A Survey of the Real-Time Metaverse: Challenges and Opportunities †
Abstract
:1. Introduction
2. The Real-Time Metaverse
2.1. Dynamic Environments and Real-Time Interaction
2.2. Enhanced Immersion and Engagement
2.3. The Role of Advanced Technology
2.4. Applications and Potential Impact
3. Key Enabling Technologies: An Overview
4. State-of-the-Art Real-Time Metaverse
4.1. Integration of the Physical and Virtual Worlds
4.2. The Role of the Metaverse Engine
4.3. Communication and Computational Infrastructure
4.4. Data Fusion and Real-Time Interaction
5. Technological Infrastructure
5.1. High-Performance Computing (HPC)
5.2. Cloud Computing
5.3. Edge and Fog Computing
5.4. 5G Communication Technology
5.5. Storage Technology
6. Metaverse Engine
6.1. Immersive Technologies
6.1.1. Virtual Reality (VR)
6.1.2. Augmented Reality (AR)
6.1.3. Mixed Reality (MR)
6.1.4. Haptic Feedback
6.1.5. Advanced Graphical Rendering Technologies
6.2. Digital Twin
6.3. Artificial Intelligence (AI) and Machine Learning (ML)
6.3.1. AI-Driven Avatars
6.3.2. Non-Player Characters (NPCs)
6.3.3. Differences in Purpose and Autonomy
6.4. Blockchain
7. Interoperability Standards
7.1. Standards Development Organizations
7.2. The Importance of Interoperability in the Real-Time Metaverse
7.3. OpenXR
7.4. WebXR
8. Challenges and Opportunities
8.1. Latency and Bandwidth
8.1.1. Network Latency
8.1.2. Bandwidth Limitations
8.2. Blockchain in Real-Time Data Handling
8.3. Interoperability and Standards
8.3.1. Universal Standards
8.3.2. Fragmentation
8.3.3. Unified Standards
8.3.4. Cross-Platform Compatibility
8.3.5. Data Compatibility
8.3.6. Data Integration
8.4. Scalability
8.5. User Experience
8.5.1. Designing Intuitive Interfaces for Non-Expert Users
8.5.2. Addressing Physical and Mental Health Risks
8.5.3. Accessibility and Inclusivity in the Metaverse
8.5.4. Social Interaction and Complexity in the Metaverse
8.6. Security and Privacy
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | three-dimensional |
5G | fifth-generation |
6G | sixth-generation |
AI | artificial intelligence |
AP | access point |
API | application programming interface |
AR | augmented reality |
AWS | Amazon Web Services |
CCPA | California Consumer Privacy Act |
CDN | content delivery network |
DML | deep and meaningful learning |
CUDA | compute unified device architecture |
DT | digital twin |
DTs | digital twins |
DoS | denial-of-service |
DLSS | deep learning super sampling |
E2EE | end-to-end encryption |
FBX | Filmbox |
FOV | field of view |
GCP | Google Cloud Services |
GDPR | General Data Protection Regulation |
glTF | GL transmission format |
GPU | graphics processing unit |
GR | graphical rendering |
HPC | high-performance computing |
HL7 | Health Level Seven |
HTML | hypertext markup language |
HTTP | hypertext transfer protocol |
IaaS | infrastructure as a service |
IoT | Internet of Things |
JPEG | Joint Photographic Experts Group |
JSON | JavaScript Object Notation |
LLM | large language model |
MFA | multi-factor authentication |
MIMO | multiple-input multiple-output |
ML | machine learning |
mMTC | massive machine-type communications |
MPI | message passing interface |
MR | mixed reality |
NFTs | non-fungible tokens |
NLP | natural language processing |
NPC | non-player character |
OBJ | wavefront object |
OpenMP | open multi-processing |
PaaS | platform-as-a-service |
PBR | physically based rendering |
PNG | portable network graphic |
PoS | proof-of-stake |
PoW | proof-of-work |
RBG | red, green, and blue |
SaaS | software as a service |
SSI | self-sovereign identity |
STT | speech-to-text |
SVREs | social virtual reality environments |
TCP/IP | transmission control protocol/internet protocol |
TPS | transactions per second |
TTS | text-to-speech |
URLLC | ultra-reliable low-latency communications |
UX | user experience |
VR | virtual reality |
W3C | World Wide Web Consortium |
WebGL | Web Graphics Library |
WebRTC | web real-time communication |
WebXR | web extended reality |
XML | extensible markup language |
XMPP | extensible messaging and presence protocol |
ZKPs | zero-knowledge proofs |
References
- Wang, Y.; Su, Z.; Zhang, N.; Xing, R.; Liu, D.; Luan, T.H.; Shen, X. A survey on metaverse: Fundamentals, security, and privacy. IEEE Commun. Surv. Tutor. 2022, 25, 319–352. [Google Scholar] [CrossRef]
- Li, K.; Cui, Y.; Li, W.; Lv, T.; Yuan, X.; Li, S.; Ni, W.; Simsek, M.; Dressler, F. When internet of things meets metaverse: Convergence of physical and cyber worlds. IEEE Internet Things J. 2022, 10, 4148–4173. [Google Scholar] [CrossRef]
- Setiawan, K.D.; Anthony, A.; Meyliana; Surjandy. The essential factor of metaverse for business based on 7 layers of metaverse—Systematic literature review. In Proceedings of the 2022 International Conference on Information Management and Technology (ICIMTech), Semarang, Indonesia, 11–12 August 2022; pp. 687–692. [Google Scholar]
- Tyagi, A.K. Decentralized everything: Practical use of blockchain technology in future applications. In Distributed Computing to Blockchain; Elsevier: Amsterdam, The Netherlands, 2023; pp. 19–38. [Google Scholar]
- Truong, V.T.; Le, L.; Niyato, D. Blockchain meets metaverse and digital asset management: A comprehensive survey. IEEE Access 2023, 11, 26258–26288. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Hieu, N.Q.; Hoang, D.T.; Nguyen, D.N.; Lin, C.T. A human-centric metaverse enabled by brain-computer interface: A survey. IEEE Commun. Surv. Tutor. 2024, 26, 2120–2145. [Google Scholar] [CrossRef]
- Park, S.M.; Kim, Y.G. A metaverse: Taxonomy, components, applications, and open challenges. IEEE Access 2022, 10, 4209–4251. [Google Scholar] [CrossRef]
- Liu, S.; Xie, J.; Wang, X. QoE enhancement of the industrial metaverse based on Mixed Reality application optimization. Displays 2023, 79, 102463. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Van Doan, T.; Hulin, T.; Fitzek, H.F.; Nguyen, G.T. Touch the Metaverse: Demonstration of Haptic Feedback in Network-Assisted Augmented Reality. In Proceedings of the 2024 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops), Biarritz, France, 11–15 March 2024; pp. 379–381. [Google Scholar]
- Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [Google Scholar] [CrossRef]
- Singla, B.; Shalender, K.; Singh, N. Creator’s Economy in Metaverse Platforms: Empowering Stakeholders Through Omnichannel Approach: Empowering Stakeholders Through Omnichannel Approach; IGI Global: Hershey, PA, USA, 2024. [Google Scholar]
- Park, S.; Kim, S. Identifying world types to deliver gameful experiences for sustainable learning in the metaverse. Sustainability 2022, 14, 1361. [Google Scholar] [CrossRef]
- Mancuso, I.; Petruzzelli, A.M.; Panniello, U. Digital business model innovation in metaverse: How to approach virtual economy opportunities. Inf. Process. Manag. 2023, 60, 103457. [Google Scholar] [CrossRef]
- Xu, M.; Ng, W.C.; Lim, W.Y.B.; Kang, J.; Xiong, Z.; Niyato, D.; Yang, Q.; Shen, X.; Miao, C. A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges. IEEE Commun. Surv. Tutor. 2022, 25, 656–700. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Baabdullah, A.M.; Ribeiro-Navarrete, S.; Giannakis, M.; Al-Debei, M.M.; Dennehy, D.; Metri, B.; Buhalis, D.; Cheung, C.M.; et al. Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2022, 66, 102542. [Google Scholar] [CrossRef]
- Qu, Q.; Hatami, M.; Xu, R.; Nagothu, D.; Chen, Y.; Li, X.; Blasch, E.; Ardiles-Cruz, E.; Chen, G. The microverse: A task-oriented edge-scale metaverse. Future Internet 2024, 16, 60. [Google Scholar] [CrossRef]
- Gadekallu, T.R.; Huynh-The, T.; Wang, W.; Yenduri, G.; Ranaweera, P.; Pham, Q.V.; da Costa, D.B.; Liyanage, M. Blockchain for the metaverse: A review. arXiv 2022, arXiv:2203.09738. [Google Scholar]
- Ersoy, M.; Gürfidan, R. Blockchain-based asset storage and service mechanism to metaverse universe: Metarepo. Trans. Emerg. Telecommun. Technol. 2023, 34, e4658. [Google Scholar] [CrossRef]
- Huang, H.; Wu, J.; Zheng, Z. From Blockchain to Web3 and Metaverse; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Dincelli, E.; Yayla, A. Immersive virtual reality in the age of the Metaverse: A hybrid-narrative review based on the technology affordance perspective. J. Strateg. Inf. Syst. 2022, 31, 101717. [Google Scholar] [CrossRef]
- Wang, H.; Ning, H.; Lin, Y.; Wang, W.; Dhelim, S.; Farha, F.; Ding, J.; Daneshmand, M. A survey on the metaverse: The state-of-the-art, technologies, applications, and challenges. IEEE Internet Things J. 2023, 10, 14671–14688. [Google Scholar] [CrossRef]
- Kala, V.; Chudasama, S.; Bathiya, J.; Jain, D.; Barik, P.K. Optimized 5G Resource Allocation for Metaverse Applications. In Proceedings of the 2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC), Kuala Lumpur, Malaysia, 22–24 March 2024; pp. 1–6. [Google Scholar]
- Cardoso, L.F.d.S.; Kimura, B.Y.L.; Zorzal, E.R. Towards augmented and mixed reality on future mobile networks. Multimed. Tools Appl. 2024, 83, 9067–9102. [Google Scholar] [CrossRef]
- Huynh-The, T.; Pham, Q.V.; Pham, X.Q.; Nguyen, T.T.; Han, Z.; Kim, D.S. Artificial intelligence for the metaverse: A survey. Eng. Appl. Artif. Intell. 2023, 117, 105581. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, J.; Chen, Y.; Liu, R.; Yang, Y.; Xue, X.; Chen, S. Metaverse: Perspectives from graphics, interactions and visualization. Vis. Inform. 2022, 6, 56–67. [Google Scholar] [CrossRef]
- Hadjiaros, M.; Shimi, A.; Avraamides, M.N.; Neokleous, K.; Pattichis, C.S. Virtual Reality Brain-Computer Interfacing and the role of cognitive skills. IEEE Access 2024, 12, 129240–129261. [Google Scholar] [CrossRef]
- Park, K.S. Brain-computer interface. In Humans and Electricity: Understanding Body Electricity and Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 223–248. [Google Scholar]
- Aloqaily, M.; Bouachir, O.; Karray, F.; Al Ridhawi, I.; El Saddik, A. Integrating digital twin and advanced intelligent technologies to realize the metaverse. IEEE Consum. Electron. Mag. 2022, 12, 47–55. [Google Scholar] [CrossRef]
- Padmanaban, S.; Nasab, M.A.; Hatami, M.; Milani, O.H.; Dashtaki, M.A.; Nasab, M.A.; Zand, M. The Impact of the Internet of Things in the Smart City from the Point of View of Energy Consumption Optimization. In Biomass and Solar-Powered Sustainable Digital Cities; Wiley: Hoboken, NJ, USA, 2024; pp. 81–122. [Google Scholar]
- Grande, R.; Albusac, J.; Vallejo, D.; Glez-Morcillo, C.; Castro-Schez, J.J. Performance Evaluation and Optimization of 3D Models from Low-Cost 3D Scanning Technologies for Virtual Reality and Metaverse E-Commerce. Appl. Sci. 2024, 14, 6037. [Google Scholar] [CrossRef]
- Singh, A.; Mishra, S.; Jain, S.; Dogra, S.; Awasthi, A.; Roy, N.R.; Sodhi, K. 8 Exploring practical use-cases of augmented reality using photogrammetry and other 3D reconstruction tools in the Metaverse. Augment. Virtual Real. Ind. 5.0 2023, 2, 163. [Google Scholar]
- Aslam, A.M.; Chaudhary, R.; Bhardwaj, A.; Budhiraja, I.; Kumar, N.; Zeadally, S. Metaverse for 6G and beyond: The next revolution and deployment challenges. IEEE Internet Things Mag. 2023, 6, 32–39. [Google Scholar] [CrossRef]
- Hennig-Thurau, T.; Aliman, D.N.; Herting, A.M.; Cziehso, G.P.; Linder, M.; Kübler, R.V. Social interactions in the metaverse: Framework, initial evidence, and research roadmap. J. Acad. Mark. Sci. 2023, 51, 889–913. [Google Scholar] [CrossRef]
- Fascista, A. Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives. Sensors 2022, 22, 1824. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, C.; Geng, B. Deep Multimodal Data Fusion. ACM Comput. Surv. 2024, 56, 1–36. [Google Scholar] [CrossRef]
- Yu, J.; Alhilal, A.; Hui, P.; Tsang, D.H. Bi-directional digital twin and edge computing in the metaverse. IEEE Internet Things Mag. 2024, 7, 106–112. [Google Scholar] [CrossRef]
- Li, K.; Lau, B.P.L.; Yuan, X.; Ni, W.; Guizani, M.; Yuen, C. Towards ubiquitous semantic metaverse: Challenges, approaches, and opportunities. IEEE Internet Things J. 2023, 10, 21855–21872. [Google Scholar] [CrossRef]
- Cao, X.; Chen, H.; Gelbal, S.Y.; Aksun-Guvenc, B.; Guvenc, L. Vehicle-in-Virtual-Environment (VVE) method for autonomous driving system development, evaluation and demonstration. Sensors 2023, 23, 5088. [Google Scholar] [CrossRef]
- Xu, H.; Berres, A.; Yoginath, S.B.; Sorensen, H.; Nugent, P.J.; Severino, J.; Tennille, S.A.; Moore, A.; Jones, W.; Sanyal, J. Smart mobility in the cloud: Enabling real-time situational awareness and cyber-physical control through a digital twin for traffic. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3145–3156. [Google Scholar] [CrossRef]
- Kušić, K.; Schumann, R.; Ivanjko, E. A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics. Adv. Eng. Inform. 2023, 55, 101858. [Google Scholar] [CrossRef]
- Tuhaise, V.V.; Tah, J.H.M.; Abanda, F.H. Technologies for digital twin applications in construction. Autom. Constr. 2023, 152, 104931. [Google Scholar] [CrossRef]
- Gkontzis, A.F.; Kotsiantis, S.; Feretzakis, G.; Verykios, V.S. Enhancing urban resilience: Smart city data analyses, forecasts, and digital twin techniques at the neighborhood level. Future Internet 2024, 16, 47. [Google Scholar] [CrossRef]
- Ogunsakin, R.; Mehandjiev, N.; Marin, C.A. Towards adaptive digital twins architecture. Comput. Ind. 2023, 149, 103920. [Google Scholar] [CrossRef]
- Tian, H.; Lee, G.A.; Bai, H.; Billinghurst, M. Using virtual replicas to improve mixed reality remote collaboration. IEEE Trans. Vis. Comput. Graph. 2023, 29, 2785–2795. [Google Scholar] [CrossRef]
- Wang, C.M.; Huang, Q.J. Design of a Technology-Based Magic Show System with Virtual User Interfacing to Enhance the Entertainment Effects. Appl. Sci. 2024, 14, 5535. [Google Scholar] [CrossRef]
- Oh, S.; Chung, K.; Aliyu, I.; Hahn, M.; Jeong, I.K.; Yu, C.R.; Um, T.W.; Kim, J. XDN-Based Network Framework Design to Communicate Interaction in Virtual Concerts with Metaverse Platforms. Appl. Sci. 2023, 13, 9509. [Google Scholar] [CrossRef]
- Kim, D.Y.; Lee, H.K.; Chung, K. Avatar-mediated experience in the metaverse: The impact of avatar realism on user-avatar relationship. J. Retail. Consum. Serv. 2023, 73, 103382. [Google Scholar] [CrossRef]
- Hadi, R.; Melumad, S.; Park, E.S. The Metaverse: A new digital frontier for consumer behavior. J. Consum. Psychol. 2024, 34, 142–166. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Y.; Nallanathan, A.; Yuan, J. Machine learning for 6G enhanced ultra-reliable and low-latency services. IEEE Wirel. Commun. 2023, 30, 48–54. [Google Scholar] [CrossRef]
- Chen, W.; Milosevic, Z.; Rabhi, F.A.; Berry, A. Real-time analytics: Concepts, architectures and ML/AI considerations. IEEE Access 2023, 11, 71634–71657. [Google Scholar] [CrossRef]
- Sun, T.; Feng, B.; Huo, J.; Xiao, Y.; Wang, W.; Peng, J.; Li, Z.; Du, C.; Wang, W.; Zou, G.; et al. Artificial intelligence meets flexible sensors: Emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 2024, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Sibley, J.; Swenson, A. Events in the metaverse. In Virtual Events Management: Theory and Methods for Event Management and Tourism; Goodfellow Pub Ltd.: Wolvercote, UK, 2023; p. 155. [Google Scholar]
- Onecha, B.; Cornadó, C.; Morros, J.; Pons, O. New approach to design and assess metaverse environments for improving learning processes in higher education: The case of architectural construction and rehabilitation. Buildings 2023, 13, 1340. [Google Scholar] [CrossRef]
- AlGerafi, M.A.; Zhou, Y.; Oubibi, M.; Wijaya, T.T. Unlocking the potential: A comprehensive evaluation of augmented reality and virtual reality in education. Electronics 2023, 12, 3953. [Google Scholar] [CrossRef]
- Huynh-The, T.; Gadekallu, T.R.; Wang, W.; Yenduri, G.; Ranaweera, P.; Pham, Q.V.; da Costa, D.B.; Liyanage, M. Blockchain for the metaverse: A review. Future Gener. Comput. Syst. 2023, 143, 401–419. [Google Scholar] [CrossRef]
- Lee, L.H.; Braud, T.; Zhou, P.; Wang, L.; Xu, D.; Lin, Z.; Kumar, A.; Bermejo, C.; Hui, P. All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda. arXiv 2021, arXiv:2110.05352. [Google Scholar]
- Zhang, B.; Zhu, J.; Su, H. Toward the third generation artificial intelligence. Sci. China Inf. Sci. 2023, 66, 121101. [Google Scholar] [CrossRef]
- Saxena, A.C.; Ojha, A.; Sobti, D.; Khang, A. Artificial Intelligence (AI)-Centric Model in the Metaverse Ecosystem. In Handbook of Research on AI-Based Technologies and Applications in the Era of the Metaverse; IGI Global: Hershey, PA, USA, 2023; pp. 1–24. [Google Scholar]
- Duong, T.Q.; Van Huynh, D.; Khosravirad, S.R.; Sharma, V.; Dobre, O.A.; Shin, H. From digital twin to metaverse: The role of 6G ultra-reliable and low-latency communications with multi-tier computing. IEEE Wirel. Commun. 2023, 30, 140–146. [Google Scholar] [CrossRef]
- Seo, J.; Park, S. SBAC: Substitution cipher access control based on blockchain for protecting personal data in metaverse. Future Gener. Comput. Syst. 2024, 151, 85–97. [Google Scholar] [CrossRef]
- Hyun, W. Study on standardization for interoperable metaverse. In Proceedings of the 2023 25th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 19–22 February 2023; pp. 319–322. [Google Scholar]
- Karunarathna, S.; Wijethilaka, S.; Ranaweera, P.; Hemachandra, K.T.; Samarasinghe, T.; Liyanage, M. The role of network slicing and edge computing in the metaverse realization. IEEE Access 2023, 11, 25502–25530. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Shan, X.; Lee, C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 2022, 13, 5224. [Google Scholar] [CrossRef] [PubMed]
- Hernan, G.; Ingale, N.; Somayaji, S.; Veerubhotla, A. Virtual Reality-Based Interventions to Improve Balance in Patients with Traumatic Brain Injury: A Scoping Review. Brain Sci. 2024, 14, 429. [Google Scholar] [CrossRef]
- Tefertiller, C.; Ketchum, J.M.; Bartelt, P.; Peckham, M.; Hays, K. Feasibility of virtual reality and treadmill training in traumatic brain injury: A randomized controlled pilot trial. Brain Inj. 2022, 36, 898–908. [Google Scholar] [CrossRef]
- Ullah, H.; Manickam, S.; Obaidat, M.; Laghari, S.U.A.; Uddin, M. Exploring the potential of metaverse technology in healthcare: Applications, challenges, and future directions. IEEE Access 2023, 11, 69686–69707. [Google Scholar] [CrossRef]
- Sokołowska, B. Being in Virtual Reality and Its Influence on Brain Health—An Overview of Benefits, Limitations and Prospects. Brain Sci. 2024, 14, 72. [Google Scholar] [CrossRef]
- Devane, N.; Behn, N.; Marshall, J.; Ramachandran, A.; Wilson, S.; Hilari, K. The use of virtual reality in the rehabilitation of aphasia: A systematic review. Disabil. Rehabil. 2023, 45, 3803–3822. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.; Rosebrock, L.; Waite, F.; Loe, B.S.; Kabir, T.; Petit, A.; Dudley, R.; Chapman, K.; Morrison, A.; O’Regan, E.; et al. Virtual reality (VR) therapy for patients with psychosis: Satisfaction and side effects. Psychol. Med. 2023, 53, 4373–4384. [Google Scholar] [CrossRef]
- Suh, I.; McKinney, T.; Siu, K.C. Current perspective of metaverse application in medical education, research and patient care. Virtual Worlds 2023, 2, 115–128. [Google Scholar] [CrossRef]
- Spence, C. Digitally enhancing tasting experiences. Int. J. Gastron. Food Sci. 2023, 32, 100695. [Google Scholar] [CrossRef]
- Atanasio, M.; Sansone, F.; Conte, R.; Tonacci, A. Exploring Taste Sensation in the Metaverse: A Literature Review. In Proceedings of the 2024 IEEE Gaming, Entertainment, and Media Conference (GEM), Turin, Italy, 5–7 June 2024; pp. 1–6. [Google Scholar]
- Monaco, S.; Sacchi, G. Travelling the metaverse: Potential benefits and main challenges for tourism sectors and research applications. Sustainability 2023, 15, 3348. [Google Scholar] [CrossRef]
- Alsamhi, M.H.; Hawbani, A.; Kumar, S.; Alsamhi, S.H. Multisensory metaverse-6G: A new paradigm of commerce and education. IEEE Access 2024, 12, 75657–75677. [Google Scholar] [CrossRef]
- Yang, B.; Yang, S.; Lv, Z.; Wang, F.; Olofsson, T. Application of digital twins and metaverse in the field of fluid machinery pumps and fans: A review. Sensors 2022, 22, 9294. [Google Scholar] [CrossRef] [PubMed]
- Emami, M.; Bayat, A.; Tafazolli, R.; Quddus, A. A Survey on Haptics: Communication, Sensing and Feedback. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10637258 (accessed on 15 October 2024).
- Chengoden, R.; Victor, N.; Huynh-The, T.; Yenduri, G.; Jhaveri, R.H.; Alazab, M.; Bhattacharya, S.; Hegde, P.; Maddikunta, P.K.R.; Gadekallu, T.R. Metaverse for healthcare: A survey on potential applications, challenges and future directions. IEEE Access 2023, 11, 12765–12795. [Google Scholar] [CrossRef]
- Kim, M.; Oh, J.; Son, S.; Park, Y.; Kim, J.; Park, Y. Secure and privacy-preserving authentication scheme using decentralized identifier in metaverse environment. Electronics 2023, 12, 4073. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Z.; Youliang, T.; Ma, J. A secure authentication framework to guarantee the traceability of avatars in metaverse. IEEE Trans. Inf. Forensics Secur. 2023, 18, 3817–3832. [Google Scholar] [CrossRef]
- Jim, J.R.; Hosain, M.T.; Mridha, M.F.; Kabir, M.M.; Shin, J. Towards trustworthy metaverse: Advancements and challenges. IEEE Access 2023. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Wu, Z.; Mai, C.; Liu, Y.; Hu, Y.; Kang, J.; Zheng, Z. Privacy computing meets metaverse: Necessity, taxonomy and challenges. Ad Hoc Netw. 2024, 158, 103457. [Google Scholar] [CrossRef]
- Karaarslan, E.; Yazici Yilmaz, S. Metaverse and Decentralization. In Metaverse: Technologies, Opportunities and Threats; Springer: Berlin/Heidelberg, Germany, 2023; pp. 31–44. [Google Scholar]
- Lee, H.J.; Gu, H.H. Empirical research on the metaverse user experience of digital natives. Sustainability 2022, 14, 14747. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. Smart manufacturing and tactile internet based on 5G in industry 4.0: Challenges, applications and new trends. Electronics 2021, 10, 3175. [Google Scholar] [CrossRef]
- Cheng, R.; Wu, N.; Chen, S.; Han, B. Will metaverse be nextg internet? vision, hype, and reality. IEEE Netw. 2022, 36, 197–204. [Google Scholar] [CrossRef]
- Qu, Q.; Chen, Y.; Li, X.; Blasch, E.; Chen, G.; Ardiles-Cruz, E. Low-cost collision avoidance in microverse for unmanned aerial vehicle delivery networks. In Proceedings of the Sensors and Systems for Space Applications XVII, National Harbor, MD, USA, 21–25 April 2024; Volume 13062, pp. 215–226. [Google Scholar]
- Sun, H.; Qu, Q.; Chen, Y.; Ardiles-Cruz, E.; Blasch, E. Senior Safety Monitoring in Microverse Using Fuzzy Neural Network Enhanced Action Recognition. Available online: https://www.authorea.com/users/805226/articles/1192576-senior-safety-monitoring-in-microverse-using-fuzzy-neural-network-enhanced-action-recognition (accessed on 15 October 2024).
- Yang, L.; Ni, S.T.; Wang, Y.; Yu, A.; Lee, J.A.; Hui, P. Interoperability of the Metaverse: A Digital Ecosystem Perspective Review. arXiv 2024, arXiv:2403.05205. [Google Scholar]
- Mangrulkar, R.S.; Chavan, P.V. Blockchain Essentials; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Ritterbusch, G.D.; Teichmann, M.R. Defining the metaverse: A systematic literature review. IEEE Access 2023, 11, 12368–12377. [Google Scholar] [CrossRef]
- Blasch, E.; Pham, T.; Chong, C.Y.; Koch, W.; Leung, H.; Braines, D.; Abdelzaher, T. Machine learning/artificial intelligence for sensor data fusion–opportunities and challenges. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 80–93. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, Y. Technology-enhanced education through VR-making and metaverse-linking to foster teacher readiness and sustainable learning. Sustainability 2022, 14, 4786. [Google Scholar] [CrossRef]
- Mystakidis, S.; Berki, E.; Valtanen, J.P. Deep and meaningful e-learning with social virtual reality environments in higher education: A systematic literature review. Appl. Sci. 2021, 11, 2412. [Google Scholar] [CrossRef]
- Childs, E.; Mohammad, F.; Stevens, L.; Burbelo, H.; Awoke, A.; Rewkowski, N.; Manocha, D. An overview of enhancing distance learning through emerging augmented and virtual reality technologies. IEEE Trans. Vis. Comput. Graph. 2023, 30, 4480–4496. [Google Scholar] [CrossRef]
- Kaddoura, S.; Al Husseiny, F. The rising trend of Metaverse in education: Challenges, opportunities, and ethical considerations. PeerJ Comput. Sci. 2023, 9, e1252. [Google Scholar] [CrossRef] [PubMed]
- Yang, L. Recommendations for metaverse governance based on technical standards. Humanit. Soc. Sci. Commun. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Khan, M.; Hatami, M.; Zhao, W.; Chen, Y. A novel trusted hardware-based scalable security framework for IoT edge devices. Discov. Internet Things 2024, 4, 4. [Google Scholar] [CrossRef]
- Yaqoob, I.; Salah, K.; Jayaraman, R.; Omar, M. Metaverse applications in smart cities: Enabling technologies, opportunities, challenges, and future directions. Internet Things 2023, 23, 100884. [Google Scholar] [CrossRef]
- Wijayathunga, L.; Rassau, A.; Chai, D. Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review. Appl. Sci. 2023, 13, 9877. [Google Scholar] [CrossRef]
- Gill, S.S.; Wu, H.; Patros, P.; Ottaviani, C.; Arora, P.; Pujol, V.C.; Haunschild, D.; Parlikad, A.K.; Cetinkaya, O.; Lutfiyya, H.; et al. Modern computing: Vision and challenges. Telemat. Inform. Rep. 2024, 13, 100116. [Google Scholar] [CrossRef]
- Nica, E.; Popescu, G.H.; Poliak, M.; Kliestik, T.; Sabie, O.M. Digital twin simulation tools, spatial cognition algorithms, and multi-sensor fusion technology in sustainable urban governance networks. Mathematics 2023, 11, 1981. [Google Scholar] [CrossRef]
- Ounoughi, C.; Yahia, S.B. Data fusion for ITS: A systematic literature review. Inf. Fusion 2023, 89, 267–291. [Google Scholar] [CrossRef]
- Wang, X.; Li, K.; Chehri, A. Multi-sensor fusion technology for 3D object detection in autonomous driving: A review. IEEE Trans. Intell. Transp. Syst. 2023, 25, 1148–1165. [Google Scholar] [CrossRef]
- Dahan, N.A.; Al-Razgan, M.; Al-Laith, A.; Alsoufi, M.A.; Al-Asaly, M.S.; Alfakih, T. Metaverse framework: A case study on E-learning environment (ELEM). Electronics 2022, 11, 1616. [Google Scholar] [CrossRef]
- Cheng, S. Metaverse and immersive interaction technology. In Metaverse: Concept, Content and Context; Springer: Berlin/Heidelberg, Germany, 2023; pp. 47–81. [Google Scholar]
- Yao, X.; Ma, N.; Zhang, J.; Wang, K.; Yang, E.; Faccio, M. Enhancing wisdom manufacturing as industrial metaverse for industry and society 5.0. J. Intell. Manuf. 2024, 35, 235–255. [Google Scholar] [CrossRef]
- Xu, M.; Niyato, D.; Chen, J.; Zhang, H.; Kang, J.; Xiong, Z.; Mao, S.; Han, Z. Generative AI-empowered simulation for autonomous driving in vehicular mixed reality metaverses. IEEE J. Sel. Top. Signal Process. 2023, 17, 1064–1079. [Google Scholar] [CrossRef]
- Chamola, V.; Bansal, G.; Das, T.K.; Hassija, V.; Sai, S.; Wang, J.; Zeadally, S.; Hussain, A.; Yu, F.R.; Guizani, M.; et al. Beyond reality: The pivotal role of generative ai in the metaverse. IEEE Internet Things Mag. 2024, 7, 126–135. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Fraga-Lamas, P. Forging the Industrial Metaverse-Where Industry 5.0, Augmented and Mixed Reality, IIoT, Opportunistic Edge Computing and Digital Twins Meet. arXiv 2024, arXiv:2403.11312. [Google Scholar]
- Behnke, I.; Austad, H. Real-time performance of industrial IoT communication technologies: A review. IEEE Internet Things J. 2023, 11, 7399–7410. [Google Scholar] [CrossRef]
- Yao, Y.; Chang, X.; Li, L.; Liu, J.; Mišić, J.; Mišić, V.B. DIDs-assisted secure cross-metaverse authentication scheme for MEC-enabled metaverse. In Proceedings of the ICC 2023-IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; pp. 6318–6323. [Google Scholar]
- Zhang, L.; Du, Q.; Lu, L.; Zhang, S. Overview of the integration of communications, sensing, computing, and storage as enabling technologies for the metaverse over 6G networks. Electronics 2023, 12, 3651. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Q.; Huang, H.; Guo, L.; Jiang, S. Intelligent wireless sensing driven metaverse: A survey. Comput. Commun. 2024, 214, 46–56. [Google Scholar] [CrossRef]
- Gu, X.; Yuan, Y.; Yang, J.; Li, L. AI-empowered Pose Reconstruction for Real-time Synthesis of Remote Metaverse Avatars. In Proceedings of the 2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE), Phuket, Thailand, 19–22 June 2024; pp. 86–93. [Google Scholar]
- Huang, F.; Chen, Y.; Wang, X.; Wang, S.; Wu, X. Spectral clustering super-resolution imaging based on multispectral camera array. IEEE Trans. Image Process. 2023, 32, 1257–1271. [Google Scholar] [CrossRef]
- Tang, Y.; Song, S.; Gui, S.; Chao, W.; Cheng, C.; Qin, R. Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment. Sensors 2023, 23, 1437. [Google Scholar] [CrossRef] [PubMed]
- Munir, A.; Aved, A.; Blasch, E. Situational awareness: Techniques, challenges, and prospects. AI 2022, 3, 55–77. [Google Scholar] [CrossRef]
- Tang, Q.; Liang, J.; Zhu, F. A comparative review on multi-modal sensors fusion based on deep learning. Signal Process. 2023, 213, 109165. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, H.; Zhu, X.; Song, X.; Li, H.; Tao, W. Lif-seg: Lidar and camera image fusion for 3d lidar semantic segmentation. IEEE Trans. Multimed. 2023, 26, 1158–1168. [Google Scholar] [CrossRef]
- Smigaj, M.; Agarwal, A.; Bartholomeus, H.; Decuyper, M.; Elsherif, A.; de Jonge, A.; Kooistra, L. Thermal infrared remote sensing of stress responses in forest environments: A review of developments, Challenges, and Opportunities. Curr. For. Rep. 2024, 10, 56–76. [Google Scholar] [CrossRef]
- Wu, G.; Chen, Z.; Dang, J. Data Fusion and Digital Modeling. In Intelligent Bridge Maintenance and Management: Emerging Digital Technologies; Springer: Berlin/Heidelberg, Germany, 2024; pp. 337–401. [Google Scholar]
- Huang, M.; Feng, R.; Zou, L.; Li, R.; Xie, J. Enhancing Telecooperation Through Haptic Twin for Internet of Robotic Things: Implementation and Challenges. IEEE Internet Things J. 2024, 11, 32440–32453. [Google Scholar] [CrossRef]
- Baidya, T.; Moh, S. Comprehensive survey on resource allocation for edge-computing-enabled metaverse. Comput. Sci. Rev. 2024, 54, 100680. [Google Scholar] [CrossRef]
- Zawish, M.; Dharejo, F.A.; Khowaja, S.A.; Raza, S.; Davy, S.; Dev, K.; Bellavista, P. AI and 6G into the metaverse: Fundamentals, challenges and future research trends. IEEE Open J. Commun. Soc. 2024, 5, 730–778. [Google Scholar] [CrossRef]
- Yin, F.; Shi, F. A comparative survey of big data computing and HPC: From a parallel programming model to a cluster architecture. Int. J. Parallel Program. 2022, 50, 27–64. [Google Scholar] [CrossRef]
- Hamid, N.A.W.A.; Singh, B. High-Performance Computing Based Operating Systems, Software Dependencies and IoT Integration. In High Performance Computing in Biomimetics: Modeling, Architecture and Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 175–204. [Google Scholar]
- Navaux, P.O.A.; Lorenzon, A.F.; da Silva Serpa, M. Challenges in high-performance computing. J. Braz. Comput. Soc. 2023, 29, 51–62. [Google Scholar] [CrossRef]
- Pyzer-Knapp, E.O.; Curioni, A. Advancing biomolecular simulation through exascale HPC, AI and quantum computing. Curr. Opin. Struct. Biol. 2024, 87, 102826. [Google Scholar] [CrossRef]
- Thakur, S.; Jha, S.K. Cloud Computing and its Emerging Trends on Big Data Analytics. In Proceedings of the 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 6–8 July 2023; pp. 1159–1164. [Google Scholar]
- Karunamurthy, A.; Yuvaraj, M.; Shahithya, J.; Thenmozhi, V. Cloud Database: Empowering Scalable and Flexible Data Management. Quing Int. J. Innov. Res. Sci. Eng. 2023, 2, 1–23. [Google Scholar] [CrossRef]
- Samha, A.K. Strategies for efficient resource management in federated cloud environments supporting Infrastructure as a Service (IaaS). J. Eng. Res. 2024, 12, 101–114. [Google Scholar] [CrossRef]
- Bharany, S.; Kaur, K.; Badotra, S.; Rani, S.; Kavita; Wozniak, M.; Shafi, J.; Ijaz, M.F. Efficient middleware for the portability of paas services consuming applications among heterogeneous clouds. Sensors 2022, 22, 5013. [Google Scholar] [CrossRef]
- Nadeem, F. Evaluating and ranking cloud IaaS, PaaS and SaaS models based on functional and non-functional key performance indicators. IEEE Access 2022, 10, 63245–63257. [Google Scholar] [CrossRef]
- Alhaidari, F.; Rahman, A.; Zagrouba, R. Cloud of Things: Architecture, applications and challenges. J. Ambient Intell. Humaniz. Comput. 2023, 14, 5957–5975. [Google Scholar] [CrossRef]
- Chi, H.R.; de Fátima Domingues, M.; Zhu, H.; Li, C.; Kojima, K.; Radwan, A. Healthcare 5.0: In the perspective of consumer internet-of-things-based fog/cloud computing. IEEE Trans. Consum. Electron. 2023, 69, 745–755. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.; Yuan, J.; Wang, G.; Zhou, H. The intelligent prediction and assessment of financial information risk in the cloud computing model. arXiv 2024, arXiv:2404.09322. [Google Scholar] [CrossRef]
- Hazra, A.; Rana, P.; Adhikari, M.; Amgoth, T. Fog computing for next-generation internet of things: Fundamental, state-of-the-art and research challenges. Comput. Sci. Rev. 2023, 48, 100549. [Google Scholar] [CrossRef]
- Kong, X.; Wu, Y.; Wang, H.; Xia, F. Edge computing for internet of everything: A survey. IEEE Internet Things J. 2022, 9, 23472–23485. [Google Scholar] [CrossRef]
- Mann, Z.A. Decentralized application placement in fog computing. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 3262–3273. [Google Scholar] [CrossRef]
- Oprea, S.V.; Bâra, A. An Edge-Fog-Cloud computing architecture for IoT and smart metering data. Peer-Netw. Appl. 2023, 16, 818–845. [Google Scholar] [CrossRef]
- Hazarika, A.; Rahmati, M. Towards an evolved immersive experience: Exploring 5G-and beyond-enabled ultra-low-latency communications for augmented and virtual reality. Sensors 2023, 23, 3682. [Google Scholar] [CrossRef]
- Sefati, S.S.; Halunga, S. Ultra-reliability and low-latency communications on the internet of things based on 5G network: Literature review, classification, and future research view. Trans. Emerg. Telecommun. Technol. 2023, 34, e4770. [Google Scholar] [CrossRef]
- Qadir, Z.; Le, K.N.; Saeed, N.; Munawar, H.S. Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT Express 2023, 9, 296–312. [Google Scholar] [CrossRef]
- Ajmal, M.; Siddiqa, A.; Jeong, B.; Seo, J.; Kim, D. Cell-free massive multiple-input multiple-output challenges and opportunities: A survey. ICT Express 2023, 10, 194–212. [Google Scholar] [CrossRef]
- Fang, G.; Sun, Y.; Almutiq, M.; Zhou, W.; Zhao, Y.; Ren, Y. Distributed medical data storage mechanism based on proof of retrievability and vector commitment for metaverse services. IEEE J. Biomed. Health Inform. 2023, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ooi, B.C.; Chen, G.; Shou, M.Z.; Tan, K.L.; Tung, A.; Xiao, X.; Yip, J.W.L.; Zhang, B.; Zhang, M. The metaverse data deluge: What can we do about it? In Proceedings of the 2023 IEEE 39th International Conference on Data Engineering (ICDE), Anaheim, CA, USA, 3–7 April 2023; pp. 3675–3687. [Google Scholar]
- Chougule, S.B.; Chaudhari, B.S.; Ghorpade, S.N.; Zennaro, M. Exploring Computing Paradigms for Electric Vehicles: From Cloud to Edge Intelligence, Challenges and Future Directions. World Electr. Veh. J. 2024, 15, 39. [Google Scholar] [CrossRef]
- Maher, S.M.; Ebrahim, G.A.; Hosny, S.; Salah, M.M. A cache-enabled device-to-device approach based on deep learning. IEEE Access 2023, 11, 76953–76963. [Google Scholar] [CrossRef]
- Masood, A.; Tuan, D.Q.; Lakew, D.S.; Dao, N.N.; Cho, S. A Review on AI-Enabled Content Caching in Vehicular Edge Caching and Networks. In Proceedings of the 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Bali, Indonesia, 20–23 February 2023; pp. 713–717. [Google Scholar]
- Singh, R.; Gill, S.S. Edge AI: A survey. Internet Things Cyber-Phys. Syst. 2023, 3, 71–92. [Google Scholar] [CrossRef]
- Qiu, S.; Fan, Q.; Li, X.; Zhang, X.; Min, G.; Lyu, Y. OA-cache: Oracle approximation-based cache replacement at the network edge. IEEE Trans. Netw. Serv. Manag. 2023, 20, 3177–3189. [Google Scholar] [CrossRef]
- Sun, H.; Sun, C.; Tong, H.; Yue, Y.; Qin, X. A Machine Learning-empowered Cache Management Scheme for High-Performance SSDs. IEEE Trans. Comput. 2024, 73, 2066–2080. [Google Scholar] [CrossRef]
- Murala, D.K.; Panda, S.K. Metaverse: A study on immersive technologies. In Metaverse and Immersive Technologies: An Introduction to Industrial, Business and Social Applications; Wiley: Hoboken, NJ, USA, 2023; pp. 1–41. [Google Scholar]
- Bibri, S.E.; Jagatheesaperumal, S.K. Harnessing the potential of the metaverse and artificial intelligence for the internet of city things: Cost-effective XReality and synergistic AIoT technologies. Smart Cities 2023, 6, 2397–2429. [Google Scholar] [CrossRef]
- Familoni, B.T.; Onyebuchi, N.C. Augmented and virtual reality in us education: A review: Analyzing the impact, effectiveness, and future prospects of ar/vr tools in enhancing learning experiences. Int. J. Appl. Res. Soc. Sci. 2024, 6, 642–663. [Google Scholar] [CrossRef]
- Korkut, E.H.; Surer, E. Visualization in virtual reality: A systematic review. Virtual Real. 2023, 27, 1447–1480. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, L.; Li, S.; Yu, A. Research on the Perceived Quality of Virtual Reality Headsets in Human–Computer Interaction. Sensors 2023, 23, 6824. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulos, A.; Stavropoulou, D.; Papadopoulos, P.; Platis, N.; Lepouras, G. Developing an interactive VR CAVE for immersive shared gaming experiences. Virtual Worlds 2023, 2, 162–181. [Google Scholar] [CrossRef]
- Raji, M.A.; Olodo, H.B.; Oke, T.T.; Addy, W.A.; Ofodile, O.C.; Oyewole, A.T. Business strategies in virtual reality: A review of market opportunities and consumer experience. Int. J. Manag. Entrep. Res. 2024, 6, 722–736. [Google Scholar] [CrossRef]
- Miljkovic, I.; Shlyakhetko, O.; Fedushko, S. Real estate app development based on AI/VR technologies. Electronics 2023, 12, 707. [Google Scholar] [CrossRef]
- Creed, C.; Al-Kalbani, M.; Theil, A.; Sarcar, S.; Williams, I. Inclusive AR/VR: Accessibility barriers for immersive technologies. Univers. Access Inf. Soc. 2024, 23, 59–73. [Google Scholar] [CrossRef]
- Dargan, S.; Bansal, S.; Kumar, M.; Mittal, A.; Kumar, K. Augmented reality: A comprehensive review. Arch. Comput. Methods Eng. 2023, 30, 1057–1080. [Google Scholar] [CrossRef]
- Mendoza-Ramírez, C.E.; Tudon-Martinez, J.C.; Félix-Herrán, L.C.; Lozoya-Santos, J.d.J.; Vargas-Martínez, A. Augmented reality: Survey. Appl. Sci. 2023, 13, 10491. [Google Scholar] [CrossRef]
- Kim, D.; Chae, H.; Kim, Y.; Choi, J.; Kim, K.H.; Jo, D. Real-Time Motion Adaptation with Spatial Perception for an Augmented Reality Character. Appl. Sci. 2024, 14, 650. [Google Scholar] [CrossRef]
- Sayeedunnisa, S.F.; Saberi, K.H.; Mohiuddin, M.A. Augmented GPS Navigation: Enhancing the Reliability of Location-Based Services. In Proceedings of the 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), Gharuan, India, 5–6 May 2023; pp. 565–569. [Google Scholar]
- Liu, D.; Huang, R.; Metwally, A.H.S.; Tlili, A.; Lin, E.F. Application of the Metaverse in Education; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Vyas, S. Extended reality and edge AI for healthcare 4.0: Systematic study. In Extended Reality for Healthcare Systems; Elsevier: Amsterdam, The Netherlands, 2023; pp. 229–240. [Google Scholar]
- AL Hilal, N.S.H. The impact of the use of augmented reality on online purchasing behavior sustainability: The Saudi consumer as a model. Sustainability 2023, 15, 5448. [Google Scholar] [CrossRef]
- Tsolis, A.; Bakogianni, S.; Angelaki, C.; Alexandridis, A.A. A review of clothing components in the development of wearable textile antennas: Design and experimental procedure. Sensors 2023, 23, 3289. [Google Scholar] [CrossRef]
- Minopoulos, G.M.; Memos, V.A.; Stergiou, K.D.; Stergiou, C.L.; Psannis, K.E. A medical image visualization technique assisted with AI-based haptic feedback for robotic surgery and healthcare. Appl. Sci. 2023, 13, 3592. [Google Scholar] [CrossRef]
- Buhalis, D.; Karatay, N. Mixed reality (MR) for generation Z in cultural heritage tourism towards metaverse. In Information and Communication Technologies in Tourism 2022: Proceedings of the ENTER 2022 eTourism Conference, Tianjin, China, 11–14 January 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 16–27. [Google Scholar]
- Nleya, S.M.; Velempini, M. Industrial Metaverse: A Comprehensive Review, Environmental Impact, and Challenges. Appl. Sci. 2024, 14, 5736. [Google Scholar] [CrossRef]
- El Koshiry, A.; Eliwa, E.; Abd El-Hafeez, T.; Shams, M.Y. Unlocking the power of blockchain in education: An overview of innovations and outcomes. Blockchain Res. Appl. 2023, 4, 100165. [Google Scholar] [CrossRef]
- Mitra, S. Metaverse: A potential virtual-physical ecosystem for innovative blended education and training. J. Metaverse 2023, 3, 66–72. [Google Scholar] [CrossRef]
- Tan, Y.W.; Low, S.E.; Chow, J.; Teo, J.; Bhojan, A. DHR+ S: Distributed hybrid rendering with realistic real-time shadows for interactive thin client metaverse and game applications. Vis. Comput. 2024, 40, 4981–4991. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Liu, Y.; Lau, R. Intelligent metaverse scene content construction. IEEE Access 2023, 11, 76222–76241. [Google Scholar] [CrossRef]
- Xu, M.; Niyato, D.; Wright, B.; Zhang, H.; Kang, J.; Xiong, Z.; Mao, S.; Han, Z. EPViSA: Efficient Auction Design for Real-Time Physical-Virtual Synchronization in the Human-Centric Metaverse. IEEE J. Sel. Areas Commun. 2023, 42, 694–709. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Guo, S.; Dai, M.; Luan, T.H.; Liu, Y. A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. IEEE Internet Things J. 2023, 10, 14965–14987. [Google Scholar] [CrossRef]
- Ali, W.A.; Fanti, M.P.; Roccotelli, M.; Ranieri, L. A review of digital twin technology for electric and autonomous vehicles. Appl. Sci. 2023, 13, 5871. [Google Scholar] [CrossRef]
- Meijer, C.; Uh, H.W.; El Bouhaddani, S. Digital twins in healthcare: Methodological challenges and opportunities. J. Pers. Med. 2023, 13, 1522. [Google Scholar] [CrossRef]
- Kuru, K. Metaomnicity: Toward immersive urban metaverse cyberspaces using smart city digital twins. IEEE Access 2023, 11, 43844–43868. [Google Scholar] [CrossRef]
- Faliagka, E.; Christopoulou, E.; Ringas, D.; Politi, T.; Kostis, N.; Leonardos, D.; Tranoris, C.; Antonopoulos, C.P.; Denazis, S.; Voros, N. Trends in digital twin framework architectures for smart cities: A case study in smart mobility. Sensors 2024, 24, 1665. [Google Scholar] [CrossRef] [PubMed]
- Turab, M.; Jamil, S. A comprehensive survey of digital twins in healthcare in the era of metaverse. BioMedInformatics 2023, 3, 563–584. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Digital twin for smart manufacturing, A review. Sustain. Manuf. Serv. Econ. 2023, 2, 100017. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N.; Singh, A.; Aujla, G.S. BlockTwins: Blockchain Empowered Supply Chain Digital Twins in Metaverse. In Proceedings of the 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, CO, USA, 9–13 June 2024; pp. 1456–1461. [Google Scholar]
- Qu, Q.; Ogunbunmi, S.; Hatami, M.; Xu, R.; Chen, Y.; Chen, G.; Blasch, E. A digital twins enabled reputation system for microchain-based uav networks. In Proceedings of the 2023 IEEE 12th International Conference on Cloud Networking (CloudNet), Hoboken, NJ, USA, 1–3 November 2023; pp. 428–432. [Google Scholar]
- Sumon, R.I.; Uddin, S.M.I.; Akter, S.; Mozumder, M.A.I.; Khan, M.O.; Kim, H.C. Natural Language Processing Influence on Digital Socialization and Linguistic Interactions in the Integration of the Metaverse in Regular Social Life. Electronics 2024, 13, 1331. [Google Scholar] [CrossRef]
- Li, B.; Xu, T.; Li, X.; Cui, Y.; Bian, X.; Teng, S.; Ma, S.; Fan, L.; Tian, Y.; Wang, F.Y. Integrating large language models and metaverse in autonomous racing: An education-oriented perspective. IEEE Trans. Intell. Veh. 2024, 9, 59–64. [Google Scholar] [CrossRef]
- Far, S.B.; Rad, A.I.; Bamakan, S.M.H.; Asaar, M.R. Toward Metaverse of everything: Opportunities, challenges, and future directions of the next generation of visual/virtual communications. J. Netw. Comput. Appl. 2023, 217, 103675. [Google Scholar]
- Sun, Y.; Wang, H.; Chan, P.M.; Tabibi, M.; Zhang, Y.; Lu, H.; Chen, Y.; Lee, C.H.; Asadipour, A. Fictional Worlds, Real Connections: Developing Community Storytelling Social Chatbots through LLMs. arXiv 2023, arXiv:2309.11478. [Google Scholar]
- Partarakis, N.; Zabulis, X. A review of immersive technologies, knowledge representation, and AI for human-centered digital experiences. Electronics 2024, 13, 269. [Google Scholar] [CrossRef]
- Hassan, S.Z.; Salehi, P.; Røed, R.K.; Halvorsen, P.; Baugerud, G.A.; Johnson, M.S.; Lison, P.; Riegler, M.; Lamb, M.E.; Griwodz, C.; et al. Towards an AI-driven talking avatar in virtual reality for investigative interviews of children. In Proceedings of the 2nd Workshop on Games Systems, Athlone, Ireland, 14 June 2022; pp. 9–15. [Google Scholar]
- Li, Y.; Hashim, A.S.; Lin, Y.; Nohuddin, P.N.; Venkatachalam, K.; Ahmadian, A. AI-based Visual Speech Recognition Towards Realistic Avatars and Lip-Reading Applications in the Metaverse. Appl. Soft Comput. 2024, 164, 111906. [Google Scholar] [CrossRef]
- Hu, Y.H.; Yu, H.Y.; Tzeng, J.W.; Zhong, K.C. Using an avatar-based digital collaboration platform to foster ethical education for university students. Comput. Educ. 2023, 196, 104728. [Google Scholar] [CrossRef]
- Jones, C.L.E.; Hancock, T.; Kazandjian, B.; Voorhees, C.M. Engaging the Avatar: The effects of authenticity signals during chat-based service recoveries. J. Bus. Res. 2022, 144, 703–716. [Google Scholar] [CrossRef]
- Morrow, E.; Zidaru, T.; Ross, F.; Mason, C.; Patel, K.D.; Ream, M.; Stockley, R. Artificial intelligence technologies and compassion in healthcare: A systematic scoping review. Front. Psychol. 2023, 13, 971044. [Google Scholar] [CrossRef]
- Campitiello, L.; Beatini, V.; Di Tore, S. Non-player Character Smart in Virtual Learning Environment: Empowering Education Through Artificial Intelligence. In Artificial Intelligence with and for Learning Sciences. Past, Present, and Future Horizons, Proceedings of the First Workshop, WAILS 2024, Salerno, Italy, 18–19 January 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 131–137. [Google Scholar]
- Chodvadiya, C.; Solanki, V.; Singh, K.G. Intelligent Virtual Worlds: A Survey of the Role of AI in the Metaverse. In Proceedings of the 2024 3rd International Conference for Innovation in Technology (INOCON), Bangalore, India, 1–3 March 2024; pp. 1–6. [Google Scholar]
- Selznick, B.S.; Goodman, M.A.; McCready, A.M.; Duran, A. Developing Relational Leaders Through Sorority Engagement: A Quantitative Approach. Innov. High. Educ. 2024, 49, 319–347. [Google Scholar] [CrossRef]
- Huyen, N.T. Fostering Design Thinking mindset for university students with NPCs in the metaverse. Heliyon 2024, 10, e34964. [Google Scholar] [CrossRef]
- Qin, H.X.; Hui, P. Empowering the metaverse with generative ai: Survey and future directions. In Proceedings of the 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW), Hong Kong, China, 18–21 July 2023; pp. 85–90. [Google Scholar]
- Makowska, A.; Weiskirchen, R. Nasopharyngeal Carcinoma Cell Lines: Reliable Alternatives to Primary Nasopharyngeal Cells? Cells 2024, 13, 559. [Google Scholar] [CrossRef]
- Pretty, E.J.; Fayek, H.M.; Zambetta, F. A case for personalized non-player character companion design. Int. J. Hum.-Interact. 2024, 40, 3051–3070. [Google Scholar] [CrossRef]
- Uludağlı, M.Ç.; Oğuz, K. Non-player character decision-making in computer games. Artif. Intell. Rev. 2023, 56, 14159–14191. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. Blockchain integration in the era of industrial metaverse. Appl. Sci. 2023, 13, 1353. [Google Scholar] [CrossRef]
- Cheng, Y.; Guo, Y.; Xu, M.; Hu, Q.; Yu, D.; Cheng, X. An adaptive and modular blockchain enabled architecture for a decentralized metaverse. IEEE J. Sel. Areas Commun. 2023, 42, 893–904. [Google Scholar] [CrossRef]
- Ogunbunmi, S.; Hatmai, M.; Xu, R.; Chen, Y.; Blasch, E.; Ardiles-Cruz, E.; Aved, A.; Chen, G. A lightweight reputation system for uav networks. In Security and Privacy in Cyber-Physical Systems and Smart Vehicles, Proceedings of the First EAI International Conference, SmartSP 2023, Chicago, IL, USA, 12–13 October 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 114–129. [Google Scholar]
- Kumar, P.; Kumar, R.; Aloqaily, M.; Islam, A.N. Explainable AI and blockchain for metaverse: A security, and privacy perspective. IEEE Consum. Electron. Mag. 2023, 13, 90–97. [Google Scholar] [CrossRef]
- Kottursamy, K.; Sadayapillai, B.; AlZubi, A.A.; Bashir, A.K. A novel blockchain architecture with mutable block and immutable transactions for enhanced scalability. Sustain. Energy Technol. Assess. 2023, 58, 103320. [Google Scholar] [CrossRef]
- Torab-Miandoab, A.; Samad-Soltani, T.; Jodati, A.; Rezaei-Hachesu, P. Interoperability of heterogeneous health information systems: A systematic literature review. BMC Med. Inform. Decis. Mak. 2023, 23, 18. [Google Scholar] [CrossRef]
- Bianchi, M.; Bouvard, M.; Gomes, R.; Rhodes, A.; Shreeti, V. Mobile payments and interoperability: Insights from the academic literature. Inf. Econ. Policy 2023, 65, 101068. [Google Scholar] [CrossRef]
- Narang, N.K. Mentor’s Musings on Role of Standards, Regulations & Policies in Navigating through Metaverse and its Future Avatars. IEEE Internet Things Mag. 2023, 6, 4–11. [Google Scholar]
- Yu, G.; Liu, C.; Fang, T.; Jia, J.; Lin, E.; He, Y.; Fu, S.; Wang, L.; Wei, L.; Huang, Q. A survey of real-time rendering on Web3D application. Virtual Real. Intell. Hardw. 2023, 5, 379–394. [Google Scholar] [CrossRef]
- Hamidouche, W.; Bariah, L.; Debbah, M. Immersive Media and Massive Twinning: Advancing Toward the Metaverse. IEEE Commun. Mag. 2024, 62, 20–32. [Google Scholar] [CrossRef]
- Della-Bosca, D.; Grant, G.; Patterson, D.; Roberts, S. The Multiplicitous Metaverse: Purposeful Ways of Applying and Understanding eXtended Reality in Learning and Teaching Frameworks. In Augmented and Virtual Reality in the Metaverse; Springer: Berlin/Heidelberg, Germany, 2024; pp. 41–63. [Google Scholar]
- Westphal, C.; Hong, J.; Kang, S.G.; Chiariglione, L.; Jiang, T. Networking for the Metaverse: The Standardization Landscape. arXiv 2023, arXiv:2312.09295. [Google Scholar] [CrossRef]
- The World Metaverse Council. 2024. Available online: https://wmetac.com/ (accessed on 15 October 2024).
- Tran, K.Q.; Neeli, H.; Tsekos, N.V.; Velazco-Garcia, J.D. Immersion into 3D Biomedical Data via Holographic AR Interfaces Based on the Universal Scene Description (USD) Standard. In Proceedings of the 2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE), Virtual, 4–6 December 2023; pp. 354–358. [Google Scholar]
- Li, T.; Yang, C.; Yang, Q.; Lan, S.; Zhou, S.; Luo, X.; Huang, H.; Zheng, Z. Metaopera: A cross-metaverse interoperability protocol. IEEE Wirel. Commun. 2023, 30, 136–143. [Google Scholar] [CrossRef]
- Yoo, K.; Welden, R.; Hewett, K.; Haenlein, M. The merchants of meta: A research agenda to understand the future of retailing in the metaverse. J. Retail. 2023, 99, 173–192. [Google Scholar] [CrossRef]
- Liarokapis, F.; Milata, V.; Ponton, J.L.; Pelechano, N.; Zacharatos, H. XR4ED: An Extended Reality Platform for Education. IEEE Comput. Graph. Appl. 2024, 44, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Quek, H.Y.; Sielker, F.; Akroyd, J.; Bhave, A.N.; von Richthofen, A.; Herthogs, P.; van der Laag Yamu, C.; Wan, L.; Nochta, T.; Burgess, G.; et al. The conundrum in smart city governance: Interoperability and compatibility in an ever-growing ecosystem of digital twins. Data Policy 2023, 5, e6. [Google Scholar] [CrossRef]
- Ball, M. The Metaverse: And How It Will Revolutionize Everything; Liveright Publishing: New York, NY, USA, 2022. [Google Scholar]
- Song, Y.T.; Qin, J. Metaverse and personal healthcare. Procedia Comput. Sci. 2022, 210, 189–197. [Google Scholar] [CrossRef]
- Albouq, S.S.; Abi Sen, A.A.; Almashf, N.; Yamin, M.; Alshanqiti, A.; Bahbouh, N.M. A survey of interoperability challenges and solutions for dealing with them in IoT environment. IEEE Access 2022, 10, 36416–36428. [Google Scholar] [CrossRef]
- Perri, D.; Simonetti, M.; Tasso, S.; Gervasi, O. Open metaverse with open software. In Computational Science and Its Applications—ICCSA 2023, Proceedings of the 23rd International Conference, Athens, Greece, 3–6 July 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 583–596. [Google Scholar]
- Bühler, M.M.; Calzada, I.; Cane, I.; Jelinek, T.; Kapoor, A.; Mannan, M.; Mehta, S.; Mookerje, V.; Nübel, K.; Pentland, A.; et al. Unlocking the power of digital commons: Data cooperatives as a pathway for data sovereign, innovative and equitable digital communities. Digital 2023, 3, 146–171. [Google Scholar] [CrossRef]
- Huzaifa, M.; Desai, R.; Grayson, S.; Jiang, X.; Jing, Y.; Lee, J.; Lu, F.; Pang, Y.; Ravichandran, J.; Sinclair, F.; et al. Illixr: An open testbed to enable extended reality systems research. IEEE Micro 2022, 42, 97–106. [Google Scholar] [CrossRef]
- Javerliat, C.; Villenave, S.; Raimbaud, P.; Lavoué, G. Plume: Record, replay, analyze and share user behavior in 6dof xr experiences. IEEE Trans. Vis. Comput. Graph. 2024, 30, 2087–2097. [Google Scholar] [CrossRef]
- Memmesheimer, V.; Ebert, A. A human-centered framework for scalable extended reality spaces. In Proceedings of the International Research Training Group Conference on Physical Modeling for Virtual Manufacturing Systems and Processes; Springer: Berlin/Heidelberg, Germany, 2023; pp. 111–128. [Google Scholar]
- Abeywardena, I.S. OXREF: Open XR for Education Framework. Int. Rev. Res. Open Distrib. Learn. 2023, 24, 185–206. [Google Scholar] [CrossRef]
- Sai, S.; Goyal, D.; Chamola, V.; Sikdar, B. Consumer electronics technologies for enabling an immersive metaverse experience. IEEE Consum. Electron. Mag. 2023, 13, 16–24. [Google Scholar] [CrossRef]
- Rubinfeld, D. Data portability and interoperability: An EU-US comparison. Eur. J. Law Econ. 2024, 57, 163–179. [Google Scholar] [CrossRef]
- De Luca, V.; Gatto, C.; Liaci, S.; Corchia, L.; Chiarello, S.; Faggiano, F.; Sumerano, G.; De Paolis, L.T. Virtual reality and spatial augmented reality for social inclusion: The “Includiamoci” project. Information 2023, 14, 38. [Google Scholar] [CrossRef]
- Martí-Testón, A.; Muñoz, A.; Gracia, L.; Solanes, J.E. Using WebXR metaverse platforms to create touristic services and cultural promotion. Appl. Sci. 2023, 13, 8544. [Google Scholar] [CrossRef]
- Boutsi, A.M.; Ioannidis, C.; Verykokou, S. Multi-Resolution 3D Rendering for High-Performance Web AR. Sensors 2023, 23, 6885. [Google Scholar] [CrossRef] [PubMed]
- Sukaridhoto, S.; Hanifati, K.; Fajrianti, E.D.; Haz, A.L.; Hafidz, I.A.A.; Basuki, D.K.; Budiarti, R.P.N.; Wicaksono, H. Web-Based Extended Reality for Supporting Medical Education. In Proceedings of the SAI Intelligent Systems Conference, Amsterdam, The Netherlands, 7–8 September 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 791–805. [Google Scholar]
- Greenway, K.; Frisone, C.; Placidi, A.; Kumar, S.; Guest, W.; Winter, S.C.; Shah, K.; Henshall, C. Using immersive technology and architectural design to assist head and neck cancer patients’ recovery from treatment: A focus group and technology acceptance study. Eur. J. Oncol. Nurs. 2023, 62, 102261. [Google Scholar] [CrossRef] [PubMed]
- Kaarlela, T.; Pitkäaho, T.; Pieskä, S.; Padrão, P.; Bobadilla, L.; Tikanmäki, M.; Haavisto, T.; Blanco Bataller, V.; Laivuori, N.; Luimula, M. Towards metaverse: Utilizing extended reality and digital twins to control robotic systems. Actuators 2023, 12, 219. [Google Scholar] [CrossRef]
- Cheng, R.; Wu, N.; Varvello, M.; Chen, S.; Han, B. Are we ready for metaverse? A measurement study of social virtual reality platforms. In Proceedings of the 22nd ACM Internet Measurement Conference, Nice, France, 25–27 October 2022; pp. 504–518. [Google Scholar]
- Warburton, M.; Mon-Williams, M.; Mushtaq, F.; Morehead, J.R. Measuring motion-to-photon latency for sensorimotor experiments with virtual reality systems. Behav. Res. Methods 2023, 55, 3658–3678. [Google Scholar] [CrossRef]
- Zhong, L.; Chen, X.; Xu, C.; Ma, Y.; Wang, M.; Zhao, Y.; Muntean, G.M. A multi-user cost-efficient crowd-assisted VR content delivery solution in 5G-and-beyond heterogeneous networks. IEEE Trans. Mob. Comput. 2022, 22, 4405–4421. [Google Scholar] [CrossRef]
- Krauss, D. Mean-Time-to-Cloud: Enabling a Metaverse-Ready Network. 2023. Available online: https://www.ciena.com/insights/articles/2023/mean-time-to-cloud-enabling-a-metaverse-ready-network (accessed on 15 October 2024).
- Liu, S.; Xu, X.; Claypool, M. A survey and taxonomy of latency compensation techniques for network computer games. ACM Comput. Surv. (CSUR) 2022, 54, 1–34. [Google Scholar] [CrossRef]
- Yu, H.; Shokrnezhad, M.; Taleb, T.; Li, R.; Song, J. Toward 6g-based metaverse: Supporting highly-dynamic deterministic multi-user extended reality services. IEEE Netw. 2023, 37, 30–38. [Google Scholar] [CrossRef]
- Chu, N.H.; Hoang, D.T.; Nguyen, D.N.; Phan, K.T.; Dutkiewicz, E.; Niyato, D.; Shu, T. Metaslicing: A novel resource allocation framework for metaverse. IEEE Trans. Mob. Comput. 2023, 23, 4145–4162. [Google Scholar] [CrossRef]
- Zalan, T.; Barbesino, P. Making the metaverse real. Digit. Bus. 2023, 3, 100059. [Google Scholar] [CrossRef]
- Sihare, S.; Khang, A. Effects of quantum technology on the metaverse. In Handbook of Research on AI-Based Technologies and Applications in the Era of the Metaverse; IGI Global: Hershey, PA, USA, 2023; pp. 174–203. [Google Scholar]
- Mozaffariahrar, E.; Theoleyre, F.; Menth, M. A survey of Wi-Fi 6: Technologies, advances, and challenges. Future Internet 2022, 14, 293. [Google Scholar] [CrossRef]
- Chen, C.; Chen, X.; Das, D.; Akhmetov, D.; Cordeiro, C. Overview and performance evaluation of Wi-Fi 7. IEEE Commun. Stand. Mag. 2022, 6, 12–18. [Google Scholar] [CrossRef]
- Reshef, E.; Cordeiro, C. Future directions for Wi-Fi 8 and beyond. IEEE Commun. Mag. 2022, 60, 50–55. [Google Scholar] [CrossRef]
- Liu, X.; Chen, T.; Dong, Y.; Mao, Z.; Gan, M.; Yang, X.; Lu, J. Wi-Fi 8: Embracing the Millimeter-Wave Era. arXiv 2023, arXiv:2309.16813. [Google Scholar]
- Domeke, A.; Cimoli, B.; Monroy, I.T. Integration of network slicing and machine learning into edge networks for low-latency services in 5G and beyond systems. Appl. Sci. 2022, 12, 6617. [Google Scholar] [CrossRef]
- Dommeti, V.S.; Dharani, M.; Shasidhar, K.; Reddy, Y.D.R.; Moorthy, T.V. Quality Enhancement with Frame-wise DLCNN using High Efficiency Video Coding in 5G Networks. Scalable Comput. Pract. Exp. 2024, 25, 1264–1275. [Google Scholar] [CrossRef]
- Shin, H.; Lee, J. Hardware Multi-Threaded System for High-Performance JPEG Decoding. J. Signal Process. Syst. 2024, 96, 67–79. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, W.; Li, L.; Li, M.; Zhang, T. Initiative, Immersive Human-Computer Interactions: Software Defined Memristive Neural Networks for Non-Linear Heterogeneous Scheme in the Internet of Brains. IEEE Internet Things J. 2023, 11, 13355–13371. [Google Scholar] [CrossRef]
- Song, R.; Xiao, B.; Song, Y.; Guo, S.; Yang, Y. A survey of blockchain-based schemes for data sharing and exchange. IEEE Trans. Big Data 2023, 9, 1477–1495. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, S.; Wang, T.; Liew, S.C. Bodyless block propagation: Tps fully scalable blockchain with pre-validation. Future Gener. Comput. Syst. 2024, 163, 107516. [Google Scholar] [CrossRef]
- Monem, M.; Hossain, M.T.; Alam, M.G.R.; Munir, M.S.; Rahman, M.M.; AlQahtani, S.A.; Almutlaq, S.; Hassan, M.M. A sustainable Bitcoin blockchain network through introducing dynamic block size adjustment using predictive analytics. Future Gener. Comput. Syst. 2024, 153, 12–26. [Google Scholar] [CrossRef]
- Zafar, S.; Bhatti, K.; Shabbir, M.; Hashmat, F.; Akbar, A.H. Integration of blockchain and Internet of Things: Challenges and solutions. Ann. Telecommun. 2022, 77, 13–32. [Google Scholar] [CrossRef]
- Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic review of security vulnerabilities in ethereum blockchain smart contract. IEEE Access 2022, 10, 6605–6621. [Google Scholar] [CrossRef]
- Lasla, N.; Al-Sahan, L.; Abdallah, M.; Younis, M. Green-PoW: An energy-efficient blockchain Proof-of-Work consensus algorithm. Comput. Netw. 2022, 214, 109118. [Google Scholar] [CrossRef]
- Ren, K.; Ho, N.M.; Loghin, D.; Nguyen, T.T.; Ooi, B.C.; Ta, Q.T.; Zhu, F. Interoperability in blockchain: A survey. IEEE Trans. Knowl. Data Eng. 2023, 35, 12750–12769. [Google Scholar] [CrossRef]
- Rafique, W.; Qadir, J. Internet of everything meets the metaverse: Bridging physical and virtual worlds with blockchain. Comput. Sci. Rev. 2024, 54, 100678. [Google Scholar] [CrossRef]
- Ghirmai, S.; Mebrahtom, D.; Aloqaily, M.; Guizani, M.; Debbah, M. Self-sovereign identity for trust and interoperability in the metaverse. In Proceedings of the 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta), Haikou, China, 15–18 December 2022; pp. 2468–2475. [Google Scholar]
- Aung, N.; Dhelim, S.; Chen, L.; Ning, H.; Atzori, L.; Kechadi, T. Edge-enabled metaverse: The convergence of metaverse and mobile edge computing. Tsinghua Sci. Technol. 2023, 29, 795–805. [Google Scholar] [CrossRef]
- Abilkaiyrkyzy, A.; Elhagry, A.; Laamarti, F.; Elsaddik, A. Metaverse key requirements and platforms survey. IEEE Access 2023, 11, 117765–117787. [Google Scholar] [CrossRef]
- Rawat, D.B.; El Alami, H.; Hagos, D.H. Metaverse Survey & Tutorial: Exploring Key Requirements, Technologies, Standards, Applications, Challenges, and Perspectives. arXiv 2024, arXiv:2405.04718. [Google Scholar]
- Chen, B.; Song, C.; Lin, B.; Xu, X.; Tang, R.; Lin, Y.; Yao, Y.; Timoney, J.; Bi, T. A cross-platform metaverse data management system. In Proceedings of the 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Rome, Italy, 26–28 October 2022; pp. 145–150. [Google Scholar]
- Jaimini, U.; Zhang, T.; Brikis, G.O.; Sheth, A. imetaversekg: Industrial metaverse knowledge graph to promote interoperability in design and engineering applications. IEEE Internet Comput. 2022, 26, 59–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Kutscher, D.; Cui, Y. Networked Metaverse Systems: Foundations, Gaps, Research Directions. IEEE Open J. Commun. Soc. 2024, 5, 5488–5539. [Google Scholar] [CrossRef]
- Altundas, S.; Karaarslan, E. Cross-platform and personalized avatars in the metaverse: Ready player me case. In Digital Twin Driven Intelligent Systems and Emerging Metaverse; Springer: Berlin/Heidelberg, Germany, 2023; pp. 317–330. [Google Scholar]
- Korbel, J.J.; Siddiq, U.H.; Zarnekow, R. Towards virtual 3D asset price prediction based on machine learning. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 924–948. [Google Scholar] [CrossRef]
- Golam, M.; Tuli, E.A.; Alief, R.N.; Kim, D.S.; Lee, J.M. Meta-Learning: A Digital Learning Management Framework using Blockchain for Metaverses. IEEE Access 2024, 12, 92774–92786. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, S. The integration strategy of information system based on artificial intelligence big data technology in metaverse environment. Clust. Comput. 2024, 27, 7049–7057. [Google Scholar] [CrossRef]
- Deshmukh, R.; Nand, N.; Pawar, A.; Wagh, D.; Kudale, A. Video conferencing using WebRTC. In Proceedings of the 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), Erode, India, 23–25 March 2023; pp. 857–864. [Google Scholar]
- Praschl, C.; Krauss, O. Extending 3D geometric file formats for geospatial applications. Appl. Geomat. 2024, 16, 161–180. [Google Scholar] [CrossRef]
- Al-Jundi, H.A.; Tanbour, E.Y. A framework for fidelity evaluation of immersive virtual reality systems. Virtual Real. 2022, 26, 1103–1122. [Google Scholar] [CrossRef]
- Braud, T.; Fernández, C.B.; Hui, P. Scaling-up ar: University campus as a physical-digital metaverse. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–16 March 2022; pp. 169–175. [Google Scholar]
- Allam, Z.; Sharifi, A.; Bibri, S.E.; Jones, D.S.; Krogstie, J. The metaverse as a virtual form of smart cities: Opportunities and challenges for environmental, economic, and social sustainability in urban futures. Smart Cities 2022, 5, 771–801. [Google Scholar] [CrossRef]
- Cai, Y.; Llorca, J.; Tulino, A.M.; Molisch, A.F. Compute-and data-intensive networks: The key to the metaverse. In Proceedings of the 2022 1st International Conference on 6G Networking (6GNet), Paris, France, 6–8 July 2022; pp. 1–8. [Google Scholar]
- Paul, S.G.; Saha, A.; Arefin, M.S.; Bhuiyan, T.; Biswas, A.A.; Reza, A.W.; Alotaibi, N.M.; Alyami, S.A.; Moni, M.A. A comprehensive review of green computing: Past, present, and future research. IEEE Access 2023, 11, 87445–87494. [Google Scholar] [CrossRef]
- Yang, S. Storytelling and user experience in the cultural metaverse. Heliyon 2023, 9, e14759. [Google Scholar] [CrossRef]
- Omar, K.; Fakhouri, H.; Zraqou, J.; Marx Gómez, J. Usability Heuristics for Metaverse. Computers 2024, 13, 222. [Google Scholar] [CrossRef]
- Winter, M.; Jackson, P.; Fallahkhair, S. Gesture Me: A Machine Learning Tool for Designers to Train Gesture Classifiers. In Proceedings of the International Conference on Computer-Human Interaction Research and Applications, Rome, Italy, 16–17 November 2023; pp. 336–352. [Google Scholar]
- Chamusca, I.L.; Ferreira, C.V.; Murari, T.B.; Apolinario, A.L., Jr.; Winkler, I. Towards sustainable virtual reality: Gathering design guidelines for intuitive authoring tools. Sustainability 2023, 15, 2924. [Google Scholar] [CrossRef]
- Ramaseri Chandra, A.N.; El Jamiy, F.; Reza, H. A systematic survey on cybersickness in virtual environments. Computers 2022, 11, 51. [Google Scholar] [CrossRef]
- Christopoulos, A.; Mystakidis, S.; Pellas, N.; Laakso, M.J. ARLEAN: An augmented reality learning analytics ethical framework. Computers 2021, 10, 92. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Rana, N.P.; Baabdullah, A.M.; Kar, A.K.; Koohang, A.; Ribeiro-Navarrete, S.; Belei, N.; Balakrishnan, J.; et al. Exploring the darkverse: A multi-perspective analysis of the negative societal impacts of the metaverse. Inf. Syst. Front. 2023, 25, 2071–2114. [Google Scholar] [CrossRef]
- Slater, M.; Gonzalez-Liencres, C.; Haggard, P.; Vinkers, C.; Gregory-Clarke, R.; Jelley, S.; Watson, Z.; Breen, G.; Schwarz, R.; Steptoe, W.; et al. The ethics of realism in virtual and augmented reality. Front. Virtual Real. 2020, 1, 512449. [Google Scholar] [CrossRef]
- Lu, Z.; Yu, M.; Jiang, G.; Chi, B.; Dong, Q. Prediction of motion sickness degree of stereoscopic panoramic videos based on content perception and binocular characteristics. Digit. Signal Process. 2023, 132, 103787. [Google Scholar] [CrossRef]
- Guo, C.; Blair, G.J.; Sehgal, M.; Sangiuliano Jimka, F.N.; Bellafard, A.; Silva, A.J.; Golshani, P.; Basso, M.A.; Blair, H.T.; Aharoni, D. Miniscope-LFOV: A large-field-of-view, single-cell-resolution, miniature microscope for wired and wire-free imaging of neural dynamics in freely behaving animals. Sci. Adv. 2023, 9, eadg3918. [Google Scholar] [CrossRef]
- Kim, A. Exploring the Relationship among Cybersickness, Locomotion Method, and Heart Rate Variability when Navigating a Virtual Environment. In Proceedings of the 2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR), Los Angeles, CA, USA, 17–19 January 2024; pp. 215–220. [Google Scholar]
- Radanliev, P.; De Roure, D.; Novitzky, P.; Sluganovic, I. Accessibility and inclusiveness of new information and communication technologies for disabled users and content creators in the Metaverse. Disabil. Rehabil. Assist. Technol. 2023, 19, 1849–1863. [Google Scholar] [CrossRef]
- Henni, S.H.; Maurud, S.; Fuglerud, K.S.; Moen, A. The experiences, needs and barriers of people with impairments related to usability and accessibility of digital health solutions, levels of involvement in the design process and strategies for participatory and universal design: A scoping review. BMC Public Health 2022, 22, 35. [Google Scholar] [CrossRef]
- Inbavalli, A.; Sakthidhasan, K.; Krishna, G. Image Generation Using AI with Effective Audio Playback System. In Proceedings of the 2024 5th International Conference for Emerging Technology (INCET), Belgaum, India, 24–26 May 2024; pp. 1–13. [Google Scholar]
- Pari, S.N.; Ahamed, M.J.S.; Magarika, M.; Latchiyanathan, K. SLatAR-A Sign Language Translating Augmented Reality Application. In Proceedings of the 2023 12th International Conference on Advanced Computing (ICoAC), Chennai, India, 17–19 August 2023; pp. 1–8. [Google Scholar]
- Jones, D.; Ghasemi, S.; Gračanin, D.; Azab, M. Privacy, safety, and security in extended reality: User experience challenges for neurodiverse users. In Proceedings of the International Conference on Human-Computer Interaction, Copenhagen, Denmark, 23–28 July 2023; pp. 511–528. [Google Scholar]
- Cruz, M.; Oliveira, A. Unravelling Virtual Realities—Gamers’ Perceptions of the Metaverse. Electronics 2024, 13, 2491. [Google Scholar] [CrossRef]
- Khan, R.H.; Miah, J.; Syeed, M.M.; Uddin, M.F. Metaverse ecosystem realization for its application development. In Proceedings of the 2024 16th International Conference on Computer and Automation Engineering (ICCAE), Melbourne, Australia, 14–16 March 2024; pp. 109–113. [Google Scholar]
- Yasuda, A. Metaverse ethics: Exploring the social implications of the metaverse. AI Ethics 2024, 1–12. [Google Scholar] [CrossRef]
- Kang, G.; Koo, J.; Kim, Y.G. Security and privacy requirements for the metaverse: A metaverse applications perspective. IEEE Commun. Mag. 2023, 62, 148–154. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, J.; Gan, W.; Qi, Z. Metaverse security and privacy: An overview. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 2950–2959. [Google Scholar]
- Le-Khac, N.A.; Choo, K.K.R. A Practical Hands-On Approach to Database Forensics; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Mostafa, A.M.; Ezz, M.; Elbashir, M.K.; Alruily, M.; Hamouda, E.; Alsarhani, M.; Said, W. Strengthening cloud security: An innovative multi-factor multi-layer authentication framework for cloud user authentication. Appl. Sci. 2023, 13, 10871. [Google Scholar] [CrossRef]
- Singh, M. Securing Data in the Metaverse: What We Need to Know. In Metaverse: Technologies, Opportunities and Threats; Springer: Berlin/Heidelberg, Germany, 2023; pp. 419–432. [Google Scholar]
- Canbay, Y.; Utku, A.; Canbay, P. Privacy concerns and measures in metaverse: A review. In Proceedings of the 2022 15th International Conference on Information Security and Cryptography (ISCTURKEY), Ankara, Turkey, 19–20 October 2022; pp. 80–85. [Google Scholar]
- Azam, F.; Semwal, A.; Biradar, A. A Secured Framework for Metaverse Applications. In Proceedings of the 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), Bangalore, India, 6–8 October 2023; pp. 1–6. [Google Scholar]
- Huang, Y.; Li, Y.J.; Cai, Z. Security and privacy in metaverse: A comprehensive survey. Big Data Min. Anal. 2023, 6, 234–247. [Google Scholar] [CrossRef]
- Basyoni, L.; Tabassum, A.; Shaban, K.; Elmahjub, E.; Halabi, O.; Qadir, J. Navigating Privacy Challenges in the Metaverse: A Comprehensive Examination of Current Technologies and Platforms. IEEE Internet Things Mag. 2024, 7, 144–152. [Google Scholar] [CrossRef]
- Parlar, T. Data privacy and security in the metaverse. In Metaverse: Technologies, Opportunities and Threats; Springer: Berlin/Heidelberg, Germany, 2023; pp. 123–133. [Google Scholar]
Technology | Bandwidth Requirement | Latency | Resolution |
---|---|---|---|
Wi-Fi 6E | Up to 2.4 Gbps | ∼20 ms | HD, 2K, 4K 8K with a strong signal strength and minimal interference |
Wi-Fi 7 | Up to 46 Gbps | ∼10 ms | Up to 8K Potential to support 16K video resolution |
Wi-Fi 8 | Up to 100 Gbps | <1 ms | Up to 8K Potential to support 16K video resolution |
5G Network | 1-10 Gbps | 1–10 ms | Up to 4K 8K depends on network conditions and coverage |
NGCodec + 5G | ∼1–10 Gbps (optimized) | <5 ms | Up to 8K |
FPGA-based VR Streaming | Depends on setup | <1 ms | Up to 8K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatami, M.; Qu, Q.; Chen, Y.; Kholidy, H.; Blasch, E.; Ardiles-Cruz, E. A Survey of the Real-Time Metaverse: Challenges and Opportunities. Future Internet 2024, 16, 379. https://doi.org/10.3390/fi16100379
Hatami M, Qu Q, Chen Y, Kholidy H, Blasch E, Ardiles-Cruz E. A Survey of the Real-Time Metaverse: Challenges and Opportunities. Future Internet. 2024; 16(10):379. https://doi.org/10.3390/fi16100379
Chicago/Turabian StyleHatami, Mohsen, Qian Qu, Yu Chen, Hisham Kholidy, Erik Blasch, and Erika Ardiles-Cruz. 2024. "A Survey of the Real-Time Metaverse: Challenges and Opportunities" Future Internet 16, no. 10: 379. https://doi.org/10.3390/fi16100379
APA StyleHatami, M., Qu, Q., Chen, Y., Kholidy, H., Blasch, E., & Ardiles-Cruz, E. (2024). A Survey of the Real-Time Metaverse: Challenges and Opportunities. Future Internet, 16(10), 379. https://doi.org/10.3390/fi16100379