A Context-Aware Edge Computing Framework for Smart Internet of Things
Abstract
:1. Introduction
- A novel general-purpose context-aware selective sensing framework is proposed. This framework takes advantage of the available context information to improve the selection of important sensed data to reduce the impact of data explosion.
- We demonstrate the applicability of our framework with a parking management system in a smart city using linked data and semantic web technologies.
2. Related Works
2.1. Selective Sensing
2.2. Context-Based Data/Device Selection
2.3. Context-Aware Parking Management Systems
2.4. Summary and Research Gaps
3. Framework Architecture
3.1. Context Management
3.1.1. Context Acquisition
3.1.2. Context Modeling
3.1.3. Context Reasoning
3.2. Selective Sensing
4. Use Case Scenario: A Smart City Parking Space Detection
5. Experiment and Evaluation
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anawar, M.R.; Wang, S.; Azam Zia, M.; Jadoon, A.K.; Akram, U.; Raza, S. Fog computing: An overview of big IoT data analytics. Wirel. Commun. Mob. Comput. 2018, 2018, 7157192. [Google Scholar] [CrossRef]
- Arivazhagan, C.; Natarajan, V. A Survey on Fog computing paradigms, Challenges and Opportunities in IoT. In Proceedings of the 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28–30 July 2020; pp. 385–389. [Google Scholar]
- Ning, H.; Farha, F.; Mohammad, Z.N.; Daneshmand, M. A survey and tutorial on “connection exploding meets efficient communication” in the Internet of Things. IEEE Internet Things J. 2020, 7, 10733–10744. [Google Scholar] [CrossRef]
- Pan, J.; McElhannon, J. Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 2017, 5, 439–449. [Google Scholar] [CrossRef]
- Saeik, F.; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos, J.; Leivadeas, A.; Athanasopoulos, N.; Mitton, N.; Papavassiliou, S. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions. Comput. Netw. 2021, 195, 108177. [Google Scholar] [CrossRef]
- Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT middleware: A survey on issues and enabling technologies. IEEE Internet Things J. 2016, 4, 1–20. [Google Scholar] [CrossRef]
- Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Cla, S. Middleware for internet of things: A survey. IEEE Internet Things J. 2016, 3, 70–95. [Google Scholar] [CrossRef]
- Dey, A.K. Understanding and using context. Pers. Ubiquitous Comput. 2001, 5, 4–7. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context aware computing for the internet of things: A survey. IEEE Commun. Surv. Tutorials 2014, 16, 414–454. [Google Scholar] [CrossRef]
- Sezer, O.B.; Dogdu, E.; Ozbayoglu, A.M. Context-Aware Computing, Learning, and Big Data in Internet of Things: A Survey. IEEE Internet Things J. 2018, 5, 1–27. [Google Scholar] [CrossRef]
- Cai, X.; Ning, H.; Dhelim, S.; Zhou, R.; Zhang, T.; Xu, Y.; Wan, Y. Robot and its living space: A roadmap for robot development based on the view of living space. Digit. Commun. Netw. 2021, 7, 505–517. [Google Scholar] [CrossRef]
- Ning, H.; Ye, X.; Ben Sada, A.; Mao, L.; Daneshmand, M. An Attention Mechanism Inspired Selective Sensing Framework for Physical-Cyber Mapping in Internet of Things. IEEE Internet Things J. 2019, 6, 9531–9544. [Google Scholar] [CrossRef]
- Wang, W.; Ning, H.; Shi, F.; Dhelim, S.; Zhang, W.; Chen, L. A Survey of Hybrid Human-Artificial Intelligence for Social Computing. IEEE Trans. Hum.-Mach. Syst. 2022, 52, 468–480. [Google Scholar] [CrossRef]
- Liu, Y.X.; Liu, A.; Guo, S.; Li, Z.; Choi, Y.J.; Sekiya, H. Context-aware collect data with energy efficient in Cyber–physical cloud systems. Future Gener. Comput. Syst. 2020, 105, 932–947. [Google Scholar] [CrossRef]
- Ardagna, D.; Cappiello, C.; Samá, W.; Vitali, M. Context-aware data quality assessment for big data. Future Gener. Comput. Syst. 2018, 89, 548–562. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, Z.; Wu, F.; Tang, S.; Chen, G. Context-aware data quality estimation in mobile crowdsensing. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Prabha, R.; Ramesh, M.V.; Rangan, V.P.; Ushakumari, P.V.; Hemalatha, T. Energy Efficient Data Acquisition Techniques Using Context Aware Sensing for Landslide Monitoring Systems. IEEE Sens. J. 2017, 17, 6006–6018. [Google Scholar] [CrossRef]
- Lee, T.D.; Lee, B.M.; Noh, W. Hierarchical cloud computing architecture for context-aware IoT services. IEEE Trans. Consum. Electron. 2018, 64, 222–230. [Google Scholar] [CrossRef]
- Kavitha, D.; Ravikumar, S. IOT and context-aware learning-based optimal neural network model for real-time health monitoring. Trans. Emerg. Telecommun. Technol. 2021, 32, e4132. [Google Scholar]
- Shapsough, S.Y.; Zualkernan, I.A. A generic IoT architecture for ubiquitous context-aware learning. IEEE Trans. Learn. Technol. 2020, 13, 449–464. [Google Scholar] [CrossRef]
- Lohani, D.; Acharya, D. Smartvent: A context aware iot system to measure indoor air quality and ventilation rate. In Proceedings of the 2016 17th IEEE International Conference on Mobile Data Management (MDM), Porto, Portugal, 13–16 June 2016; Volume 2, pp. 64–69. [Google Scholar]
- Elayan, H.; Aloqaily, M.; Guizani, M. Digital Twin for Intelligent Context-Aware IoT Healthcare Systems. IEEE Internet Things J. 2021, 8, 16749–16757. [Google Scholar] [CrossRef]
- Gochhayat, S.P.; Kaliyar, P.; Conti, M.; Tiwari, P.; Prasath, V.; Gupta, D.; Khanna, A. LISA: Lightweight context-aware IoT service architecture. J. Clean. Prod. 2019, 212, 1345–1356. [Google Scholar] [CrossRef]
- Mahfooz Ul Haque, H.; Zulfiqar, H.; Ahmed, A.; Ali, Y. A context-aware framework for modelling and verification of smart parking systems in urban cities. Concurr. Comput. Pract. Exp. 2021, 33, e5401. [Google Scholar] [CrossRef]
- Biondi, S.; Monteleone, S.; La Torre, G.; Catania, V. A context-aware smart parking system. In Proceedings of the 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Naples, Italy, 28 November–1 December 2016; pp. 450–454. [Google Scholar]
- Wang, M.; Perera, C.; Jayaraman, P.P.; Zhang, M.; Strazdins, P.; Shyamsundar, R.K.; Ranjan, R. City data fusion: Sensor data fusion in the internet of things. In The Internet of Things: Breakthroughs in Research and Practice; Information Resources Management Association: Washington, DC, USA, 2017; pp. 398–422. [Google Scholar] [CrossRef]
- Bettini, C.; Brdiczka, O.; Henricksen, K.; Indulska, J.; Nicklas, D.; Ranganathan, A.; Riboni, D. A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 2010, 6, 161–180. [Google Scholar] [CrossRef]
- Maarala, A.I.; Su, X.; Riekki, J. Semantic Reasoning for Context-Aware Internet of Things Applications. IEEE Internet Things J. 2017, 4, 461–473. [Google Scholar] [CrossRef]
- Manzoor, A.; Truong, H.L.; Dustdar, S. Quality of context: Models and applications for context-aware systems in pervasive environments. Knowl. Eng. Rev. 2014, 29, 154–170. [Google Scholar] [CrossRef]
- Cai, B.Y.; Alvarez, R.; Sit, M.; Duarte, F.; Ratti, C. Deep Learning-Based Video System for Accurate and Real-Time Parking Measurement. IEEE Internet Things J. 2019, 6, 7693–7701. [Google Scholar] [CrossRef]
- Màrmol, E.; Sevillano, X. QuickSpot: A video analytics solution for on-street vacant parking spot detection. Multimed. Tools Appl. 2016, 75, 17711–17743. [Google Scholar] [CrossRef]
Data Selection | Leverages Context | General Purpose | Application | |
---|---|---|---|---|
Ning et al. [12] | ✓ | × | ✓ | IoT |
Liu et al. [14] | ✓ | ✓ | × | WSN |
Ardagna et al. [15] | ✓ | ✓ | × | Smart City |
Liu et al. [16] | ✓ | ✓ | × | Mobile |
Prabha et al. [17] | ✓ | ✓ | × | Sensing |
Lee et al. [18] | ✓ | ✓ | × | IoT |
Kavitha et al. [19] | ✓ | ✓ | × | Healthcare |
Shapsough et al. [20] | ✓ | ✓ | × | Education |
Lohani et al. [21] | ✓ | ✓ | × | Sensing |
Elayan et al. [22] | ✓ | ✓ | × | Healthcare |
Gochhayat et al. [23] | ✓ | ✓ | × | IoT |
Mahfooz et al. [24] | × | ✓ | × | Parking |
Biondi et al. [25] | × | ✓ | × | Parking |
CONTESS | ✓ | ✓ | ✓ | IoT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Sada, A.; Naouri, A.; Khelloufi, A.; Dhelim, S.; Ning, H. A Context-Aware Edge Computing Framework for Smart Internet of Things. Future Internet 2023, 15, 154. https://doi.org/10.3390/fi15050154
Ben Sada A, Naouri A, Khelloufi A, Dhelim S, Ning H. A Context-Aware Edge Computing Framework for Smart Internet of Things. Future Internet. 2023; 15(5):154. https://doi.org/10.3390/fi15050154
Chicago/Turabian StyleBen Sada, Abdelkarim, Abdenacer Naouri, Amar Khelloufi, Sahraoui Dhelim, and Huansheng Ning. 2023. "A Context-Aware Edge Computing Framework for Smart Internet of Things" Future Internet 15, no. 5: 154. https://doi.org/10.3390/fi15050154
APA StyleBen Sada, A., Naouri, A., Khelloufi, A., Dhelim, S., & Ning, H. (2023). A Context-Aware Edge Computing Framework for Smart Internet of Things. Future Internet, 15(5), 154. https://doi.org/10.3390/fi15050154