Large Language Models Meet Next-Generation Networking Technologies: A Review
Abstract
:1. Introduction
- We provide a comprehensive review of the potential applications of LLMs across the four key stages of network engineering: Network Design and Planning, Network Implementation, Network Analytics, and Network Management.
- We present strategies for enhancing network performance and management using network intelligence, highlighting the limitations of current AI-driven methods. Additionally, we demonstrate how LLMs can address these limitations and improve existing network intelligence.
- We identify key challenges in integrating LLMs into network engineering and, based on recent developments, provide future research directions to further optimize network functionality and efficiency through the use of LLMs and AI.
2. Background
2.1. Network Intelligence
- Network Design and Planning: Efficient network design and planning are essential for ensuring optimal network performance and resource utilization. This process involves developing the network architecture, such as capacity planning, resource scheduling, and load balancing. Typically, these tasks are labor-intensive, demanding considerable expertise and manual intervention, and they require ongoing adaptation to emerging standards and protocols. AI algorithms can enhance these tasks by automating the design process, increasing precision, and minimizing the dependence on manual expertise.
- Network Implementation: Successful network implementation is essential for the deployment of robust and efficient network infrastructures. This task involves the deployment, configuration, and documentation of network infrastructure. Manual implementation can be error-prone and time-consuming, requiring extensive coordination and detailed configuration. AI-driven tools can streamline deployment and configuration processes, ensuring precise execution and significantly reducing setup time and effort.
- Network Analytics: Continuous network analytics are vital for maintaining network health and performance. This process focuses on monitoring and analyzing network performance through traffic analysis, log analysis, and behavior analysis. Effective monitoring and fault diagnosis are challenging due to the complexity of modern networks, leading to potential delays in issue detection and resolution. Advanced AI models can continuously analyze network data, predict potential issues, and provide proactive maintenance insights, enhancing reliability and efficiency.
- Network Management: Efficient network management is critical for the ongoing operation and security of a network. This process involves ongoing monitoring, optimization, and security protection of the network. Manual management can be inefficient, with a high risk of human error, and it requires constant adaptation to changing network conditions. Intelligent systems can autonomously manage monitoring, optimization, and security tasks, adapting in real time to network changes and reducing the need for manual interventions. For example, AI-driven systems can enhance network security by automatically detecting and responding to threats, allowing for proactive threat mitigation. Additionally, AI models can continuously adapt security protocols by learning from past incidents, improving its ability to prevent and counter new, evolving threats, thus ensuring more robust and adaptive network protection.
- Complex Network Configurations: AI models can help automate and simplify the configuration of complex networks, but accurately translating high-level management policies into network commands can still be a challenge.
- Heterogeneous Infrastructure Management: Network provisioning often involves intricate configurations and updates tightly coupled with underlying heterogeneous and diverse infrastructure, necessitating an abstraction layer for network operators to manage network parameters independently of the underlying infrastructure [41]. Traditional AI algorithms struggle to navigate and integrate with such diverse systems, making effective management challenging.
- Unstructured Log and Network Data: Networks generate vast amounts of unstructured log and operational data, making it difficult to extract actionable insights. These unstructured data complicate troubleshooting, diagnostics, and overall network management, presenting a significant challenge for traditional AI techniques that rely on clear, structured inputs to function effectively.
- Dynamic Network Environment: Conventional AI systems often rely on static, rule-based learning models, which do not adapt well to dynamic network environments. These systems struggle to continuously interpret and adjust to changes in network intents, such as user complaints or system alerts. This limitation results in less accurate and effective responses, preventing the network from staying aligned with evolving objectives and conditions.
2.2. Large Language Models
2.3. From Natural Language to Network Configuration Language
3. Large Language Models for Networking
3.1. Network Design and Planning
Network Process | Work | Year | Baseline Model(s) | Network Application(s) |
---|---|---|---|---|
Network Design and Planning | Desai et al. [133] | 2023 | GPT-4 | Load Balancing, Capacity Planning |
Zou et al. [130] | 2023 | GPT-4 | Intent-Based Networking, Telecommunications, 6G, Network Energy Saving | |
NetLLM [129] | 2024 | LLaMA 2 | QoE, Bandwidth Management, Job Scheduling, Adaptive Bitrate Streaming | |
NetGPT [134] | 2024 | GPT-2, LLaMA | QoS, Network Provisioning, Cloud-Edge Resource Allocation and Scheduling | |
llmQoS [132] | 2024 | RoBERTa, Phi-3 | QoS, Network Service Recommendation | |
Mongaillard et al. [131] | 2024 | LLaMA 3, GPT-4, Gemini 1.5 | QoE, Power Scheduling, Resource Allocation | |
Network Implementation | VPP [135] | 2023 | GPT-4 | Router Configuration |
Ciri [136] | 2023 | GPT-4, GPT-3.5, Claude 3, Code Llama, DeepSeek | Configuration Validation | |
NETBUDDY [137] | 2023 | GPT-4 | Network Configuration | |
Emergence [138] | 2023 | GPT-4, GPT-3.5 | Intent-Based Networking, Virtual Network Function, Network Policy | |
GPT-FL [139] | 2023 | GPT-3 | Federated Learning | |
LP-FL [140] | 2023 | BERT | Federated Learning | |
ChatAFL [141] | 2024 | GPT-3.5 | Cybersecurity, Network Protocol | |
Mekrache et al. [142] | 2024 | Code Llama | Network Configuration, Intent-Based Networking, Next Generation Network, Network Service Descriptor | |
GeNet [143] | 2024 | GPT-4 | Network Configuration, Network Topology, Intent-Based Networking | |
S-Witch [144] | 2024 | GPT-3.5 | Network Configuration, Intent-Based Networking, Network Digital Twin | |
Mekrache et al. [145] | 2024 | Code Llama | Network Configuration, Intent-Based Networking, Next Generation Network | |
Fuad et al. [146] | 2024 | GPT-4, GPT-3.5, LLaMA 2, Mistral 7B | Network Configuration, Intent-Based Networking | |
Network Analytics | NetBERT [147] | 2020 | BERT | Networking Text Classification and Networking Information Retrieval |
GPT-2C [148] | 2021 | GPT-2 | Log Analysis, Intrusion Detection | |
NTT [149] | 2022 | Vanilla Transformer | Network Dynamics, Network Traffic | |
LogGPT [150] | 2023 | GPT-3.5 | Log Analysis, Anomaly Detection | |
LAnoBERT [151] | 2023 | BERT | Log Analysis, Anomaly Detection | |
NetLM [152] | 2023 | GPT-4 | Telecommunication, Network Traffic, Intent-Based Networking | |
Network Analytics | BERTOps [153] | 2023 | BERT | Log Analysis |
LogGPT [154] | 2023 | GPT-2 | Log Analysis, Anomaly Detection | |
Szabó et al. [155] | 2023 | GPT-3.5, GPT-4 | Cybersecurity, Vulnerability Detection | |
Piovesan et al. [156] | 2024 | Phi-2 | Telecommunication | |
LILAC [157] | 2024 | GPT-3.5 | Log Parsing, Log Analysis | |
Mobile-LLaMA [158] | 2024 | LLaMA 2 | Network Data Analytic Function, Telecommunications, 5G | |
Network Management | Wong et al. [159] | 2020 | DistilBERT | Cybersecurity, Man-in-the-Middle Attack, Internet of Things |
CyBERT [160] | 2021 | BERT | Cybersecurity | |
MalBERT [161] | 2021 | BERT | Cybersecurity, Malware Detection | |
SecureBERT [162] | 2022 | BERT | Cybersecurity, Cyber Threat Intelligence | |
Demırcı et al. [163] | 2022 | GPT-2 | Cybersecurity, Malware Detection | |
NorBERT [164] | 2022 | BERT | Network Monitoring, Fully Qualified Domain Name | |
PAC-GPT [165] | 2023 | GPT-3 | Cybersecurity, Network Traffic | |
Hamadanian et al. [166] | 2023 | GPT-4 | Network Incident Management | |
Owl [167] | 2023 | Vanilla Transformer | Information Security, Log Parsing, Anomaly Detection | |
Mani et al. [168] | 2023 | GPT-4, GPT-3, Text-davinci-003, Google Bard | Network Lifecycle Management, Network Traffic, Program Synthesis | |
Bariah et al. [169] | 2023 | GPT-2, BERT, DistilBERT, RoBERTa | QoS, Telecommunication | |
Tann et al. [170] | 2023 | GPT-3.5, PaLM 2, Prometheus | Cybersecurity | |
Cyber Sentinel [171] | 2023 | GPT-4 | Cybersecurity | |
Moskal et al. [172] | 2023 | GPT-3.5 | Cybersecurity | |
Net-GPT [173] | 2023 | LLaMA 2, DistilGPT-2 | Cybersecurity, Network Protocol, Man-in-the-Middle Attack | |
Sarabi et al. [174] | 2023 | RoBERTa | Network Measurement, Internet of Things | |
HuntGPT [175] | 2023 | GPT-3.5 | Cybersecurity, Anomaly Detection, Intrusion Detection | |
Zhang et al. [176] | 2023 | GPT-2 | Cybersecurity | |
ShieldGPT [177] | 2024 | GPT-4 | Cybersecurity, Network Traffic, Distributed Denial of Service Attack | |
SecurityBERT [178] | 2024 | BERT | Cybersecurity, Cyber Threat Detection, Internet of Things | |
Habib et al. [179] | 2024 | ALBERT | Network Optimization, Intent-Based Networking | |
DoLLM [180] | 2024 | LLaMA 2 | Cybersecurity, Distributed Denial of Service Attack |
3.2. Network Implementation
3.3. Network Analytics
3.4. Network Management
4. Open Challenges and Opportunities
4.1. Congestion Control with Large Language Models
4.2. Language Server Protocol with Large Language Models
4.3. Network Engineering Optimization for Large Language Models
4.4. Challenges and Constraints of Implementing Large Language Models in Networks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahraki, A.; Abbasi, M.; Piran, M.J.; Taherkordi, A. A comprehensive survey on 6G networks: Applications, core services, enabling technologies, and future challenges. arXiv 2021, arXiv:2101.12475. [Google Scholar]
- Salameh, A.I.; El Tarhuni, M. From 5G to 6G—Challenges, technologies, and applications. Future Internet 2022, 14, 117. [Google Scholar] [CrossRef]
- Hossain, E.; Hasan, M. 5G cellular: Key enabling technologies and research challenges. IEEE Instrum. Meas. Mag. 2015, 18, 11–21. [Google Scholar] [CrossRef]
- Haji, S.H.; Zeebaree, S.R.; Saeed, R.H.; Ameen, S.Y.; Shukur, H.M.; Omar, N.; Sadeeq, M.A.; Ageed, Z.S.; Ibrahim, I.M.; Yasin, H.M. Comparison of software defined networking with traditional networking. Asian J. Res. Comput. Sci. 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Hang, C.N.; Yu, P.D.; Chen, S.; Tan, C.W.; Chen, G. MEGA: Machine learning-enhanced graph analytics for infodemic risk management. IEEE J. Biomed. Health Inform. 2023, 27, 6100–6111. [Google Scholar] [CrossRef]
- Hang, C.N.; Tsai, Y.Z.; Yu, P.D.; Chen, J.; Tan, C.W. Privacy-enhancing digital contact tracing with machine learning for pandemic response: A comprehensive review. Big Data Cogn. Comput. 2023, 7, 108. [Google Scholar] [CrossRef]
- Suomalainen, J.; Juhola, A.; Shahabuddin, S.; Mämmelä, A.; Ahmad, I. Machine learning threatens 5G security. IEEE Access 2020, 8, 190822–190842. [Google Scholar] [CrossRef]
- Chan, P.K.; Lippmann, R.P. Machine learning for computer security. J. Mach. Learn. Res. 2006, 7, 2669–2672. [Google Scholar]
- Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016, 60, 19–31. [Google Scholar] [CrossRef]
- Zheng, L.; Cai, D.W.H.; Tan, C.W. Max-min fairness rate control in wireless networks: Optimality and algorithms by Perron-Frobenius theory. IEEE Trans. Mob. Comput. 2017, 17, 127–140. [Google Scholar] [CrossRef]
- Zheng, L.; Hong, Y.W.P.; Tan, C.W.; Hsieh, C.L.; Lee, C.H. Wireless max-min utility fairness with general monotonic constraints by Perron-Frobenius theory. IEEE Trans. Inf. Theory 2016, 62, 7283–7298. [Google Scholar] [CrossRef]
- Tan, C.W. Wireless network optimization by Perron-Frobenius theory. Found. Trends Netw. 2015, 9, 107–218. [Google Scholar] [CrossRef]
- Tan, C.W. Optimal power control in Rayleigh-fading heterogeneous wireless networks. IEEE/ACM Trans. Netw. 2015, 24, 940–953. [Google Scholar] [CrossRef]
- Zhang, T.; Qiu, H.; Mellia, M.; Li, Y.; Li, H.; Xu, K. Interpreting AI for networking: Where we are and where we are going. IEEE Commun. Mag. 2022, 60, 25–31. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.; Chi, E.; Le, Q.V.; Zhou, D. Chain-of-thought prompting elicits reasoning in large language models. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; Volume 35, pp. 24824–24837. [Google Scholar]
- Wang, X.; Wei, J.; Schuurmans, D.; Le, Q.; Chi, E.; Narang, S.; Chowdhery, A.; Zhou, D. Self-consistency improves chain of thought reasoning in language models. arXiv 2022, arXiv:2203.11171. [Google Scholar]
- Lyu, Q.; Havaldar, S.; Stein, A.; Zhang, L.; Rao, D.; Wong, E.; Apidianaki, M.; Callison-Burch, C. Faithful chain-of-thought reasoning. arXiv 2023, arXiv:2301.13379. [Google Scholar]
- Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.; Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang, Y.; et al. Self-refine: Iterative refinement with self-feedback. arXiv 2023, arXiv:2303.17651. [Google Scholar]
- Yu, D.; Naik, S.; Backurs, A.; Gopi, S.; Inan, H.A.; Kamath, G.; Kulkarni, J.; Lee, Y.T.; Manoel, A.; Wutschitz, L.; et al. Differentially private fine-tuning of language models. arXiv 2021, arXiv:2110.06500. [Google Scholar] [CrossRef]
- Ziegler, D.M.; Stiennon, N.; Wu, J.; Brown, T.B.; Radford, A.; Amodei, D.; Christiano, P.; Irving, G. Fine-tuning language models from human preferences. arXiv 2019, arXiv:1909.08593. [Google Scholar]
- Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.T.; Rocktäschel, T.; et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020; Volume 33, pp. 9459–9474. [Google Scholar]
- Jiang, Z.; Xu, F.F.; Gao, L.; Sun, Z.; Liu, Q.; Dwivedi-Yu, J.; Yang, Y.; Callan, J.; Neubig, G. Active retrieval augmented generation. arXiv 2023, arXiv:2305.06983. [Google Scholar]
- Hang, C.N.; Yu, P.D.; Tan, C.W. TrumorGPT: Query optimization and semantic reasoning over networks for automated fact-checking. In Proceedings of the 2024 58th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 13–15 March 2024; pp. 1–6. [Google Scholar]
- Tan, C.W.; Chiu, D.M.; Lui, J.C.S.; Yau, D.K.Y. A distributed throttling approach for handling high bandwidth aggregates. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 983–995. [Google Scholar] [CrossRef]
- Singhal, K.; Azizi, S.; Tu, T.; Mahdavi, S.S.; Wei, J.; Chung, H.W.; Scales, N.; Tanwani, A.; Cole-Lewis, H.; Pfohl, S.; et al. Large language models encode clinical knowledge. Nature 2023, 620, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large language models in medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Laskar, M.T.R.; Alqahtani, S.; Bari, M.S.; Rahman, M.; Khan, M.A.M.; Khan, H.; Jahan, I.; Bhuiyan, A.; Tan, C.W.; Parvez, M.R.; et al. A systematic survey and critical review on evaluating large language models: Challenges, limitations, and recommendations. arXiv 2023, arXiv:2407.04069. [Google Scholar]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. Preprint 2018, in press.
- Mata, J.; De Miguel, I.; Durán, R.J.; Merayo, N.; Singh, S.K.; Jukan, A.; Chamania, M. Artificial intelligence (AI) methods in optical networks: A comprehensive survey. Opt. Switch. Netw. 2018, 28, 43–57. [Google Scholar] [CrossRef]
- Kibria, M.G.; Nguyen, K.; Villardi, G.P.; Zhao, O.; Ishizu, K.; Kojima, F. Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access 2018, 6, 32328–32338. [Google Scholar] [CrossRef]
- Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges. IEEE Commun. Surv. Tutorials 2018, 21, 393–430. [Google Scholar] [CrossRef]
- Cayamcela, M.E.M.; Lim, W. Artificial intelligence in 5G technology: A survey. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 17–19 October 2018; pp. 860–865. [Google Scholar]
- Zhao, Y.; Li, Y.; Zhang, X.; Geng, G.; Zhang, W.; Sun, Y. A survey of networking applications applying the software defined networking concept based on machine learning. IEEE Access 2019, 7, 95397–95417. [Google Scholar] [CrossRef]
- Elsayed, M.; Erol-Kantarci, M. AI-enabled future wireless networks: Challenges, opportunities, and open issues. IEEE Veh. Technol. Mag. 2019, 14, 70–77. [Google Scholar] [CrossRef]
- Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [Google Scholar] [CrossRef]
- Zhang, C.; Patras, P.; Haddadi, H. Deep learning in mobile and wireless networking: A survey. IEEE Commun. Surv. Tutorials 2019, 21, 2224–2287. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, M.; Zhou, Y.; Huang, Y.; Mao, S. Application of machine learning in wireless networks: Key techniques and open issues. IEEE Commun. Surv. Tutorials 2019, 21, 3072–3108. [Google Scholar] [CrossRef]
- Wang, C.X.; Di Renzo, M.; Stanczak, S.; Wang, S.; Larsson, E.G. Artificial intelligence enabled wireless networking for 5G and beyond: Recent advances and future challenges. IEEE Wirel. Commun. 2020, 27, 16–23. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Cheng, P.; Ding, M.; Lopez-Perez, D.; Pathirana, P.N.; Li, J.; Seneviratne, A.; Li, Y.; Poor, H.V. Enabling AI in future wireless networks: A data life cycle perspective. IEEE Commun. Surv. Tutorials 2020, 23, 553–595. [Google Scholar] [CrossRef]
- Semong, T.; Maupong, T.; Anokye, S.; Kehulakae, K.; Dimakatso, S.; Boipelo, G.; Sarefo, S. Intelligent load balancing techniques in software defined networks: A survey. Electronics 2020, 9, 1091. [Google Scholar] [CrossRef]
- Zeydan, E.; Turk, Y. Recent advances in intent-based networking: A survey. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Mukhopadhyay, S.C.; Tyagi, S.K.S.; Suryadevara, N.K.; Piuri, V.; Scotti, F.; Zeadally, S. Artificial intelligence-based sensors for next generation IoT applications: A review. IEEE Sensors J. 2021, 21, 24920–24932. [Google Scholar] [CrossRef]
- Chang, Z.; Liu, S.; Xiong, X.; Cai, Z.; Tu, G. A survey of recent advances in edge-computing-powered artificial intelligence of things. IEEE Internet Things J. 2021, 8, 13849–13875. [Google Scholar] [CrossRef]
- Letaief, K.B.; Shi, Y.; Lu, J.; Lu, J. Edge artificial intelligence for 6G: Vision, enabling technologies, and applications. IEEE J. Sel. Areas Commun. 2021, 40, 5–36. [Google Scholar] [CrossRef]
- Murshed, M.S.; Murphy, C.; Hou, D.; Khan, N.; Ananthanarayanan, G.; Hussain, F. Machine learning at the network edge: A survey. ACM Comput. Surv. 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Song, L.; Hu, X.; Zhang, G.; Spachos, P.; Plataniotis, K.N.; Wu, H. Networking systems of AI: On the convergence of computing and communications. IEEE Internet Things J. 2022, 9, 20352–20381. [Google Scholar] [CrossRef]
- Gupta, C.; Johri, I.; Srinivasan, K.; Hu, Y.C.; Qaisar, S.M.; Huang, K.Y. A systematic review on machine learning and deep learning models for electronic information security in mobile networks. Sensors 2022, 22, 2017. [Google Scholar] [CrossRef] [PubMed]
- Macas, M.; Wu, C.; Fuertes, W. A survey on deep learning for cybersecurity: Progress, challenges, and opportunities. Comput. Netw. 2022, 212, 109032. [Google Scholar] [CrossRef]
- Salau, B.A.; Rawal, A.; Rawat, D.B. Recent advances in artificial intelligence for wireless internet of things and cyber–physical systems: A comprehensive survey. IEEE Internet Things J. 2022, 9, 12916–12930. [Google Scholar] [CrossRef]
- Singh, R.; Gill, S.S. Edge AI: A survey. Internet Things Cyber-Phys. Syst. 2023, 3, 71–92. [Google Scholar] [CrossRef]
- Zuo, Y.; Guo, J.; Gao, N.; Zhu, Y.; Jin, S.; Li, X. A survey of blockchain and artificial intelligence for 6G wireless communications. IEEE Commun. Surv. Tutorials 2023, 25, 2494–2528. [Google Scholar] [CrossRef]
- Bourechak, A.; Zedadra, O.; Kouahla, M.N.; Guerrieri, A.; Seridi, H.; Fortino, G. At the confluence of artificial intelligence and edge computing in IoT-based applications: A review and new perspectives. Sensors 2023, 23, 1639. [Google Scholar] [CrossRef]
- Gao, M. The advance of GPTs and language model in cyber security. Highlights Sci. Eng. Technol. 2023, 57, 195–202. [Google Scholar] [CrossRef]
- Tarkoma, S.; Morabito, R.; Sauvola, J. AI-native interconnect framework for integration of large language model technologies in 6G systems. arXiv 2023, arXiv:2311.05842. [Google Scholar]
- Gill, S.S.; Golec, M.; Hu, J.; Xu, M.; Du, J.; Wu, H.; Walia, G.K.; Murugesan, S.S.; Ali, B.; Kumar, M.; et al. Edge AI: A taxonomy, systematic review and future directions. arXiv 2024, arXiv:2407.04053. [Google Scholar]
- Alhammadi, A.; Shayea, I.; El-Saleh, A.A.; Azmi, M.H.; Ismail, Z.H.; Kouhalvandi, L.; Saad, S.A. Artificial intelligence in 6G wireless networks: Opportunities, applications, and challenges. Int. J. Intell. Syst. 2024, 2024, 8845070. [Google Scholar] [CrossRef]
- Ospina Cifuentes, B.J.; Suárez, Á.; García Pineda, V.; Alvarado Jaimes, R.; Montoya Benitez, A.O.; Grajales Bustamante, J.D. Analysis of the use of artificial intelligence in software-defined intelligent networks: A survey. Technologies 2024, 12, 99. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Yang, Z. Big AI models for 6G wireless networks: Opportunities, challenges, and research directions. IEEE Wirel. Commun. 2024, 31, 164–172. [Google Scholar] [CrossRef]
- Ozkan-Ozay, M.; Akin, E.; Aslan, Ö.; Kosunalp, S.; Iliev, T.; Stoyanov, I.; Beloev, I. A comprehensive survey: Evaluating the efficiency of artificial intelligence and machine learning techniques on cyber security solutions. IEEE Access 2024, 12, 12229–12256. [Google Scholar] [CrossRef]
- Celik, A.; Eltawil, A.M. At the dawn of generative AI era: A tutorial-cum-survey on new frontiers in 6G wireless intelligence. IEEE Open J. Commun. Soc. 2024, 5, 2433–2489. [Google Scholar] [CrossRef]
- Khoramnejad, F.; Hossain, E. Generative AI for the optimization of next-generation wireless networks: Basics, state-of-the-art, and open challenges. arXiv 2024, arXiv:2405.17454. [Google Scholar]
- Bhardwaj, S.; Singh, P.; Pandit, M.K. A survey on the integration and optimization of large language models in edge computing environments. In Proceedings of the 2024 16th International Conference on Computer and Automation Engineering (ICCAE), Melbourne, Australia, 14–16 March 2024; pp. 168–172. [Google Scholar]
- Karapantelakis, A.; Alizadeh, P.; Alabassi, A.; Dey, K.; Nikou, A. Generative AI in mobile networks: A survey. Ann. Telecommun. 2024, 79, 15–33. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, C.; Yuan, Y.; Cui, Y.; Jin, Y.; Chen, C.; Wu, H.; Yuan, D.; Jiang, L.; Wu, D.; et al. Large language model (LLM) for telecommunications: A comprehensive survey on principles, key techniques, and opportunities. arXiv 2024, arXiv:2405.10825. [Google Scholar] [CrossRef]
- Mistry, H.K.; Mavani, C.; Goswami, A.; Patel, R. Artificial intelligence For networking. Educ. Adm. Theory Pract. 2024, 30, 813–821. [Google Scholar]
- Martini, B.; Bellisario, D.; Coletti, P. Human-centered and sustainable artificial intelligence in industry 5.0: Challenges and perspectives. Sustainability 2024, 16, 5448. [Google Scholar] [CrossRef]
- Barbosa, G.; Theeranantachai, S.; Zhang, B.; Zhang, L. A comparative evaluation of TCP congestion control schemes over low-Earth-orbit (LEO) satellite networks. In Proceedings of the 18th Asian Internet Engineering Conference, Bangkok, Thailand, 7–9 November 2023; pp. 105–112. [Google Scholar]
- Roshan, K.; Zafar, A.; Haque, S.B.U. Untargeted white-box adversarial attack with heuristic defence methods in real-time deep learning based network intrusion detection system. Comput. Commun. 2024, 218, 97–113. [Google Scholar] [CrossRef]
- Qiu, Y.; Ma, L.; Priyadarshi, R. Deep learning challenges and prospects in wireless sensor network deployment. Arch. Comput. Methods Eng. 2024, 31, 3231–3254. [Google Scholar] [CrossRef]
- Khan, M.; Ghafoor, L. Adversarial machine learning in the context of network security: Challenges and solutions. J. Comput. Intell. Robot. 2024, 4, 51–63. [Google Scholar]
- Priyadarshi, R. Exploring machine learning solutions for overcoming challenges in IoT-based wireless sensor network routing: A comprehensive review. Wirel. Netw. 2024, 30, 2647–2673. [Google Scholar] [CrossRef]
- Ullah, F.; Ullah, S.; Srivastava, G.; Lin, J.C.W. IDS-INT: Intrusion detection system using transformer-based transfer learning for imbalanced network traffic. Digit. Commun. Netw. 2024, 10, 190–204. [Google Scholar] [CrossRef]
- Latif, S.; Boulila, W.; Koubaa, A.; Zou, Z.; Ahmad, J. DTL-IDS: An optimized intrusion detection framework using deep transfer learning and genetic algorithm. J. Netw. Comput. Appl. 2024, 221, 103784. [Google Scholar] [CrossRef]
- He, M.; Wang, X.; Wei, P.; Yang, L.; Teng, Y.; Lyu, R. Reinforcement learning meets network intrusion detection: A transferable and adaptable framework for anomaly behavior identification. IEEE Trans. Netw. Serv. Manag. 2024, 21, 2477–2492. [Google Scholar] [CrossRef]
- Wu, G. Deep reinforcement learning based multi-layered traffic scheduling scheme in data center networks. Wirel. Netw. 2024, 30, 4133–4144. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Hang, C.N.; Yu, P.D.; Tan, C.W. Parallel counting of triangles in large graphs: Pruning and hierarchical clustering algorithms. In Proceedings of the 2018 IEEE High Performance extreme Computing Conference (HPEC), Waltham, MA, USA, 25–27 September 2018; pp. 1–6. [Google Scholar]
- Hang, C.N.; Yu, P.D.; Tan, C.W. Parallel counting of subgraphs in large graphs: Pruning and hierarchical clustering algorithms. In Online Social Networks: Perspectives, Applications and Developments; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2020; pp. 141–164. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. XLNet: Generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 2019, 32, 5753–5763. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A robustly optimized BERT pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A lite BERT for self-supervised learning of language representations. arXiv 2019, arXiv:1909.11942. [Google Scholar]
- Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019, arXiv:1910.01108. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- Clark, K.; Luong, M.T.; Le, Q.V.; Manning, C.D. ELECTRA: Pre-training text encoders as discriminators rather than generators. arXiv 2020, arXiv:2003.10555. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Lepikhin, D.; Lee, H.; Xu, Y.; Chen, D.; Firat, O.; Huang, Y.; Krikun, M.; Shazeer, N.; Chen, Z. GShard: Scaling giant models with conditional computation and automatic sharding. arXiv 2020, arXiv:2006.16668. [Google Scholar]
- Xue, L.; Constant, N.; Roberts, A.; Kale, M.; Al-Rfou, R.; Siddhant, A.; Barua, A.; Raffel, C. mT5: A massively multilingual pre-trained text-to-text transformer. arXiv 2020, arXiv:2010.11934. [Google Scholar]
- Wang, B.; Komatsuzaki, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. 2021. Available online: https://huggingface.co/EleutherAI/gpt-j-6b (accessed on 23 September 2024).
- Du, N.; Huang, Y.; Dai, A.M.; Tong, S.; Lepikhin, D.; Xu, Y.; Krikun, M.; Zhou, Y.; Yu, A.W.; Firat, O.; et al. GLaM: Efficient scaling of language models with mixture-of-experts. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 5547–5569. [Google Scholar]
- Smith, S.; Patwary, M.; Norick, B.; LeGresley, P.; Rajbhandari, S.; Casper, J.; Liu, Z.; Prabhumoye, S.; Zerveas, G.; Korthikanti, V.; et al. Using DeepSpeed and Megatron to train Megatron-Turing NLG 530B, a large-scale generative language model. arXiv 2022, arXiv:2201.11990. [Google Scholar]
- Rae, J.W.; Borgeaud, S.; Cai, T.; Millican, K.; Hoffmann, J.; Song, F.; Aslanides, J.; Henderson, S.; Ring, R.; Young, S.; et al. Scaling language models: Methods, analysis & insights from training Gopher. arXiv 2021, arXiv:2112.11446. [Google Scholar]
- Borgeaud, S.; Mensch, A.; Hoffmann, J.; Cai, T.; Rutherford, E.; Millican, K.; Van Den Driessche, G.B.; Lespiau, J.B.; Damoc, B.; Clark, A.; et al. Improving language models by retrieving from trillions of tokens. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 2206–2240. [Google Scholar]
- Wang, S.; Sun, Y.; Xiang, Y.; Wu, Z.; Ding, S.; Gong, W.; Feng, S.; Shang, J.; Zhao, Y.; Pang, C.; et al. ERNIE 3.0 Titan: Exploring larger-scale knowledge enhanced pre-training for language understanding and generation. arXiv 2021, arXiv:2112.12731. [Google Scholar]
- Thoppilan, R.; De Freitas, D.; Hall, J.; Shazeer, N.; Kulshreshtha, A.; Cheng, H.T.; Jin, A.; Bos, T.; Baker, L.; Du, Y.; et al. LaMDA: Language models for dialog applications. arXiv 2022, arXiv:2201.08239. [Google Scholar]
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744. [Google Scholar]
- Nijkamp, E.; Pang, B.; Hayashi, H.; Tu, L.; Wang, H.; Zhou, Y.; Savarese, S.; Xiong, C. CodeGen: An open large language model for code with multi-turn program synthesis. arXiv 2022, arXiv:2203.13474. [Google Scholar]
- Hoffmann, J.; Borgeaud, S.; Mensch, A.; Buchatskaya, E.; Cai, T.; Rutherford, E.; Casas, D.d.L.; Hendricks, L.A.; Welbl, J.; Clark, A.; et al. Training compute-optimal large language models. arXiv 2022, arXiv:2203.15556. [Google Scholar]
- Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra, G.; Roberts, A.; Barham, P.; Chung, H.W.; Sutton, C.; Gehrmann, S.; et al. PaLM: Scaling language modeling with pathways. J. Mach. Learn. Res. 2023, 24, 1–113. [Google Scholar]
- Black, S.; Biderman, S.; Hallahan, E.; Anthony, Q.; Gao, L.; Golding, L.; He, H.; Leahy, C.; McDonell, K.; Phang, J.; et al. GPT-NeoX-20B: An open-source autoregressive language model. arXiv 2022, arXiv:2204.06745. [Google Scholar]
- Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.; Chen, S.; Dewan, C.; Diab, M.; Li, X.; Lin, X.V.; et al. OPT: Open pre-trained transformer language models. arXiv 2022, arXiv:2205.01068. [Google Scholar]
- Lewkowycz, A.; Andreassen, A.; Dohan, D.; Dyer, E.; Michalewski, H.; Ramasesh, V.; Slone, A.; Anil, C.; Schlag, I.; Gutman-Solo, T.; et al. Solving quantitative reasoning problems with language models. Adv. Neural Inf. Process. Syst. 2022, 35, 3843–3857. [Google Scholar]
- Soltan, S.; Ananthakrishnan, S.; FitzGerald, J.; Gupta, R.; Hamza, W.; Khan, H.; Peris, C.; Rawls, S.; Rosenbaum, A.; Rumshisky, A.; et al. AlexaTM 20B: Few-shot learning using a large-scale multilingual seq2seq model. arXiv 2022, arXiv:2208.01448. [Google Scholar]
- Le Scao, T.; Fan, A.; Akiki, C.; Pavlick, E.; Ilić, S.; Hesslow, D.; Castagné, R.; Luccioni, A.S.; Yvon, F.; Gallé, M.; et al. BLOOM: A 176B-parameter open-access multilingual language model. arXiv 2023, arXiv:2211.05100. [Google Scholar]
- Taylor, R.; Kardas, M.; Cucurull, G.; Scialom, T.; Hartshorn, A.; Saravia, E.; Poulton, A.; Kerkez, V.; Stojnic, R. Galactica: A large language model for science. arXiv 2022, arXiv:2211.09085. [Google Scholar]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. LLaMA: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al. GPT-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Ren, X.; Zhou, P.; Meng, X.; Huang, X.; Wang, Y.; Wang, W.; Li, P.; Zhang, X.; Podolskiy, A.; Arshinov, G.; et al. PanGu-Σ: Towards trillion parameter language model with sparse heterogeneous computing. arXiv 2023, arXiv:2303.10845. [Google Scholar]
- Wu, S.; Irsoy, O.; Lu, S.; Dabravolski, V.; Dredze, M.; Gehrmann, S.; Kambadur, P.; Rosenberg, D.; Mann, G. BloombergGPT: A large language model for finance. arXiv 2023, arXiv:2303.17564. [Google Scholar]
- Anil, R.; Dai, A.M.; Firat, O.; Johnson, M.; Lepikhin, D.; Passos, A.; Shakeri, S.; Taropa, E.; Bailey, P.; Chen, Z.; et al. PaLM 2 technical report. arXiv 2023, arXiv:2305.10403. [Google Scholar]
- Gunasekar, S.; Zhang, Y.; Aneja, J.; Mendes, C.C.T.; Del Giorno, A.; Gopi, S.; Javaheripi, M.; Kauffmann, P.; de Rosa, G.; Saarikivi, O.; et al. Textbooks are all you need. arXiv 2023, arXiv:2306.11644. [Google Scholar]
- Li, Y.; Bubeck, S.; Eldan, R.; Del Giorno, A.; Gunasekar, S.; Lee, Y.T. Textbooks are all you need II: Phi-1.5 technical report. arXiv 2023, arXiv:2309.05463. [Google Scholar]
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al. LLaMA 2: Open foundation and fine-tuned chat models. arXiv 2023, arXiv:2307.09288. [Google Scholar]
- Anthropic. Model Card and Evaluations for Claude Models. 2023. Available online: https://paperswithcode.com/paper/model-card-and-evaluations-for-claude-models (accessed on 23 September 2024).
- Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D.S.; Casas, D.d.l.; Bressand, F.; Lengyel, G.; Lample, G.; Saulnier, L.; et al. Mistral 7B. arXiv 2023, arXiv:2310.06825. [Google Scholar]
- Almazrouei, E.; Alobeidli, H.; Alshamsi, A.; Cappelli, A.; Cojocaru, R.; Debbah, M.; Goffinet, É.; Hesslow, D.; Launay, J.; Malartic, Q.; et al. The Falcon series of open language models. arXiv 2023, arXiv:2311.16867. [Google Scholar]
- Anil, R.; Borgeaud, S.; Wu, Y.; Alayrac, J.B.; Yu, J.; Soricut, R.; Schalkwyk, J.; Dai, A.M.; Hauth, A.; Millican, K.; et al. Gemini: A family of highly capable multimodal models. arXiv 2023, arXiv:2312.11805. [Google Scholar]
- Javaheripi, M.; Bubeck, S.; Abdin, M.; Aneja, J.; Bubeck, S.; Mendes, C.C.T.; Chen, W.; Del Giorno, A.; Eldan, R.; Gopi, S.; et al. Phi-2: The surprising power of small language models. Microsoft Research Blog. 2023. Available online: https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/ (accessed on 23 September 2024).
- Reid, M.; Savinov, N.; Teplyashin, D.; Lepikhin, D.; Lillicrap, T.; Alayrac, J.b.; Soricut, R.; Lazaridou, A.; Firat, O.; Schrittwieser, J.; et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv 2024, arXiv:2403.05530. [Google Scholar]
- Mesnard, T.; Hardin, C.; Dadashi, R.; Bhupatiraju, S.; Pathak, S.; Sifre, L.; Rivière, M.; Kale, M.S.; Love, J.; Tafti, P.; et al. Gemma: Open models based on Gemini research and technology. arXiv 2024, arXiv:2403.08295. [Google Scholar]
- Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku. 2024. Available online: https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf (accessed on 23 September 2024).
- The Mosaic Research Team. Introducing DBRX: A New State-of-the-Art Open LLM. 2024. Available online: https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm (accessed on 23 September 2024).
- Jiang, A.Q.; Sablayrolles, A.; Roux, A.; Mensch, A.; Savary, B.; Bamford, C.; Chaplot, D.S.; Casas, D.d.l.; Hanna, E.B.; Bressand, F.; et al. Mixtral of experts. arXiv 2024, arXiv:2401.04088. [Google Scholar]
- AI at Meta. Introducing Meta LLaMA 3: The Most Capable Openly Available LLM to Date. 2024. Available online: https://ai.meta.com/blog/meta-llama-3/ (accessed on 23 September 2024).
- Abdin, M.; Jacobs, S.A.; Awan, A.A.; Aneja, J.; Awadallah, A.; Awadalla, H.; Bach, N.; Bahree, A.; Bakhtiari, A.; Behl, H.; et al. Phi-3 technical report: A highly capable language model locally on your phone. arXiv 2024, arXiv:2404.14219. [Google Scholar]
- Chen, J.; Lin, H.; Han, X.; Sun, L. Benchmarking large language models in retrieval-augmented generation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 17754–17762. [Google Scholar]
- Salemi, A.; Zamani, H. Evaluating retrieval quality in retrieval-augmented generation. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, Washington, DC, USA, 14–18 July 2024; pp. 2395–2400. [Google Scholar]
- Wu, D.; Wang, X.; Qiao, Y.; Wang, Z.; Jiang, J.; Cui, S.; Wang, F. NetLLM: Adapting large language models for networking. arXiv 2024, arXiv:2402.02338. [Google Scholar]
- Zou, H.; Zhao, Q.; Bariah, L.; Bennis, M.; Debbah, M. Wireless multi-agent generative AI: From connected intelligence to collective intelligence. arXiv 2023, arXiv:2307.02757. [Google Scholar]
- Mongaillard, T.; Lasaulce, S.; Hicheur, O.; Zhang, C.; Bariah, L.; Varma, V.S.; Zou, H.; Zhao, Q.; Debbah, M. Large language models for power scheduling: A user-centric approach. arXiv 2024, arXiv:2407.00476. [Google Scholar]
- Liu, H.; Zhang, Z.; Wu, Q.; Zhang, Y. Large language model aided QoS prediction for service recommendation. arXiv 2024, arXiv:2408.02223. [Google Scholar]
- Desai, B.; Patel, K. Reinforcement learning-based load balancing with large language models and edge intelligence for dynamic cloud environments. J. Innov. Technol. 2023, 6, 1–13. [Google Scholar]
- Chen, Y.; Li, R.; Zhao, Z.; Peng, C.; Wu, J.; Hossain, E.; Zhang, H. NetGPT: An AI-native network architecture for provisioning beyond personalized generative services. IEEE Netw. 2024. [Google Scholar] [CrossRef]
- Mondal, R.; Tang, A.; Beckett, R.; Millstein, T.; Varghese, G. What do LLMs need to synthesize correct router configurations? In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks, Cambridge, MA, USA, 28–29 November 2023; pp. 189–195. [Google Scholar]
- Lian, X.; Chen, Y.; Cheng, R.; Huang, J.; Thakkar, P.; Xu, T. Configuration validation with large language models. arXiv 2023, arXiv:2310.09690. [Google Scholar]
- Wang, C.; Scazzariello, M.; Farshin, A.; Kostic, D.; Chiesa, M. Making network configuration human friendly. arXiv 2023, arXiv:2309.06342. [Google Scholar]
- Dzeparoska, K.; Lin, J.; Tizghadam, A.; Leon-Garcia, A. LLM-based policy generation for intent-based management of applications. In Proceedings of the 2023 19th International Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 30 October–2 November 2023; pp. 1–7. [Google Scholar]
- Zhang, T.; Feng, T.; Alam, S.; Dimitriadis, D.; Zhang, M.; Narayanan, S.S.; Avestimehr, S. GPT-FL: Generative pre-trained model-assisted federated learning. arXiv 2023, arXiv:2306.02210. [Google Scholar]
- Jiang, J.; Liu, X.; Fan, C. Low-parameter federated learning with large language models. arXiv 2023, arXiv:2307.13896. [Google Scholar]
- Meng, R.; Mirchev, M.; Böhme, M.; Roychoudhury, A. Large language model guided protocol fuzzing. In Proceedings of the 31st Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 26 February–1 March 2024. [Google Scholar]
- Mekrache, A.; Ksentini, A. LLM-enabled intent-driven service configuration for next generation networks. In Proceedings of the 2024 IEEE 10th International Conference on Network Softwarization (NetSoft), Saint Louis, MO, USA, 24–28 June 2024; pp. 253–257. [Google Scholar]
- Ifland, B.; Duani, E.; Krief, R.; Ohana, M.; Zilberman, A.; Murillo, A.; Manor, O.; Lavi, O.; Kenji, H.; Shabtai, A.; et al. GeNet: A multimodal LLM-based co-pilot for network topology and configuration. arXiv 2024, arXiv:2407.08249. [Google Scholar]
- Jeong, E.D.; Kim, H.G.; Nam, S.; Yoo, J.H.; Hong, J.W.K. S-Witch: Switch configuration assistant with LLM and prompt engineering. In Proceedings of the NOMS 2024–2024 IEEE Network Operations and Management Symposium, Seoul, Republic of Korea, 6–10 May 2024; pp. 1–7. [Google Scholar]
- Mekrache, A.; Ksentini, A.; Verikoukis, C. Intent-based management of next-generation networks: An LLM-centric approach. IEEE Netw. 2024, 38, 29–36. [Google Scholar] [CrossRef]
- Fuad, A.; Ahmed, A.H.; Riegler, M.A.; Čičić, T. An intent-based networks framework based on large language models. In Proceedings of the 2024 IEEE 10th International Conference on Network Softwarization (NetSoft), Saint Louis, MO, USA, 24–28 June 2024; pp. 7–12. [Google Scholar]
- Louis, A. NetBERT: A Pre-Trained Language Representation Model for Computer Networking. Ph.D. Thesis, Cisco Systems, San Jose, CA, USA, 2020. [Google Scholar]
- Setianto, F.; Tsani, E.; Sadiq, F.; Domalis, G.; Tsakalidis, D.; Kostakos, P. GPT-2C: A parser for honeypot logs using large pre-trained language models. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Kusadasi, Turkey, 6–9 November 2021; pp. 649–653. [Google Scholar]
- Dietmüller, A.; Ray, S.; Jacob, R.; Vanbever, L. A new hope for network model generalization. In Proceedings of the 21st ACM Workshop on Hot Topics in Networks, Austin, TX, USA, 14–15 November 2022; pp. 152–159. [Google Scholar]
- Qi, J.; Huang, S.; Luan, Z.; Yang, S.; Fung, C.; Yang, H.; Qian, D.; Shang, J.; Xiao, Z.; Wu, Z. LogGPT: Exploring ChatGPT for log-based anomaly detection. In Proceedings of the 2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Melbourne, Australia, 17–21 December 2023; pp. 273–280. [Google Scholar]
- Lee, Y.; Kim, J.; Kang, P. LAnoBERT: System log anomaly detection based on BERT masked language model. Appl. Soft Comput. 2023, 146, 110689. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Yang, Y.; Zhuang, Z.; Qi, Q.; Sun, H.; Lu, L.; Feng, J.; Liao, J. Network meets ChatGPT: Intent autonomous management, control and operation. J. Commun. Inf. Netw. 2023, 8, 239–255. [Google Scholar] [CrossRef]
- Gupta, P.; Kumar, H.; Kar, D.; Bhukar, K.; Aggarwal, P.; Mohapatra, P. Learning representations on logs for AIOps. In Proceedings of the 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), Chicago, IL, USA, 2–8 July 2023; pp. 155–166. [Google Scholar]
- Han, X.; Yuan, S.; Trabelsi, M. LogGPT: Log anomaly detection via GPT. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 1117–1122. [Google Scholar]
- Szabó, Z.; Bilicki, V. A new approach to web application security: Utilizing GPT language models for source code inspection. Future Internet 2023, 15, 326. [Google Scholar] [CrossRef]
- Piovesan, N.; De Domenico, A.; Ayed, F. Telecom language models: Must they be large? arXiv 2024, arXiv:2403.04666. [Google Scholar]
- Jiang, Z.; Liu, J.; Chen, Z.; Li, Y.; Huang, J.; Huo, Y.; He, P.; Gu, J.; Lyu, M.R. LILAC: Log parsing using LLMs with adaptive parsing cache. Proc. ACM Softw. Eng. 2024, 1, 137–160. [Google Scholar] [CrossRef]
- Kan, K.B.; Mun, H.; Cao, G.; Lee, Y. Mobile-LLaMA: Instruction fine-tuning open-source LLM for network analysis in 5G networks. IEEE Netw. 2024, 38, 76–83. [Google Scholar] [CrossRef]
- Wong, H.; Luo, T. Man-in-the-middle attacks on MQTT-based IoT using BERT based adversarial message generation. In Proceedings of the KDD 2020 AIoT Workshop, Washington, DC, USA, 15–24 August 2020; Volume 8. [Google Scholar]
- Ranade, P.; Piplai, A.; Joshi, A.; Finin, T. CyBERT: Contextualized embeddings for the cybersecurity domain. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 3334–3342. [Google Scholar]
- Rahali, A.; Akhloufi, M.A. MalBERT: Using transformers for cybersecurity and malicious software detection. arXiv 2021, arXiv:2103.03806. [Google Scholar]
- Aghaei, E.; Niu, X.; Shadid, W.; Al-Shaer, E. SecureBERT: A domain-specific language model for cybersecurity. In Proceedings of the International Conference on Security and Privacy in Communication Systems, Virtually, 17–19 October 2022; pp. 39–56. [Google Scholar]
- Demırcı, D.; şahın, N.; şirlancis, M.; Acarturk, C. Static malware detection using stacked BiLSTM and GPT-2. IEEE Access 2022, 10, 58488–58502. [Google Scholar] [CrossRef]
- Le, F.; Wertheimer, D.; Calo, S.; Nahum, E. NorBERT: Network representations through BERT for network analysis & management. In Proceedings of the 2022 30th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Nice, France, 18–20 October 2022; pp. 25–32. [Google Scholar]
- Kholgh, D.K.; Kostakos, P. PAC-GPT: A novel approach to generating synthetic network traffic with GPT-3. IEEE Access 2023, 11, 114936–114951. [Google Scholar] [CrossRef]
- Hamadanian, P.; Arzani, B.; Fouladi, S.; Kakarla, S.K.R.; Fonseca, R.; Billor, D.; Cheema, A.; Nkposong, E.; Chandra, R. A holistic view of AI-driven network incident management. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks, Cambridge, MA, USA, 28–29 November 2023; pp. 180–188. [Google Scholar]
- Guo, H.; Yang, J.; Liu, J.; Yang, L.; Chai, L.; Bai, J.; Peng, J.; Hu, X.; Chen, C.; Zhang, D.; et al. Owl: A large language model for IT operations. arXiv 2023, arXiv:2309.09298. [Google Scholar]
- Mani, S.K.; Zhou, Y.; Hsieh, K.; Segarra, S.; Eberl, T.; Azulai, E.; Frizler, I.; Chandra, R.; Kandula, S. Enhancing network management using code generated by large language models. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks, Cambridge, MA, USA, 28–29 November 2023; pp. 196–204. [Google Scholar]
- Bariah, L.; Zou, H.; Zhao, Q.; Mouhouche, B.; Bader, F.; Debbah, M. Understanding Telecom language through large language models. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Lumpur, Malaysia, 4–8 December 2023; pp. 6542–6547. [Google Scholar]
- Tann, W.; Liu, Y.; Sim, J.H.; Seah, C.M.; Chang, E.C. Using large language models for cybersecurity Capture-the-Flag challenges and certification questions. arXiv 2023, arXiv:2308.10443. [Google Scholar]
- Kaheh, M.; Kholgh, D.K.; Kostakos, P. Cyber Sentinel: Exploring conversational agents in streamlining security tasks with GPT-4. arXiv 2023, arXiv:2309.16422. [Google Scholar]
- Moskal, S.; Laney, S.; Hemberg, E.; O’Reilly, U.M. LLMs killed the script kiddie: How agents supported by large language models change the landscape of network threat testing. arXiv 2023, arXiv:2310.06936. [Google Scholar]
- Piggott, B.; Patil, S.; Feng, G.; Odat, I.; Mukherjee, R.; Dharmalingam, B.; Liu, A. Net-GPT: A LLM-empowered man-in-the-middle chatbot for unmanned aerial vehicle. In Proceedings of the 2023 IEEE/ACM Symposium on Edge Computing (SEC), Wilmington, DE, USA, 6–9 December 2023; pp. 287–293. [Google Scholar]
- Sarabi, A.; Yin, T.; Liu, M. An LLM-based framework for fingerprinting internet-connected devices. In Proceedings of the 2023 ACM on Internet Measurement Conference, Nice, France, 24–26 October 2023; pp. 478–484. [Google Scholar]
- Ali, T.; Kostakos, P. HuntGPT: Integrating machine learning-based anomaly detection and explainable AI with large language models (LLMs). arXiv 2023, arXiv:2309.16021. [Google Scholar]
- Zhang, X.; Chen, T.; Wu, J.; Yu, Q. Intelligent network threat detection engine based on open source GPT-2 model. In Proceedings of the 2023 International Conference on Computer Science and Automation Technology (CSAT), Shanghai, China, 6–8 October 2023; pp. 392–397. [Google Scholar]
- Wang, T.; Xie, X.; Zhang, L.; Wang, C.; Zhang, L.; Cui, Y. ShieldGPT: An LLM-based framework for DDoS mitigation. In Proceedings of the 8th Asia-Pacific Workshop on Networking, Sydney, Australia, 3–4 August 2024; pp. 108–114. [Google Scholar]
- Ferrag, M.A.; Ndhlovu, M.; Tihanyi, N.; Cordeiro, L.C.; Debbah, M.; Lestable, T.; Thandi, N.S. Revolutionizing cyber threat detection with large language models: A privacy-preserving BERT-based lightweight model for IoT/IIoT devices. IEEE Access 2024, 12, 23733–23750. [Google Scholar] [CrossRef]
- Habib, M.A.; Rivera, P.E.I.; Ozcan, Y.; Elsayed, M.; Bavand, M.; Gaigalas, R.; Erol-Kantarci, M. LLM-based intent processing and network optimization using attention-based hierarchical reinforcement learning. arXiv 2024, arXiv:2406.06059. [Google Scholar]
- Li, Q.; Zhang, Y.; Jia, Z.; Hu, Y.; Zhang, L.; Zhang, J.; Xu, Y.; Cui, Y.; Guo, Z.; Zhang, X. DoLLM: How large language models understanding network flow data to detect Carpet Bombing DDoS. arXiv 2024, arXiv:2405.07638. [Google Scholar]
- Manias, D.M.; Chouman, A.; Shami, A. Towards Intent-Based Network Management: Large Language Models for Intent Extraction in 5G Core Networks. In Proceedings of the 2024 20th International Conference on the Design of Reliable Communication Networks (DRCN), Montreal, QC, Canada, 6–9 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Chiang, M.; Low, S.H.; Calderbank, A.R.; Doyle, J.C. Layering as optimization decomposition: A mathematical theory of network architectures. Proc. IEEE 2007, 95, 255–312. [Google Scholar] [CrossRef]
- Tang, A.; Wang, J.; Low, S.H.; Chiang, M. Equilibrium of heterogeneous congestion control: Existence and uniqueness. IEEE/ACM Trans. Netw. 2007, 15, 824–837. [Google Scholar] [CrossRef]
- Low, S.H.; Lapsley, D.E. Optimization flow control. I. Basic algorithm and convergence. IEEE/ACM Trans. Netw. 1999, 7, 861–874. [Google Scholar] [CrossRef]
- Jain, R.; Ramakrishnan, K.; Chiu, D.M. Congestion avoidance in computer networks with a connectionless network layer. arXiv 1998, arXiv:cs/9809094. [Google Scholar]
- Chiu, D.M.; Kadansky, M.; Provino, J.; Wesley, J.; Bischof, H.; Zhu, H. A congestion control algorithm for tree-based reliable multicast protocols. In Proceedings of the Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, New York, NY, USA, 23–27 June 2002; Volume 3, pp. 1209–1217. [Google Scholar]
- Chiu, D.M.; Jain, R. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Networks ISDN Syst. 1989, 17, 1–14. [Google Scholar] [CrossRef]
- Tan, C.W. The value of cooperation: From AIMD to flipped classroom teaching. ACM SIGMETRICS Perform. Eval. Rev. 2022, 49, 8–13. [Google Scholar] [CrossRef]
- Wei, D.X.; Jin, C.; Low, S.H.; Hegde, S. FAST TCP: Motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 2006, 14, 1246–1259. [Google Scholar] [CrossRef]
- Low, S.H.; Peterson, L.L.; Wang, L. Understanding TCP Vegas: A duality model. J. ACM 2002, 49, 207–235. [Google Scholar] [CrossRef]
- Shorten, R.; Wirth, F.; Leith, D. A positive systems model of TCP-like congestion control: Asymptotic results. IEEE/ACM Trans. Netw. 2006, 14, 616–629. [Google Scholar] [CrossRef]
- Winstein, K.; Balakrishnan, H. TCP ex Machina: Computer-generated congestion control. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 123–134. [Google Scholar] [CrossRef]
- Izhikevich, L.; Enghardt, R.; Huang, T.-Y.; Teixeira, R. A global perspective on the past, present, and future of video streaming over Starlink. arXiv 2024, arXiv:2409.09846. [Google Scholar]
- Floyd, S. HighSpeed TCP for Large Congestion Windows. 2003. Available online: https://www.rfc-editor.org/rfc/rfc3649.html (accessed on 23 September 2024).
- Chen, S.; Tan, C.W.; Zhai, X.; Poor, H.V. OpenRANet: Neuralized spectrum access by joint subcarrier and power allocation with optimization-based deep learning. arXiv 2024, arXiv:2409.12964. [Google Scholar]
- Tan, C.W.; Guo, S.; Wong, M.F.; Hang, C.N. Copilot for Xcode: Exploring AI-assisted programming by prompting cloud-based large language models. arXiv 2023, arXiv:2307.14349. [Google Scholar]
- Wong, M.F.; Guo, S.; Hang, C.N.; Ho, S.W.; Tan, C.W. Natural language generation and understanding of big code for AI-assisted programming: A review. Entropy 2023, 25, 888. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Cao, S.; Li, D.; Zhu, B.; Li, Z.; Zhuo, D.; Gonzalez, J.E.; Stoica, I. Fairness in serving large language models. In Proceedings of the 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), Santa Clara, CA, USA, 10–12 July 2024; pp. 965–988. [Google Scholar]
- Jain, R.K.; Chiu, D.M.W.; Hawe, W.R. A quantitative measure of fairness and discrimination. East. Res. Lab. Digit. Equip. Corp. Hudson, MA 1984, 21, 1. [Google Scholar]
- Chiu, D.M. Some observations on fairness of bandwidth sharing. In Proceedings of the ISCC 2000. Fifth IEEE Symposium on Computers and Communications, Antibes-Juan Les Pins, France, 3–6 July 2000; pp. 125–131. [Google Scholar]
- Chiu, D.M.; Tam, A.S. Network fairness for heterogeneous applications. In Proceedings of the ACM SIGCOMM ASIA Workshop, Beijing, China, 12–14 April 2005. [Google Scholar]
- Xu, Y.; Wang, Y.; Lui, J.C.; Chiu, D.M. Balancing throughput and fairness for TCP flows in multihop ad-hoc networks. In Proceedings of the 2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops, Limassol, Cyprus, 16–20 April 2007; pp. 1–10. [Google Scholar]
- Chiu, D.M.; Tam, A.S.W. Fairness of traffic controls for inelastic flows in the Internet. Comput. Netw. 2007, 51, 2938–2957. [Google Scholar] [CrossRef]
- Fang, J.; He, Y.; Yu, F.R.; Li, J.; Leung, V.C. Large language models (LLMs) inference offloading and resource allocation in cloud-edge networks: An active inference approach. In Proceedings of the 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, China, 10–13 October 2023; pp. 1–5. [Google Scholar]
- Bambhaniya, A.; Raj, R.; Jeong, G.; Kundu, S.; Srinivasan, S.; Elavazhagan, M.; Kumar, M.; Krishna, T. Demystifying platform requirements for diverse LLM inference use cases. arXiv 2024, arXiv:2406.01698. [Google Scholar]
- Zhang, J.; Vahidian, S.; Kuo, M.; Li, C.; Zhang, R.; Yu, T.; Wang, G.; Chen, Y. Towards building the FederatedGPT: Federated instruction tuning. In Proceedings of the ICASSP 2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic Korea, 14–19 April 2024; pp. 6915–6919. [Google Scholar]
- Cerf, V.G. Thoughts on AI interoperability. Commun. ACM 2024, 67, 5. [Google Scholar] [CrossRef]
- Hadi, M.U.; Al Tashi, Q.; Shah, A.; Qureshi, R.; Muneer, A.; Irfan, M.; Zafar, A.; Shaikh, M.B.; Akhtar, N.; Wu, J.; et al. Large language models: A comprehensive survey of its applications, challenges, limitations, and future prospects. Authorea Prepr. 2024. [Google Scholar] [CrossRef]
- Minaee, S.; Mikolov, T.; Nikzad, N.; Chenaghlu, M.; Socher, R.; Amatriain, X.; Gao, J. Large language models: A survey. arXiv 2024, arXiv:2402.06196. [Google Scholar]
- AlZu’bi, S.; Mughaid, A.; Quiam, F.; Hendawi, S. Exploring the capabilities and limitations of ChatGPT and alternative big language models. In Proceedings of the Artificial Intelligence and Applications, Corfu, Greece, 22–24 February 2024; Volume 2, pp. 28–37. [Google Scholar]
Reference | Year | Technological Aspect | Application Field | |
---|---|---|---|---|
AI | LLMs | |||
Mata et al. [29] | 2018 | ✓ | ✗ | Optical Networks |
Kibria et al. [30] | 2018 | ✓ | ✗ | Next-Generation Wireless Networks |
Xie et al. [31] | 2018 | ✓ | ✗ | Software-Defined Networking |
Cayamcela et al. [32] | 2018 | ✓ | ✗ | 5G Mobile and Wireless Networks |
Zhao et al. [33] | 2019 | ✓ | ✗ | Software-Defined Networking |
Elsayed et al. [34] | 2019 | ✓ | ✗ | Future Wireless Networks |
Chen et al. [35] | 2019 | ✓ | ✗ | Edge Computing |
Zhang et al. [36] | 2019 | ✓ | ✗ | Mobile and Wireless Networking |
Sun et al. [37] | 2019 | ✓ | ✗ | Wireless Networks |
Wang et al. [38] | 2020 | ✓ | ✗ | 5G Wireless Networks |
Nguyen et al. [39] | 2020 | ✓ | ✗ | Wireless Networks |
Semong et al. [40] | 2020 | ✓ | ✗ | Software-Defined Networking |
Zeydan et al. [41] | 2020 | ✓ | ✗ | Intent-Based Networking |
Mukhopadhyay et al. [42] | 2021 | ✓ | ✗ | Internet of Things |
Chang et al. [43] | 2021 | ✓ | ✗ | Edge Computing |
Letaief et al. [44] | 2021 | ✓ | ✗ | 6G Networks |
Murshed et al. [45] | 2021 | ✓ | ✗ | Edge Computing |
Song et al. [46] | 2022 | ✓ | ✗ | Networking Systems |
Gupta et al. [47] | 2022 | ✓ | ✗ | Mobile Networks |
Macas et al. [48] | 2022 | ✓ | ✗ | Cybersecurity |
Salau et al. [49] | 2022 | ✓ | ✗ | Wireless Networks |
Singh et al. [50] | 2023 | ✓ | ✗ | Edge Computing |
Zuo et al. [51] | 2023 | ✓ | ✗ | 6G Networks |
Bourechak et al. [52] | 2023 | ✓ | ✗ | Edge Computing |
Gao [53] | 2023 | ✓ | ✓ | Cybersecurity |
Tarkoma et al. [54] | 2023 | ✓ | ✓ | 6G Systems |
Gill et al. [55] | 2024 | ✓ | ✗ | Edge Computing |
Alhammadi et al. [56] | 2024 | ✓ | ✗ | 6G Wireless Networks |
Ospina Cifuentes et al. [57] | 2024 | ✓ | ✗ | Software-Defined Networking |
Chen et al. [58] | 2024 | ✓ | ✗ | 6G Wireless Networks |
Ozkan-Ozay et al. [59] | 2024 | ✓ | ✓ | Cybersecurity |
Celik et al. [60] | 2024 | ✓ | ✓ | 6G Networks |
Khoramnejad et al. [61] | 2024 | ✓ | ✓ | Next-Generation Wireless Networks |
Bhardwaj et al. [62] | 2024 | ✓ | ✓ | Edge Computing |
Karapantelakis et al. [63] | 2024 | ✓ | ✓ | Mobile Networks |
Zhou et al. [64] | 2024 | ✓ | ✓ | Telecommunications |
This Study | 2024 | ✓ | ✓ | Next-Generation Network |
Natural Language Prompt | Network Operation | Features | Example |
---|---|---|---|
Distribute incoming traffic evenly across three servers to ensure optimal performance. | Load Balancing Configuration | Distribute traffic using a 4-tuple (source Internet Protocol (IP), destination IP, source port, destination port) and utilize unique identifiers to avoid traffic polarization, supporting both IPv4 and IPv6 headers. | ip cef load-sharing algorithm include-ports source destination gtp |
Configure the router to prioritize voice traffic over other types of traffic. | QoS Configuration | Prioritize specific types of traffic by applying pre-defined policies to network interfaces. | interface GigabitEthernet0/1 service-policy output PRIORITIZE-VOICE |
Analyze the firewall logs to identify any failed login attempts. | Log Analysis | Filter and search through log entries based on criteria. | grep “Failed login” /var/log/firewall.log |
Block all external traffic from accessing the internal server located at 198.168.100.2 to enhance security. | Firewall Rule Configuration | Establish access control by defining rules to block unauthorized external traffic to specific internal server IP addresses. | deny ip any host 198.168.100.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, C.-N.; Yu, P.-D.; Morabito, R.; Tan, C.-W. Large Language Models Meet Next-Generation Networking Technologies: A Review. Future Internet 2024, 16, 365. https://doi.org/10.3390/fi16100365
Hang C-N, Yu P-D, Morabito R, Tan C-W. Large Language Models Meet Next-Generation Networking Technologies: A Review. Future Internet. 2024; 16(10):365. https://doi.org/10.3390/fi16100365
Chicago/Turabian StyleHang, Ching-Nam, Pei-Duo Yu, Roberto Morabito, and Chee-Wei Tan. 2024. "Large Language Models Meet Next-Generation Networking Technologies: A Review" Future Internet 16, no. 10: 365. https://doi.org/10.3390/fi16100365
APA StyleHang, C. -N., Yu, P. -D., Morabito, R., & Tan, C. -W. (2024). Large Language Models Meet Next-Generation Networking Technologies: A Review. Future Internet, 16(10), 365. https://doi.org/10.3390/fi16100365