Evaluation of Radio Access Protocols for V2X in 6G Scenario-Based Models
Abstract
:1. Introduction
2. Overview of V2X Protocols
2.1. IEEE 802.11p
2.2. IEEE 802.11bd
2.3. LTE-V2X
2.4. NR-V2X
3. Performance Metrics of V2X Technologies
3.1. Code Rate
3.2. Transmission Latency (L)
3.2.1. L for 802.11p Protocol (
3.2.2. L for 802.11bd Protocol
3.2.3. L for LTE-V2X Protocol (
3.2.4. L for NR-V2X Protocol (
3.3. Data Rate
3.3.1. DR for 802.11p Protocol ( and 802.11bd ()
3.3.2. DR for LTE-V2X Protocol ( and NR-V2X (
3.4. Packet Error Rate
4. Analysis of Performance Results
4.1. Theoretical Mathematical Model Results
4.1.1. L and DR for 802.11p and 802.11bd Protocols
4.1.2. L and DR for LTE-V2X and NR-V2X Protocols
4.2. Simulation Results
4.2.1. PER for 802.11p and 802.11bd Protocols
4.2.2. PER for LTE-V2X and NR-V2X Protocols
4.3. Discussions and Perspectives
5. Conclusions
6. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ITU-R. IMT Vision—Framework and overall objectives of the future development of IMT for 2020 and beyond. In Recommendation ITU; ITU-R Radiocommunication Sector: Geneva, Switzerland; pp. 1–21.
- Cabeças, A.; Marques da Silva, M. Project Management in the Fourth Industrial Revolution. TECHNO REVIEW Int. Technol. Sci. Soc. Rev. 2021, 9, 79–96. [Google Scholar] [CrossRef]
- Sachs, J.; Wikstrom, G.; Dubba, T.; Kittipong, K. 5G radio network design for ultra-reliable low-latency communication. IEEE Network 2018, 32, 24–31. [Google Scholar] [CrossRef]
- Zhang, Z.; Yue, X.; Pingzhi, F. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Kozat, U.C.; Xiang, A.; Saboorian, T.; Kaippallimalil, J. The Requirements and Architectural Advances to Support URLLC Verticals. In 5G Verticals: Customizing Applications, Technologies and Deployment Techniques; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 137–167. [Google Scholar]
- Marques da Silva, M.; Guerreiro, J. On the 5G and Beyond. Appl. Sci. 2020, 10, 7091. [Google Scholar] [CrossRef]
- 3GPP—3rd Generation Partnership Project. Technical Specification Group Services and System Aspects; Release 14 Description (v14.0.0914, Release 14), May 2018. Available online: https://www.3gpp.org/specifications-technologies/releases/release-14 (accessed on 22 September 2023).
- IEEE—Institute of Electrical and Electronics Engineers. 802.11p-2010—IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments. pp. 1–51, 15 July 2010. Available online: https://ieeexplore.ieee.org/document/5514475 (accessed on 22 September 2023).
- Sun, H.B.; Zhang, H. IEEE 802.11-18/0861r9: 802.11 NGV proposed PAR. In Proceedings of the IEEE 802.11 NGV Meeting, MO, USA, November 2018; Available online: https://www.ieee802.org/11/Reports/tgbd_update.htm (accessed on 17 April 2024).
- IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Next Generation V2X. In IEEE Std 802.11bd-2022 (Amendment to IEEE Std 802.11-2020 as amended by IEEE Std 802.11ax-2021, IEEE Std 802.11ay-2021, IEEE Std 802.11ba-2021, IEEE Std 802.11-2020/Cor 1-2022, and IEEE Std 802.11az-2022); 10 March 2023; pp. 1–144. Available online: https://ieeexplore.ieee.org/document/10063942 (accessed on 17 April 2024).
- 3GPP—3rd Generation Partnership Project. Release 16 Technical Specification Group Services and System Aspects. Available online: https://www.3gpp.org/specifications-technologies/releases/release-16 (accessed on 22 September 2023).
- 3GPP—3rd Generation Partnership Project. Release 15 Technical Specification Group Services and System Aspects. Available online: https://www.3gpp.org/specifications-technologies/releases/release-15 (accessed on 22 September 2023).
- Mizmizi, M.; Linsalata, F.; Brambilla, M.; Morandi, F.; Dong, K.; Magarini, M.; Nicoli, M.; Khormuji, M.N.; Wang, P.; Pitaval, R.A.; et al. Fastening the initial access in 5G NR sidelink for 6G V2X networks. Vehicular Communications. arXiv 2022, arXiv:2106.05716. [Google Scholar]
- Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Khyam, M.O.; He, J.; Pesch, D.; Moessner, K.; Saad, W.; Poor, H.V. 6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities. Proc. IEEE 2022, 110, 712–734. [Google Scholar] [CrossRef]
- Wang, D.; Nganso, Y.N.; Schotten, H.D. A Short Overview of 6G V2X Communication Standards. arXiv 2023, arXiv:2311.16810. [Google Scholar]
- Marques da Silva, M.; Gashtasbi, A.; Dinis, R.; Pembele, G.; Correia, A.; Guerreiro, J. On the Performance of Partial LIS for 6G Systems. Electronics 2024, 13, 1035. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Chen, M. Vision of 6G wireless systems: Applications, trends, technologies, and open research problems. arXiv 2019, arXiv:1902.10265v1. [Google Scholar] [CrossRef]
- Tariq, F.; Khandaker, M.; Wong, K.; Imran, M.; Debbah, M. IA speculative study on 6G. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Eichler, S. Performance evaluation of the IEEE 802.11 p WAVE communication standard. In Proceedings of the IIEEE 66th Vehicular Technology Conference, Baltimore, MD, USA, 30 September–3 October 2007. [Google Scholar]
- IEEE STD 802.11; IEEE Standard for Local and Metropolitan Area Networks—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE: Piscataway, NJ, USA, 2016; pp. 1–10.
- IEEE STD 802.11; Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High Speed Physical Layer in the 5GHz Band. IEEE: Piscataway, NJ, USA, 1999; pp. 2–8.
- Anwar, W. On Physical Layer Abstraction Modeling for 5G and beyond Communications. Master’s Thesis, Technische Universität Dresden, Dresden, Germany, 2021. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-765209/ (accessed on 29 June 2023).
- Rui, C.; Zhang, H.; Sharma, P. IEEE 802.11-18/1553r0: Doppler impact on OFDM numerology for NGV. In Proceedings of the IEEE 802.11 NGV Meeting, Hanoi, Vietnam, 10 September 2018. [Google Scholar]
- 3GPP. Vehicle-to-Everything (V2X) Phase 2; User Equipment (UE) Radio Transmission and Reception. Technical Report (TR) 36.788, June 2018. Available online: https://www.3gpp.org/release-15/ (accessed on 22 September 2023).
- Festag, A. Cooperative intelligent transport systems standards in Europe. IEEE Commun. Mag. 2014, 52, 166–172. [Google Scholar] [CrossRef]
- Perry, F. Overview of SAE DSRC Messages and Performance Requirements. In UFTI DSRC and Other Communication Options 583 for Transportation Connectivity Workshop; University of Florida Transportation Institute: Gainesville, FL, USA, 2017. [Google Scholar]
- Bazzi, A.; Cecchini, G.; Zanella, A.; Masini, A. Study of the Impact of PHY and MAC Parameters in 3GPP C-V2V Mode 4. IEEE Access 2018, 6, 71685–71698. [Google Scholar] [CrossRef]
- Gu, B.; Chen, W.; Alazab, M.; Tan, X.; Guizani, M. Multiagent Reinforcement Learning-Based Semi-Persistent Scheduling Scheme in C-V2X Mode 4. IEEE Trans. Veh. Technol. 2022, 71, 12044–12056. [Google Scholar] [CrossRef]
- Arwar, W.; Franchi, N.; Fettweis, G. Physical layer evaluation of V2X communications technologies: 5G NR-V2X, LTE-V2X, IEEE 802.11 bd, and IEEE 802.11 p. In Proceedings of the IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–7. [Google Scholar]
- Bazzi, A.; Masini, A.; Zanella, A.; Thibault, I. On the performance of IEEE 802.11p and LTE-V2V for the cooperative awareness of connected vehicles. IEEE Access 2017, 66, 10419–10432. [Google Scholar] [CrossRef]
- 3GPP—3rd Generation Partnership Project—Initial Cellular V2X Standard Completed; Physical Layer Procedures, RP-161894, September 2016. Available online: https://www.3gpp.org/news-events/3gpp-news/v2x-r14 (accessed on 22 August 2023).
- 3GPP—3rd Generation Partnership Project. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures. (v14.8.0, Release 14), Tech. Rep. 36.213, October 2018. Available online: https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/14.08.00_60/ts_136213v140800p.pdf (accessed on 21 August 2023).
- 3GPP—3rd Generation Partnership Project. NR Physical Layer Procedures for Data, TS-38.214, July 2018. Available online: http://www.3gpp.org/DynaReport/38214.htm./ (accessed on 21 August 2023).
- Tung, L.; Gerla, M. LTE Resource Scheduling for Vehicular Safety. In Proceedings of the 10th Annual Conference on Wireless On-demand Network Systems and Services (WONS), Banff, AB, USA, 18–20 March 2013; pp. 116–118. [Google Scholar]
- Cali, F.; Conti, M.; Gregori, E. Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans. Netw. 2000, 8, 785–799. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Shang, Z.; Zhang, Q. Performance Analysis of IEEE 802.11 DCF under Different Channel Conditions. In Proceedings of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp. 1904–1907. [Google Scholar] [CrossRef]
- 3GPP—3rd Generation Partnership Project. 5G NR—User Equipment (UE) Radio Transmission and Reception. Part 1: Range 1 Standalone; (v15.3.0, Release 15), Tech. Rep. 38.101-1, October 2018. Available online: https://www.etsi.org/deliver/etsi_ts/138100_138199/13810101/15.03.00_60/ts_13810101v150300p.pdf (accessed on 21 August 2023).
- 3GPP—3rd Generation Partnership Project. 5G NR Physical Channels and Modulation; Technical Specification. (v16.3.0, Release 16), Tech. Rep.38.211, October 2020. Available online: https://www.3gpp.org/release-16/ (accessed on 22 September 2023).
- Ahmed, T.H.; Tiang, J.J.; Mahmud, A.; Gwo-Chin, C.; Do, D.T. Evaluating the Performance of Proposed Switched Beam Antenna Systems in Dynamic V2V Communication Networks. Sensors 2023, 23, 6782. [Google Scholar] [CrossRef] [PubMed]
- Kahn, M. IEEE 802.11 Regulatory SC DSRC Coexistence Tiger Team V2V Radio Channel Models. IEEE 802.11-14/0259r0, February 2014. Available online: https://mentor.ieee.org/802.11/dcn/14/11-14-0259-00-0reg-v2v-radio-channel-models.ppt (accessed on 21 August 2023).
Parameter | 802.11p | 802.11bd |
---|---|---|
Frequency band | 5.9 GHz | 5.9 GHz, 60 GHz |
Subcarrier spacing | 156.25 kHz | 312.5 kHz, 156.25 kHz, 78.125 kHz |
Channel coding | BCC | LDPC |
Cyclic prefix time | 1.6 µs | 1.6 µs and 3.2 µs |
PHY layer | N/A | OFDM |
Relative vehicle speed | 252 km/h | 500 km/h |
Spatial streams | one | multiple |
Parameter | LTE | 5G |
---|---|---|
Frequency band | Sub-6 GHz | FR1 (410 MHz to 7.125 GHz) FR2 (24.25 GHz to 52.6 GHz) |
Carrier bandwidth | Max: 20 MHz | FR1: 5, 10, 15, 25, 30, 40, 50, 60, 80, 100 MHz or Max: 100 MHz (at <6GHz) FR2: 50, 100, 200, 400 MHz or Max: 1GHz (at >6GHz) |
Carrier aggregation | Up to 32 | Up to 16 |
Digital beamforming | Up to 8 layers | Up to 12 layers |
Analog beamforming | Not Supported | Supported |
Channel coding | Data: turbo coding Control: convolutional coding | Data: LDPC coding Control: polar coding |
Spectrum occupancy | 90% of channel BW | Up to 98% of channel BW |
Subcarrier spacing | 15 kHz (fixed) | 15, 30, 60, 120, 240 kHz |
Max number of subcarriers | 1200 | 3276 |
Subframe | 1 ms (moving to 0.5 ms) | 1 ms |
Latency (air interface) | 10 ms (moving to 5 ms) | 1 ms |
Slot length | 7 symbols in 500 ms | 14 symbols (duration depends on SC spacing) 2, 4, and 7 symbols for mini slots |
Duplexing | FDD, static TDD | FDD, Static TDD, Dynamic TDD |
Modulation | Up to 256-QAM DL Up to 64-QAM UL | Up to 256-QAM UL and DL |
Parameter | 802.11p | 802.11bd | LTE-V2X | NR-V2X |
---|---|---|---|---|
Frequency band | 5.9 GHz | 5.9 GHz, 60 GHz | 5.9 GHz | FR1 (Sub-6 Ghz): 410 MHz to 7.125 GHz FR2 (mm wave): 24.25 GHz to 52.6 GHz) |
Subcarrier spacing (SCS) | 156.25 kHz | 312.5, 156.25, 78.125 kHz | 15 kHz | FR1 (Sub-6 GHz): 15, 30, 60 kHz FR2 (mm wave): 60, 120 kHz |
Base technology | IEEE 802.11a/n | IEEE 802.11n/ac | 4G/LTE | 5GNR |
PHY layer | N/A | OFDM | SC-FDMA | SC-FDMA, OFDM |
mm wave support | N/A | Yes | N/A | Yes |
Latency | <100 ms (average) | 0.5–10 ms (300 m range) 10–100 ms (300 m–2 Km range) | 50 ms (average) | 0.5–10 ms (300 m range) 10–100 ms (500 m–2 Km range) |
Range | 1 Km | 2 Km | 1 Km | 2 Km |
Modes | Broadcast | Broadcast, groupcast | Broadcast | Broadcast, groupcast, unicast |
Retransmission | none | Congestion-dependent | Blind | HARQ-based |
Parameter | 802.11p/bd | LTE-V2X/NR-V2X |
---|---|---|
Bandwidth | 10 MHz | 10 MHz/20 MHz |
Payload size | 375, 1500, and up to 4000 bytes | 375, 1500, and up to 4000 bytes |
Modulation and coding schemes (MCS) | MCS0, 1 (BPSK), MCS2, 3 (QPSK), MCS4, 5 (16-QAM), MCS6, 7 (64-QAM) and MCS8, 9 (256-QAM) | MCS0, 2, 5, 7 (QPSK), MCS11, 13, 16 (16-QAM) and MCS21, 24, 27 (64-QAM) |
Subcarrier spacing | 156.25 kHz | 15 kHz, 30 kHz, and 60 kHz |
MCS | M | CR 11p | L 11p (ms) | DR 11p (Mbps) | 11p | 11p | 11p | M | CR 11bd | L 11bd (ms) | DR 11bd (Mbps) | 11bd | 11bd | 11bd | 11bd | 11bd |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | BPSK | 0.5 | 32.71 | 2.93 | 4000 | 48 | 1 | BPSK | 0.5 | 4.90 | 2.45 | 462 | 52 | 1 | 57 | 8 |
1 | BPSK | 0.75 | 22.05 | 4.35 | 2667 | 48 | 1 | QPSK | 0.5 | 2.82 | 4.25 | 231 | 52 | 2 | 28 | 8 |
2 | QPSK | 0.50 | 16.71 | 5.74 | 2000 | 48 | 2 | QPSK | 0.75 | 2.14 | 5.62 | 154 | 52 | 2 | 19 | 8 |
3 | QPSK | 0.75 | 11.38 | 8.43 | 1334 | 48 | 2 | 16-QAM | 0.5 | 1.80 | 6.70 | 116 | 52 | 4 | 14 | 8 |
4 | 16-QAM | 0.50 | 8.71 | 11.02 | 1000 | 48 | 4 | 16-QAM | 0.75 | 1.44 | 8.33 | 77 | 52 | 4 | 9 | 8 |
5 | 16-QAM | 0.75 | 6.05 | 15.87 | 667 | 48 | 4 | 64-QAM | 0.67 | 1.33 | 9.04 | 58 | 52 | 6 | 14 | 4 |
6 | 64-QAM | 0.67 | 4.70 | 20.44 | 498 | 48 | 6 | 64-QAM | 0.75 | 1.26 | 9.50 | 52 | 52 | 6 | 12 | 4 |
7 | 64-QAM | 0.75 | 4.27 | 22.47 | 445 | 48 | 6 | 64-QAM | 0.83 | 1.22 | 9.87 | 47 | 52 | 6 | 11 | 4 |
8 | 256-QAM | 0.75 | 3.38 | 28.37 | 334 | 48 | 8 | 256-QAM | 0.75 | 1.14 | 10.56 | 39 | 52 | 8 | 9 | 4 |
9 | 256-QAM | 0.83 | 3.13 | 30.70 | 302 | 48 | 8 | 256-QAM | 0.83 | 1.10 | 10.95 | 35 | 52 | 8 | 8 | 4 |
MCS | M | CR | (ms) | (ms) | (Mbps) | (Mbps) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | QPSK | 0.13 | 2 | 1 | 8.90 | 17.67 | 3112 | 110 | 9 | 12 | 2 | 816 | 1620 | 10 | 1 |
2 | QPSK | 0.20 | 2 | 1 | 8.90 | 17.67 | 4968 | 110 | 9 | 12 | 2 | 816 | 1620 | 10 | 1 |
5 | QPSK | 0.40 | 2 | 1 | 8.90 | 17.67 | 9528 | 110 | 9 | 12 | 2 | 816 | 1620 | 10 | 1 |
7 | QPSK | 0.57 | 2 | 1 | 9.89 | 19.64 | 12,216 | 99 | 9 | 12 | 2 | 816 | 1620 | 10 | 1 |
11 | 16-QAM | 0.47 | 1 | 1 | 16.32 | 32.40 | 12,216 | 60 | 9 | 12 | 4 | 816 | 1620 | 10 | 1 |
13 | 16-QAM | 0.60 | 1 | 1 | 20.83 | 41.36 | 12,216 | 47 | 9 | 12 | 4 | 816 | 1620 | 10 | 1 |
16 | 16-QAM | 0.76 | 1 | 1 | 26.46 | 52.54 | 12,216 | 37 | 9 | 12 | 4 | 816 | 1620 | 10 | 1 |
21 | 64-QAM | 0.79 | 1 | 1 | 40.80 | 81.00 | 12,216 | 24 | 9 | 12 | 6 | 816 | 1620 | 10 | 1 |
24 | 64-QAM | 0.94 | 1 | 1 | 48.96 | 97.20 | 12,216 | 20 | 9 | 12 | 6 | 816 | 1620 | 10 | 1 |
27 | 64-QAM | 1.02 | 1 | 1 | 51.54 | 102.32 | 12,576 | 19 | 9 | 12 | 6 | 816 | 1620 | 10 | 1 |
MCS | M | CR | (ms) | (ms) | (Mbps) | (Mbps) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | QPSK | 0.12 | 2.50 | 2.5 | 5.11 | 5.21 | 52 | 106 | 0.25 | 0.5 | 488 | 105 | 0.2344 |
2 | QPSK | 0.19 | 1.50 | 1.5 | 8.21 | 8.37 | 52 | 106 | 0.25 | 0.5 | 304 | 105 | 0.3770 |
5 | QPSK | 0.37 | 0.75 | 1.0 | 16.10 | 16.41 | 52 | 106 | 0.25 | 0.5 | 155 | 105 | 0.7402 |
7 | QPSK | 0.51 | 0.75 | 1.0 | 22.29 | 22.71 | 52 | 106 | 0.25 | 0.5 | 112 | 105 | 1.0273 |
11 | 16-QAM | 0.37 | 0.50 | 0.5 | 32.00 | 32.62 | 52 | 106 | 0.25 | 0.5 | 78 | 105 | 1.4766 |
13 | 16-QAM | 0.48 | 0.50 | 0.5 | 41.60 | 42.40 | 52 | 106 | 0.25 | 0.5 | 60 | 105 | 1.9141 |
16 | 16-QAM | 0.64 | 0.25 | 0.5 | 55.47 | 56.53 | 52 | 106 | 0.25 | 0.5 | 45 | 105 | 2.5703 |
21 | 64-QAM | 0.60 | 0.25 | 0.5 | 83.20 | 84.80 | 52 | 106 | 0.25 | 0.5 | 30 | 105 | 3.9023 |
24 | 64-QAM | 0.75 | 0.25 | 0.5 | 104.00 | 106.00 | 52 | 106 | 0.25 | 0.5 | 24 | 105.00 | 4.8164 |
27 | 64-QAM | 0.89 | 0.25 | 0.5 | 118.86 | 121.14 | 52 | 106 | 0.25 | 0.5 | 21 | 105.00 | 5.5547 |
Parameter | 802.11p/bd | LTE-V2X/NR-V2X |
---|---|---|
Packet duration | [304, 152, 104, 72] µs | |
Waveform | OFDM | |
Channel equalization method | MMSE | |
Receiver antenna gain (Grx) | 3 dBm | |
Transmitter antenna gain (Gtx) | 3 dBm | |
Maximum Doppler shift (fm) | 100 Hz and 2000 Hz | |
Coherence time | 4.23 and 0.21 | |
Fading distribution | Rayleigh | |
Symbol duration | 6.4 µs | 16.7 µs |
Cyclic prefix | 1.6 µs | 1.17 µs |
Modulation and coding schemes | MCS2 (QPSK), MCS4 (16-QAM), MCS7 (64-QAM) | MCS2 (QPSK), MCS7 (QPSK), MCS11 (16-QAM) |
Carrier spacing | 156.25 kHz | 15 kHz, 30 kHz, 60 kHz |
n° subcarriers | 48 | 132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orrillo, H.; Sabino, A.; Marques da Silva, M. Evaluation of Radio Access Protocols for V2X in 6G Scenario-Based Models. Future Internet 2024, 16, 203. https://doi.org/10.3390/fi16060203
Orrillo H, Sabino A, Marques da Silva M. Evaluation of Radio Access Protocols for V2X in 6G Scenario-Based Models. Future Internet. 2024; 16(6):203. https://doi.org/10.3390/fi16060203
Chicago/Turabian StyleOrrillo, Héctor, André Sabino, and Mário Marques da Silva. 2024. "Evaluation of Radio Access Protocols for V2X in 6G Scenario-Based Models" Future Internet 16, no. 6: 203. https://doi.org/10.3390/fi16060203
APA StyleOrrillo, H., Sabino, A., & Marques da Silva, M. (2024). Evaluation of Radio Access Protocols for V2X in 6G Scenario-Based Models. Future Internet, 16(6), 203. https://doi.org/10.3390/fi16060203