, N.; Mohammad, N. Securing the smart city airspace: Drone cyber attack detection through machine learning. Future Internet 2022, 14, 205. [Google Scholar] [CrossRef]
- Liao, L.; Xie, F.; Chen, J. Analysis on Technology of High-Energy Counter-UAVs Laser Weapon. In Proceedings of the 4th International Conference on Vision, Image and Signal Processing, Bangkok, Thailand, 9–11 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Lyu, C.; Zhan, R. Global analysis of active defense technologies for unmanned aerial vehicle. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 6–31. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Mohsin, M.; Ali, S.M.Z. Survey and technological analysis of laser and its defense applications. Def. Technol. 2021, 17, 583–592. [Google Scholar] [CrossRef]
- Chaari, M.Z.; Al-Maadeed, S. The game of drones/weapons makers’ war on drones. In Unmanned Aerial Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 465–493. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Applications of lasers for tactical military operations. IEEE Access 2017, 5, 20736–20753. [Google Scholar] [CrossRef]
- Omolara, A.E.; Alawida, M.; Abiodun, O.I. Drone cybersecurity issues, solutions, trend insights and future perspectives: A survey. Neural Comput. Appl. 2023, 35, 23063–23101. [Google Scholar] [CrossRef]
- Manesh, M.R.; Kaabouch, N. Cyber-attacks on unmanned aerial system networks: Detection, countermeasure, and future research directions. Comput. Secur. 2019, 85, 386–401. [Google Scholar] [CrossRef]
- Vattapparamban, E.; Güvenç, I.; Yurekli, A.I.; Akkaya, K.; Uluağaç, S. Drones for smart cities: Issues in cybersecurity, privacy, and public safety. In Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 216–221. [Google Scholar] [CrossRef]
- Rugo, A.; Ardagna, C.A.; Ioini, N.E. A security review in the UAVNet era: Threats, countermeasures, and gap analysis. ACM Comput. Surv. 2022, 55, 1–35. [Google Scholar] [CrossRef]
- Vajravelu, A.; Ashok Kumar, N.; Sarkar, S.; Degadwala, S. Security threats of unmanned aerial vehicles. In Wireless Networks: Cyber Security Threats and Countermeasures; Springer: Berlin/Heidelberg, Germany, 2023; pp. 133–164. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Song, H. Counter-unmanned aircraft system (s)(C-UAS): State of the art, challenges, and future trends. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 4–29. [Google Scholar] [CrossRef]
- Gabrielsson, J.; Bugeja, J.; Vogel, B. Hacking a Commercial drone with open-source software: Exploring data privacy violations. In Proceedings of the 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Rubbestad, G.; Söderqvist, W. Hacking a Wi-Fi Based Drone. 2021. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299887 (accessed on 17 May 2024).
- Gabrielsson, J. Hacking Your Drone Data. 2021. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-41403 (accessed on 17 May 2024).
- Westerlund, O.; Asif, R. Drone hacking with raspberry-pi 3 and wifi pineapple: Security and privacy threats for the internet-of-things. In Proceedings of the 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Karmakar, G.; Petty, M.; Ahmed, H.; Das, R.; Kamruzzaman, J. Security of Internet of Things Devices: Ethical Hacking a Drone and its Mitigation Strategies. In Proceedings of the 2022 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, Australia, 18–20 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Astaburuaga, I.; Lombardi, A.; La Torre, B.; Hughes, C.; Sengupta, S. Vulnerability analysis of ar. drone 2.0, an embedded linux system. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 666–672. [Google Scholar] [CrossRef]
- Lakew Yihunie, F.; Singh, A.K.; Bhatia, S. Assessing and exploiting security vulnerabilities of unmanned aerial vehicles. In Proceedings of the Smart Systems and IoT: Innovations in Computing: Proceeding of SSIC 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 701–710. [Google Scholar] [CrossRef]
- El-Rewini, Z.; Sadatsharan, K.; Sugunaraj, N.; Selvaraj, D.F.; Plathottam, S.J.; Ranganathan, P. Cybersecurity attacks in vehicular sensors. IEEE Sens. J. 2020, 20, 13752–13767. [Google Scholar] [CrossRef]
- Teixidó, P.; Gómez-Galán, J.A.; Caballero, R.; Pérez-Grau, F.J.; Hinojo-Montero, J.M.; Muñoz-Chavero, F.; Aponte, J. Secured perimeter with electromagnetic detection and tracking with drone embedded and static cameras. Sensors 2021, 21, 7379. [Google Scholar] [CrossRef] [PubMed]
- OConnor, T.; Enck, W.; Reaves, B. Blinded and confused: Uncovering systemic flaws in device telemetry for smart-home internet of things. In Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, Miami, FL, USA, 15–17 May 2019; pp. 140–150. [Google Scholar] [CrossRef]
- Rong-Xiao, G.; Ji-wei, T.; Bu-hong, W.; Fu-te, S. Cyber-physical attack threats analysis for UAVs from CPS perspective. In Proceedings of the 2020 International Conference on Computer Engineering and Application (ICCEA), Guangzhou, China, 18–20 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 259–263. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Wu, S.; Zhou, Y.; Yang, L.; Xu, Y.; Zhang, T.; Pan, Q. A survey on cybersecurity attacks and defenses for unmanned aerial systems. J. Syst. Archit. 2023, 138, 102870. [Google Scholar] [CrossRef]
- Salamh, F.E.; Karabiyik, U.; Rogers, M.; Al-Hazemi, F. Drone disrupted denial of service attack (3DOS): Towards an incident response and forensic analysis of remotely piloted aerial systems (RPASs). In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 704–710. [Google Scholar] [CrossRef]
- Ouiazzane, S.; Addou, M.; Barramou, F. A multiagent and machine learning based denial of service intrusion detection system for drone networks. In Geospatial Intelligence: Applications and Future Trends; Springer: Berlin/Heidelberg, Germany, 2022; pp. 51–65. [Google Scholar] [CrossRef]
- De Carvalho Bertoli, G.; Pereira, L.A.; Saotome, O. Classification of denial of service attacks on Wi-Fi-based unmanned aerial vehicle. In Proceedings of the 2021 10th Latin-American Symposium on Dependable Computing (LADC), Florianópolis, Brazil, 22–26 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Vasconcelos, G.; Carrijo, G.; Miani, R.; Souza, J.; Guizilini, V. The impact of DoS attacks on the AR. Drone 2.0. In Proceedings of the 2016 13th Latin American Robotics Symposium and 4th Brazilian Robotics Symposium (LARS/SBR), Recife, Brazil, 8–12 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 127–132. [Google Scholar] [CrossRef]
- Krichen, M.; Adoni, W.Y.H.; Mihoub, A.; Alzahrani, M.Y.; Nahhal, T. Security challenges for drone communications: Possible threats, attacks and countermeasures. In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 184–189. [Google Scholar] [CrossRef]
- Elkhider, S.M.; El-Ferik, S.; Saif, A.W.A. Containment control of multiagent systems subject to denial of service attacks. IEEE Access 2022, 10, 48102–48111. [Google Scholar] [CrossRef]
- Orhun, D.; Karakoca, Y.E.; Camadan, E.; Baykali, F. Hybrid cyber security of unmanned aerial vehicles. Int. J. Appl. Methods Electron. Comput. 2023, 11, 179–185. [Google Scholar] [CrossRef]
- Abdulrazak, C. Cybersecurity Threat Analysis And Attack Simulations For Unmanned Aerial Vehicle Networks. arXiv 2024, arXiv:2404.16842. [Google Scholar]
- Dwivedi, K.; Govindarajan, P.; Srinivasan, D.; Keerthi Sanjana, A.; Selvanambi, R.; Karuppiah, M. Intelligent autonomous drones in Industry 4.0. In Artificial Intelligence and Cyber Security in Industry 4.0; Springer: Berlin/Heidelberg, Germany, 2023; pp. 133–163. [Google Scholar] [CrossRef]
- Schmitt, C.; Körner, J.; Leuck, S. PSAT–A Package Structure Analyzation Tool to Regain Control of Hijacked Drones. In Proceedings of the 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), Barcelona, Spain, 1–5 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–10. [Google Scholar] [CrossRef]
- Mohammed, A.B.; Fourati, L.C.; Fakhrudeen, A.M. Comprehensive systematic review of intelligent approaches in UAV-based intrusion detection, blockchain, and network security. Comput. Netw. 2023, 239, 110140. [Google Scholar] [CrossRef]
- Kolisnyk, M.; Piskachov, O. Analysis and Systematization of Vulnerabilities of Drone Subsystems. In Proceedings of the International Conference on Information and Communication Technologies in Education, Research, and Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 65–81. [Google Scholar] [CrossRef]
- Chaudhary, D.; Soni, T.; Vasudev, K.L.; Saleem, K. A modified lightweight authenticated key agreement protocol for Internet of Drones. Internet Things 2023, 21, 100669. [Google Scholar] [CrossRef]
- Mahmood, K.; Ghaffar, Z.; Farooq, M.; Yahya, K.; Das, A.K.; Chaudhry, S.A. A Security Enhanced Chaotic-Map Based Authentication Protocol for Internet of Drones. IEEE Internet Things J. 2024, 11, 22301–22309. [Google Scholar] [CrossRef]
- Jamil, A.M.; Hadi, H.J.; Li, S.; Cao, Y.; Ahmed, N.; Hussain, F.B.; Suthaputchakun, C.; Wang, X. Detection of Targeted Attacks Using Medium-Interaction Honeypot for Unmanned Aerial Vehicle. In Proceedings of the International Conference on Digital Forensics and Cyber Crime; Springer: Berlin/Heidelberg, Germany, 2023; pp. 164–185. [Google Scholar] [CrossRef]
- Costin, A.; Khandker, S.; Turtiainen, H.; Hämäläinen, T. Cybersecurity of COSPAS-SARSAT and EPIRB: Threat and attacker models, exploits, future research. arXiv 2023, arXiv:2302.08361. [Google Scholar]
- Yasmine, G.; Maha, G.; Alaoui, A.E.H. Anti-drone systems: Current intelligent countermeasures from low to high risks. In Proceedings of the 2023 7th IEEE Congress on Information Science and Technology (CiSt), Agadir-Essaouira, Morocco, 16–22 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 317–322. [Google Scholar] [CrossRef]
- Ardizzon, F.; Salvaterra, D.; Piana, M.; Tomasin, S. Energy-Based Optimization of Physical-Layer Challenge-Response Authentication with Drones. arXiv 2024, arXiv:2405.03608. [Google Scholar]
- Li, Z.; Chen, Q.; Mo, W.; Wang, X.; Hu, L.; Cao, Y. Converging Blockchain and Deep Learning in UAV Network Defense Strategy: Ensuring Data Security During Flight. In Proceedings of the International Conference on Artificial Intelligence Security and Privacy; Springer: Berlin/Heidelberg, Germany, 2023; pp. 156–171. [Google Scholar] [CrossRef]
- Sharma, J.; Mehra, P.S. Secure communication in IOT-based UAV networks: A systematic survey. Internet Things 2023, 23, 100883. [Google Scholar] [CrossRef]
- Sharma, S.; Sarangi, P.K.; Sharma, B.; Subudhi, G.B. Implementation Analysis of Ransomware and Unmanned Aerial Vehicle Attacks: Mitigation Methods and UAV Security Recommendations. In Advances in Aerial Sensing and Imaging; Wiley and Sons: Hoboken, NJ, USA, 2024; pp. 165–211. [Google Scholar] [CrossRef]
- Bouke, M.A.; Abdullah, A. SMRD: A Novel Cyber Warfare Modeling Framework for Social Engineering, Malware, Ransomware, and Distributed Denial-of-Service Based on a System of Nonlinear Differential Equations. J. Appl. Artif. Intell. 2024, 5, 54–68. [Google Scholar] [CrossRef]
- Almerza, N. Agent-Based Modeling to Determine the Risk to a Swarm of Unmanned Aerial Vehicles under an Adversarial Artificial Intelligence Attack. Ph.D. Thesis, Marymount University, Arlington, VA, USA, 2023. Available online: https://www.proquest.com/docview/2828097307/abstract/477A601D16F34C9DPQ/1 (accessed on 17 May 2024).
- Hoang, T.M.; Nguyen, N.M.; Duong, T.Q. Detection of eavesdropping attack in UAV-aided wireless systems: Unsupervised learning with one-class SVM and k-means clustering. IEEE Wirel. Commun. Lett. 2019, 9, 139–142. [Google Scholar] [CrossRef]
- Shaikhanov, Z.; Badran, S.; Jornet, J.M.; Mittleman, D.M.; Knightly, E.W. Remotely positioned metasurface-drone attack. In Proceedings of the 24th International Workshop on Mobile Computing Systems and Applications, Newport Beach, CA, USA, 22–23 February 2023; pp. 110–116. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Agrawal, A.; Goyal, A.; Luong, N.C.; Niyato, D.; Yu, F.R.; Guizani, M. Fast, reliable, and secure drone communication: A comprehensive survey. IEEE Commun. Surv. Tutorials 2021, 23, 2802–2832. [Google Scholar] [CrossRef]
- Li, K.; Voicu, R.C.; Kanhere, S.S.; Ni, W.; Tovar, E. Energy efficient legitimate wireless surveillance of UAV communications. IEEE Trans. Veh. Technol. 2019, 68, 2283–2293. [Google Scholar] [CrossRef]
- AL-Dosari, K.; Deif, A.M.; Kucukvar, M.; Onat, N.; Fetais, N. Security Supply Chain Using UAVs: Validation and Development of a UAV-Based Model for Qatar’s Mega Sporting Events. Drones 2023, 7, 555. [Google Scholar] [CrossRef]
- Sobb, T.; Turnbull, B.; Moustafa, N. Supply chain 4.0: A survey of cyber security challenges, solutions and future directions. Electronics 2020, 9, 1864. [Google Scholar] [CrossRef]
- Sontowski, S.; Gupta, M.; Chukkapalli, S.S.L.; Abdelsalam, M.; Mittal, S.; Joshi, A.; Sandhu, R. Cyber attacks on smart farming infrastructure. In Proceedings of the 2020 IEEE 6th International Conference on Collaboration and Internet Computing (CIC), Atlanta, GA, USA, 1–3 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 135–143. [Google Scholar] [CrossRef]
- Pyzynski, M.; Balcerzak, T. Cybersecurity of the unmanned aircraft system (UAS). J. Intell. Robot. Syst. 2021, 102, 35. [Google Scholar] [CrossRef]
- Vacek, J.J. The next frontier in drone law: Liability for cybersecurity negligence and data breaches for UAS operators. Campbell Law Rev. 2017, 39, 135. [Google Scholar]
- Jacobsen, R.H.; Marandi, A. Security threats analysis of the unmanned aerial vehicle system. In Proceedings of the MILCOM 2021–2021 IEEE Military Communications Conference (MILCOM), San Diego, CA, USA, 29 November–2 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 316–322. [Google Scholar] [CrossRef]
- Kulp, P.; Mei, N. A framework for sensing radio frequency spectrum attacks on medical delivery drones. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 408–413. [Google Scholar] [CrossRef]
- Rural, S. Current and Future Regulatory Requirements that Impact on the Safe Commercial and Recreational Use of Remotely Piloted Aircraft Systems (RPAS), Unmanned Aerial Systems (UAS) and Associated Systems; Parliament of Australia: Canberra, ACT, Australia, 2018.
- Swan, R. Drone Strikes: An Overview, Articulation and Assessment of the United States’ Position under International Law; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2019. [Google Scholar] [CrossRef]
- Kwik, J. Mitigating the Risk of Autonomous Weapon Misuse by Insurgent Groups. Laws 2023, 12, 5. [Google Scholar] [CrossRef]
- Wesson, K.; Humphreys, T. Hacking drones. Sci. Am. 2013, 309, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Bunse, C.; Plotz, S. Security analysis of drone communication protocols. In Proceedings of the Engineering Secure Software and Systems: 10th International Symposium, ESSoS 2018, Paris, France, 26–27 June 2018; Proceedings 10. Springer: Berlin/Heidelberg, Germany, 2018; pp. 96–107. [Google Scholar] [CrossRef]
- Tedeschi, P.; Oligeri, G.; Di Pietro, R. Leveraging jamming to help drones complete their mission. IEEE Access 2019, 8, 5049–5064. [Google Scholar] [CrossRef]
- Kou, L.; Ding, S.; Wu, T.; Dong, W.; Yin, Y. An intrusion detection model for drone communication network in SDN environment. Drones 2022, 6, 342. [Google Scholar] [CrossRef]
- Alhawi, O.M.; Mustafa, M.A.; Cordiro, L.C. Finding security vulnerabilities in unmanned aerial vehicles using software verification. In Proceedings of the 2019 International Workshop on Secure Internet of Things (SIOT), Luxembourg, 26 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Oláh, N.; Molnár, B.; Huszti, A. Secure Registration Protocol for the Internet of Drones Using Blockchain and Physical Unclonable Function Technology. Symmetry 2023, 15, 1886. [Google Scholar] [CrossRef]
- Guvenc, I.; Koohifar, F.; Singh, S.; Sichitiu, M.L.; Matolak, D. Detection, tracking, and interdiction for amateur drones. IEEE Commun. Mag. 2018, 56, 75–81. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.J.; Treiblmaier, H. Drones for supply chain management and logistics: A review and research agenda. Int. J. Logist. Res. Appl. 2023, 26, 708–731. [Google Scholar] [CrossRef]
- Renduchintala, A.L.S.; Albehadili, A.; Javaid, A.Y. Drone forensics: Digital flight log examination framework for micro drones. In Proceedings of the 2017 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 14–16 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 91–96. [Google Scholar] [CrossRef]
- Azhar, M.; Barton, T.E.A.; Islam, T. Drone forensic analysis using open source tools. J. Digit. Forensics Secur. Law 2018, 13, 6. [Google Scholar] [CrossRef]
- Bouafif, H.; Kamoun, F.; Iqbal, F.; Marrington, A. Drone forensics: Challenges and new insights. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Iqbal, F.; Yankson, B.; AlYammahi, M.A.; AlMansoori, N.; Qayed, S.M.; Shah, B.; Baker, T. Drone forensics: Examination and analysis. Int. J. Electron. Secur. Digit. Forensics 2019, 11, 245–264. [Google Scholar] [CrossRef]
- Kao, D.Y.; Chen, M.C.; Wu, W.Y.; Lin, J.S.; Chen, C.H.; Tsai, F. Drone forensic investigation: DJI spark drone as a case study. Procedia Comput. Sci. 2019, 159, 1890–1899. [Google Scholar] [CrossRef]
- Mantas, E.; Patsakis, C. GRYPHON: Drone forensics in dataflash and telemetry logs. In Proceedings of the Advances in Information and Computer Security: 14th International Workshop on Security, IWSEC 2019, Tokyo, Japan, 28–30 August 2019; Proceedings 14. Springer: Berlin/Heidelberg, Germany, 2019; pp. 377–390. [Google Scholar] [CrossRef]
- Yousef, M.; Iqbal, F.; Hussain, M. Drone forensics: A detailed analysis of emerging DJI models. In Proceedings of the 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 66–71. [Google Scholar] [CrossRef]
- Al-Room, K.; Iqbal, F.; Baker, T.; Shah, B.; Yankson, B.; MacDermott, A.; Hung, P.C. Drone forensics: A case study of digital forensic investigations conducted on common drone models. Int. J. Digit. Crime Forensics 2021, 13, 1–25. [Google Scholar] [CrossRef]
- Al-Dhaqm, A.; Ikuesan, R.A.; Kebande, V.R.; Razak, S.; Ghabban, F.M. Research challenges and opportunities in drone forensics models. Electronics 2021, 10, 1519. [Google Scholar] [CrossRef]
- Alotaibi, F.M.; Al-Dhaqm, A.; Al-Otaibi, Y.D. A novel forensic readiness framework applicable to the drone forensics field. Comput. Intell. Neurosci. 2022, 2022, e8002963. [Google Scholar] [CrossRef]
- Lan, J.K.W.; Lee, F.K.W. Drone forensics: A case study on dji mavic air 2. In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 13–16 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 291–296. [Google Scholar] [CrossRef]
- Da Silva, L.M.; Menezes, H.B.d.B.; Luccas, M.d.S.; Mailer, C.; Pinto, A.S.R.; Boava, A.; Rodrigues, M.; Ferrão, I.G.; Estrella, J.C.; Branco, K.R.L.J.C. Development of an efficiency platform based on MQTT for UAV controlling and DoS attack detection. Sensors 2022, 22, 6567. [Google Scholar] [CrossRef] [PubMed]
- Buccafurri, F.; De Angelis, V.; Lazzaro, S. MQTT-A: A broker-bridging P2P architecture to achieve anonymity in MQTT. IEEE Internet Things J. 2023, 10, 15443–15463. [Google Scholar] [CrossRef]
- Xiong, F.; Li, A.; Wang, H.; Tang, L. An SDN-MQTT based communication system for battlefield UAV swarms. IEEE Commun. Mag. 2019, 57, 41–47. [Google Scholar] [CrossRef]
- Baig, Z.; Khan, M.A.; Mohammad, N.; Brahim, G.B. Drone forensics and machine learning: Sustaining the investigation process. Sustainability 2022, 14, 4861. [Google Scholar] [CrossRef]
- Schiller, N.; Chlosta, M.; Schloegel, M.; Bars, N.; Eisenhofer, T.; Scharnowski, T.; Domke, F.; Schönherr, L.; Holz, T. Drone Security and the Mysterious Case of DJI’s DroneID. In Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 27 February–3 March 2023. [Google Scholar]
- Kim, K.; Kang, Y. Drone security module for UAV data encryption. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1672–1674. [Google Scholar] [CrossRef]
- Samanth, S.; Prema, K.V.; Balachandra, M. Security in internet of drones: A comprehensive review. Cogent Eng. 2022, 9, 2029080. [Google Scholar] [CrossRef]
- Cheema, M.A.; Ansari, R.I.; Ashraf, N.; Hassan, S.A.; Qureshi, H.K.; Bashir, A.K.; Politis, C. Blockchain-based secure delivery of medical supplies using drones. Comput. Netw. 2022, 204, 108706. [Google Scholar] [CrossRef]
- Bera, B.; Chattaraj, D.; Das, A.K. Designing secure blockchain-based access control scheme in IoT-enabled Internet of Drones deployment. Comput. Commun. 2020, 153, 229–249. [Google Scholar] [CrossRef]
- Singh, M.; Aujla, G.S.; Bali, R.S. A deep learning-based blockchain mechanism for secure internet of drones environment. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4404–4413. [Google Scholar] [CrossRef]
- Gupta, R.; Kumari, A.; Tanwar, S. Fusion of blockchain and artificial intelligence for secure drone networking underlying 5G communications. Trans. Emerg. Telecommun. Technol. 2021, 32, e4176. [Google Scholar] [CrossRef]
- Minhas, H.I.; Ahmad, R.; Ahmed, W.; Waheed, M.; Alam, M.M.; Gul, S.T. A reinforcement learning routing protocol for UAV aided public safety networks. Sensors 2021, 21, 4121. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Chan, S.; Guizani, M. Drone-assisted public safety networks: The security aspect. IEEE Commun. Mag. 2017, 55, 218–223. [Google Scholar] [CrossRef]
- Ali, K.; Nguyen, H.X.; Vien, Q.T.; Shah, P.; Raza, M.; Paranthaman, V.V.; Er-Rahmadi, B.; Awais, M.; ul Islam, S.; Rodrigues, J.J. Review and implementation of resilient public safety networks: 5G, IoT, and emerging technologies. IEEE Netw. 2021, 35, 18–25. [Google Scholar] [CrossRef]
- Studiawan, H.; Grispos, G.; Choo, K.K.R. Unmanned Aerial Vehicle (UAV) Forensics: The Good, The Bad, and the Unaddressed. Comput. Secur. 2023, 132, 103340. [Google Scholar] [CrossRef]
- Abu Al-Haija, Q.; Al Badawi, A. High-performance intrusion detection system for networked UAVs via deep learning. Neural Comput. Appl. 2022, 34, 10885–10900. [Google Scholar] [CrossRef]
- Guerber, C.; Royer, M.; Larrieu, N. Machine Learning and Software Defined Network to secure communications in a swarm of drones. J. Inf. Secur. Appl. 2021, 61, 102940. [Google Scholar] [CrossRef]
- Heidari, A.; Jafari Navimipour, N.; Unal, M.; Zhang, G. Machine learning applications in internet-of-drones: Systematic review, recent deployments, and open issues. ACM Comput. Surv. 2023, 55, 1–45. [Google Scholar] [CrossRef]
- Hafeez, S.; Khan, A.R.; Al-Quraan, M.; Mohjazi, L.; Zoha, A.; Imran, M.A.; Sun, Y. Blockchain-assisted UAV communication systems: A comprehensive survey. IEEE Open J. Veh. Technol. 2023, 4, 558–580. [Google Scholar] [CrossRef]
- Kumar, R.; Aljuhani, A.; Kumar, P.; Kumar, A.; Franklin, A.; Jolfaei, A. Blockchain-enabled secure communication for unmanned aerial vehicle (UAV) networks. In Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, Sydney, NSW, Australia, 17 October 2022; pp. 37–42. [Google Scholar]
- Ch, R.; Srivastava, G.; Gadekallu, T.R.; Maddikunta, P.K.R.; Bhattacharya, S. Security and privacy of UAV data using blockchain technology. J. Inf. Secur. Appl. 2020, 55, 102670. [Google Scholar] [CrossRef]
- Rana, T.; Shankar, A.; Sultan, M.K.; Patan, R.; Balusamy, B. An intelligent approach for UAV and drone privacy security using blockchain methodology. In Proceedings of the 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 10–11 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 162–167. [Google Scholar] [CrossRef]
- Agnew, D.; Del Aguila, A.; McNair, J. Enhanced Network Metric Prediction for Machine Learning-based Cyber Security of a Software-Defined UAV Relay Network. IEEE Access 2024, 12, 54202–54219. [Google Scholar] [CrossRef]
- Pu, C.; Choo, K.K.R.; Korać, D. A Lightweight and Anonymous Application-Aware Authentication and Key Agreement Protocol for the Internet of Drones. IEEE Internet Things J. 2024, 11, 19790–19803. [Google Scholar]
- Pu, C.; Warner, C.; Choo, K.K.R.; Lim, S.; Ahmed, I. liteGAP: Lightweight Group Authentication Protocol for Internet of Drones Systems. IEEE Trans. Veh. Technol. 2023, 73, 5849–5860. [Google Scholar] [CrossRef]
- Famili, A.; Stavrou, A.; Wang, H.; Park, J.M.; Gerdes, R. Securing your airspace: Detection of drones trespassing protected areas. Sensors 2024, 24, 2028. [Google Scholar] [CrossRef]
- Abir, M.A.B.S.; Chowdhury, M.Z.; Jang, Y.M. Software-defined uav networks for 6g systems: Requirements, opportunities, emerging techniques, challenges, and research directions. IEEE Open J. Commun. Soc. 2023, 4, 2487–2547. [Google Scholar] [CrossRef]
- Shoufan, A.; AlNoon, H.; Baek, J. Secure communication in civil drones. In Proceedings of the Information Systems Security and Privacy: 1st International Conference, ICISSP 2015, Angers, France, 9–11 February 2015; Revised Selected Papers 1. Springer: Berlin/Heidelberg, Germany, 2015; pp. 177–195. [Google Scholar] [CrossRef]
Artifact Name | Source | Description |
---|---|---|
Flight Logs | L | Records of flight data including times, altitudes, and GPS coordinates. |
System Firmware | F | The embedded software that controls drone operations. |
GPS Data | E, L | Data capturing the drone’s geographical position during flights. |
Controller Inputs | G | Records of commands input by the operator during flight. |
Video Files | M | Recorded footage from drone flights stored on memory cards. |
Photo Files | M, E | Images captured during flight, often containing Exif metadata such as timestamps and camera settings. |
BatteryInformation | L | Data regarding battery status and history during flights. |
Communication Logs | L, G | Logs detailing the communication between the drone and its ground controller. |
Error Reports | F, L | System-generated reports detailing malfunctions or errors during operation. |
Maintenance Records | F, L | Logs related to drone servicing, updates, and repairs. |
Wi-Fi Data | L | Information about Wi-Fi networks used for control and data transmission. |
Serial Number | F | Unique identifier of the drone, often embedded in system files or visible on the drone body. |
Telemetry Data | L | Real-time data on various flight parameters such as speed, altitude, and orientation. |
Crash Reports | L | Detailed reports generated when a drone experiences a crash or significant malfunction. |
Configuration Files | F | Files that determine the settings and options of the drone’s operating system. |
Propeller Data | O | Observations and data regarding the condition and performance of the drone’s propellers. |
Firmware Update Logs | F | Logs documenting the history and details of firmware updates applied to the drone. |
Environmental Data | L | Data collected during flight related to environmental conditions such as temperature and wind speed. |
SecurityProtocols | F | Information regarding the encryption and security measures used to protect drone communications and data storage. |
Drone Attacks | Tools/Mechanisms | Impact | Security Requirements | Attack Surfaces | Key Papers |
---|---|---|---|---|---|
GPS Spoofing | GPS signal simulators | Misdirection, route deviation | Enhanced route security | Z1: UAVs | [31,32,33,34] |
Signal Jamming | Radio frequency jammers | Loss of control, crashing | Robust signal integrity | Z1: UAVs, Z2: Communication Systems | [35,36,37,38,39] |
Unauthorized Access | Hacking tools | Data theft, control takeover | Access control improvements | Z3: control hubs, Z4: command centers | [40,41,42,43,44,45] |
Physical Attack | High-energy lasers | Damage, destruction | Structural integrity checks | Z1: UAVs | [46,47,48,49,50] |
Network Intrusion | Malware, spyware | Data breach, system compromise | Enhanced cybersecurity measures | Z2: Communication Systems, Z4: command centers | [51,52,53,54] |
Battery Tampering | Physical interference | Power loss, mid-air failure | Reliable power supply systems | Z1: UAVs | [55,56] |
Firmware Hacking | Custom firmware | Altered behavior, backdoors | Secure firmware protocols | Z1: UAVs, Z3: Control Hubs | [57,58,59,60,61,62,63] |
Sensor Blinding | Directed bright lights | Impaired vision, collision | Improved sensor protection | Z1: UAVs | [64,65,66,67,68] |
Denial of Service | Flooding networks | Disrupted operations | Network resilience | Z2: Communication Systems, Z3: Control Hubs | [69,70,71,72,73,74] |
Data Interception | Sniffing tools | Espionage, data leakage | Data encryption standards | Z2: Communication Systems | [75,76,77,78,79] |
Protocol Exploitation | Exploitation kits | Command hijacking | Secure communication protocols | Z3: Control Hubs | [80,81,82,83,84,85,86] |
Malicious Code Injection | Trojans, viruses | Malfunctions, unsafe operations | Malware detection systems | Z1: UAVs, Z4: command centers | [87,88] |
Ransomware Attack | Ransomware | Locked systems, ransom demand | Anti-ransomware strategies | Z4: command centers | [4,89,90,91] |
Eavesdropping | Audio–visual surveillance | Privacy invasion | Privacy safeguards | Z2: Communication Systems, Z4: command centers | [92,93,94,95] |
Supply Chain Attack | Compromised components | Integrated vulnerabilities | Supply chain security | Z5: regulatory bodies, production facilities, and associated equipment | [96,97,98] |
Insider Threat | Sabotage by insiders | System sabotage, data theft | Internal security measures | Z3: Control Hubs, Z4: command centers | [99,100,101,102] |
Regulatory Non-compliance | Bypassing controls | Legal penalties, shutdown | Compliance management | Z5: regulatory bodies, production facilities, and associated equipment | [103,104,105] |
References | Security Solution | Approach | Security Threats | Target Zone | Security Consideration | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Z1 | Z2 | Z3 | Z4 | Z5 | C | I | A | ||||
[129,130,131] | Drone security module | The drone security module encrypts the control signal and telemetry data from the UAV to the ground control station. | Unauthorized interception of encrypted data could compromise UAV operations. | ✓ | ✓ | ✓ | ✓ | X | ✓ | ✓ | X |
[132,133,134,135] | Blockchain for secure data storage | Blockchain can be used to cryptographically store all the data that is sent to/from the drones. | Potential risks of data tampering despite the use of blockchain for storage. | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
[136,137,138] | Drone-assisted public safety networks | Unmanned aerial vehicles can be sent to suitable positions in the field to augment the operation of public safety networks. | Drones could be used maliciously to disrupt public safety networks. | ✓ | ✓ | ✓ | ✓ | X | X | ✓ | ✓ |
[139,140,141] | Machine learning for threat detection | A machine learning solution based on a random forest classifier can be implemented to detect common network attacks such as denial of service, port scanning, and brute force. | Vulnerability to network attacks such as DoS, port scanning, and brute force. | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
[143,144,145,146] | Blockchain for UAV signal security | The use of blockchain technology when transmitting signals from the controller to the drone or UAV can achieve an extra amount of security when transmitting signals. | Despite blockchain usage, signal hijacking remains a critical concern. | ✓ | ✓ | ✓ | ✓ | X | ✓ | ✓ | X |
[141,147,151] | Software-defined network for drone security (2023) | A software-defined network solution is suitable for a swarm of cooperative drones. | Coordinated attacks on drone swarms could lead to significant security breaches. | ✓ | ✓ | ✓ | ✓ | X | ✓ | ✓ | X |
[148,149,152] | Light-weight hardware security | A light-weight hardware solution is proposed to assure the confidentiality and integrity of both the command data sent by the ground station and the payload data transmitted by the drone. | Hardware vulnerabilities could be exploited to compromise drone communications. | ✓ | ✓ | ✓ | ✓ | X | ✓ | ✓ | X |
[150] | Multi-sensor detection systems | Utilizes multiple sensors to detect drones trespassing in protected areas and offers more compelling results. | Incomplete or failed detection of trespassing drones can pose serious security risks. | ✓ | X | X | ✓ | ✓ | X | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adel, A.; Jan, T. Watch the Skies: A Study on Drone Attack Vectors, Forensic Approaches, and Persisting Security Challenges. Future Internet 2024, 16, 250. https://doi.org/10.3390/fi16070250
Adel A, Jan T. Watch the Skies: A Study on Drone Attack Vectors, Forensic Approaches, and Persisting Security Challenges. Future Internet. 2024; 16(7):250. https://doi.org/10.3390/fi16070250
Chicago/Turabian StyleAdel, Amr, and Tony Jan. 2024. "Watch the Skies: A Study on Drone Attack Vectors, Forensic Approaches, and Persisting Security Challenges" Future Internet 16, no. 7: 250. https://doi.org/10.3390/fi16070250
APA StyleAdel, A., & Jan, T. (2024). Watch the Skies: A Study on Drone Attack Vectors, Forensic Approaches, and Persisting Security Challenges. Future Internet, 16(7), 250. https://doi.org/10.3390/fi16070250