Latency Analysis of Blockchain-Based SSI Applications †
Abstract
:1. Introduction
2. Related Works
3. The Proposed Evaluation Architecture Using Indy
- indy_config.py: This file contains the configuration to run the Indy node, i.e., the name of the network and the installation parameters.
- requirements.txt: This file contains system dependencies. We used Flask to create a web service, which displays the genesis file extracted from the container, according to which the admin application could connect.
- indy-node-start.sh: This script starts the server.py in a container to create a BC node.
- create_steward.py: This script can be used to add new stewards, thus adding new nodes to the system.
- test_transactions.py: This script can be used to perform the experiments (to be detailed in the next section). It creates a connection with the BC network, and sends the specified TXs in multiple threads.
4. Evaluation Results
4.1. Four-Node Measurements in a Public Cloud
4.2. Eight-Node Measurements in a Public Cloud
4.3. Four-Node Measurements in a Private Cloud
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [Google Scholar] [CrossRef]
- Abraham, I.; Malkhi, D.; Nayak, K.; Ren, L.; Spiegelman, A. Solidus: An incentive-compatible cryptocurrency based on permissionless byzantine consensus. arXiv 2016, arXiv:1612.02916. [Google Scholar]
- Karasek-Wojciechowicz, I. Reconciliation of anti-money laundering instruments and European data protection requirements in permissionless blockchain spaces. J. Cybersecur. 2021, 7, tyab004. [Google Scholar] [CrossRef]
- Krawiec, R.; Housman, D.; White, M.; Filipova, M.; Quarre, F.; Barr, D.; Nesbitt, A.; Fedosova, K.; Killmeyer, J.; Israel, A.; et al. Blockchain: Opportunities for Health Care. Available online: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/public-sector/us-blockchain-opportunities-for-health-care.pdf (accessed on 26 September 2022).
- Javaid, U.; Aman, M.N.; Sikdar, B. A scalable protocol for driving trust management in internet of vehicles with blockchain. IEEE Internet Things J. 2020, 7, 11815–11829. [Google Scholar] [CrossRef]
- Bistarelli, S.; Mercanti, I.; Santancini, P.; Santini, F. End-to-End Voting with Non-Permissioned and Permissioned Ledgers. J. Grid Comput. 2019, 17, 97–118. [Google Scholar] [CrossRef]
- Kondova, G.; Erbguth, J. Self-sovereign identity on public blockchains and the GDPR. In Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, 30 March–3 April 2020; pp. 342–345. [Google Scholar]
- Jirgensons, M.; Kapenieks, J. Blockchain and the future of digital learning credential assessment and management. J. Teach. Educ. Sustain. 2018, 20, 145–156. [Google Scholar] [CrossRef]
- Tobin, A.; Reed, D. The inevitable rise of self-sovereign identity. Sovrin Found. 2016, 29, 18. [Google Scholar]
- Thomas, K.; Pullman, J.; Yeo, K.; Raghunathan, A.; Kelley, P.G.; Invernizzi, L.; Benko, B.; Pietraszek, T.; Patel, S.; Boneh, D.; et al. Protecting accounts from credential stuffing with password breach alerting. In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 1556–1571. [Google Scholar]
- Makri, K.; Papadas, K.; Schlegelmilch, B.B. Global social networking sites and global identity: A three-country study. J. Bus. Res. 2021, 130, 482–492. [Google Scholar] [CrossRef]
- Boysen, A. Decentralized, Self-Sovereign, Consortium: The Future of Digital Identity in Canada. Front. Blockchain 2021, 4, 11. [Google Scholar] [CrossRef]
- Kertesz, A.; Baniata, H. Consistency Analysis of Distributed Ledgersin Fog-enhanced Blockchains. In Proceedings of the European Conference on Parallel Processing, Lisbon, Portugal, 30–31 August 2021. [Google Scholar]
- Linux Foundation. HyperLedger Indy. 2020. Available online: hyperledger.org/use/hyperledger-indy (accessed on 26 September 2022).
- Baniata, H.; Pflanzner, T.; Feher, Z.; Kertesz, A. Latency Assessment of Blockchain-based SSI Applications Utilizing Hyperledger Indy. In Proceedings of the 12th International Conference on Cloud Computing and Services Science—CLOSER. INSTICC, SciTePress, Online, 27–29 April 2022; pp. 264–271. [Google Scholar] [CrossRef]
- Sopek, M.; Grakadzki, P.; Kuzinski, D.; Trojczak, R.; Trypuz, R. Legal Entity Identifier Blockchained by a Hyperledger Indy Implementation of GraphChain. In Proceedings of the Research Conference on Metadata and Semantics Research, Limassol, Cyprus, 23–26 October 2018; pp. 26–36. [Google Scholar]
- Raclawickie, A. Legal Entity Identifier Blockchained by a Hyperledger Indy Implementation of GraphChain. In Revised Selected Papers: Proceedings of the Metadata and Semantic Research: 12th International Conference, MTSR 2018, Limassol, Cyprus, 23–26 October 2018; Springer: Berlin/Heidelberg, Germany, 2019; Volume 846, p. 26. [Google Scholar]
- Sopek, M.; Gradzki, P.; Kosowski, W.; Kuziski, D.; Trojczak, R.; Trypuz, R. GraphChain: A distributed database with explicit semantics and chained RDF graphs. In Proceedings of the Companion Proceedings of the The Web Conference 2018, Lyon, France, 23–27 April 2018; pp. 1171–1178. [Google Scholar]
- Bhattacharya, M.P.; Zavarsky, P.; Butakov, S. Enhancing the Security and Privacy of Self-Sovereign Identities on Hyperledger Indy Blockchain. In Proceedings of the 2020 International Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 20–22 October 2020; pp. 1–7. [Google Scholar]
- Malik, S.; Gupta, N.; Dedeoglu, V.; Kanhere, S.S.; Jurdak, R. TradeChain: Decoupling Traceability and Identity inBlockchain enabled Supply Chains. arXiv 2021, arXiv:2105.11217. [Google Scholar]
- Prakash, N.; Michelson, D.G.; Feng, C. CVIN: Connected Vehicle Information Network. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Mohanty, D. Blockchain From Concept to Execution: BitCoin, Ethereum, Quorum, Ripple, R3 Corda, Hyperledger Fabric/SawTooth/Indy, MultiChain, IOTA, CoCo; BPB Publications: Noida, India, 2018. [Google Scholar]
- Finck, M. Blockchain and the General Data Protection Regulation. Can Distributed Ledgers be Squared with European Data Protection Law? Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634445/EPRS_STU(2019)634445_EN.pdf (accessed on 26 September 2022).
- Caliper, H. Hyperledger Caliper Architecture. Electronic Article. 2019. Available online: https://hyperledger.github.io/caliper/docs/2_Architecture.html (accessed on 26 September 2022).
- Dong, Z.; Zheng, E.; Choon, Y.; Zomaya, A.Y. Dagbench: A performance evaluation framework for dag distributed ledgers. In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8–13 July 2019; pp. 264–271. [Google Scholar]
- Dinh, T.T.A.; Wang, J.; Chen, G.; Liu, R.; Ooi, B.C.; Tan, K.L. Blockbench: A framework for analyzing private blockchains. In Proceedings of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–19 May 2017; pp. 1085–1100. [Google Scholar]
- Aublin, P.L.; Mokhtar, S.B.; Quéma, V. Rbft: Redundant byzantine fault tolerance. In Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems, Philadelphia, PA, USA, 8–11 July 2013; pp. 297–306. [Google Scholar]
- Windley, P.J. How Sovrin Works; Windely.com: Hoboken, NJ, USA, 2016. [Google Scholar]
- Baniata, H.; Anaqreh, A.; Kertesz, A. DONS: Dynamic Optimized Neighbor Selection for smart blockchain networks. Future Gener. Comput. Syst. 2022, 130, 75–90. [Google Scholar] [CrossRef]
- Baniata, H.; Kertesz, A. PriFoB: A Privacy-aware Fog-enhanced Blockchain-based system for Global Accreditation and Credential Verification. J. Netw. Comput. Appl. 2022, 205, 103440. [Google Scholar] [CrossRef]
TX Type | Arrival Rate (TXs/s) | |||||
---|---|---|---|---|---|---|
1 | 50 | 100 | 150 | 200 | 250 | |
Min (W) | 1.1014 | 1.1014 | 1.1014 | 1.1014 | 1.1014 | 1.1014 |
Max (W) | 2.9832 | 2.9138 | 2.9490 | 5.8131 | 6.8542 | 13.3811 |
Avg (W) | 2.7388 | 2.5284 | 2.2197 | 4.4763 | 5.3511 | 6.3534 |
TX Type | Arrival Rate (TXs/s) | |||||
1 | 50 | 100 | 150 | 200 | 250 | |
Min (R) | 0.0108 | 0.0671 | 0.1058 | 0.0841 | 0.2469 | 0.0800 |
Max (R) | 0.2160 | 1.1387 | 1.4655 | 2.2378 | 2.5302 | 4.7086 |
Avg (R) | 0.0881 | 0.3961 | 0.5815 | 0.8964 | 1.1408 | 1.5562 |
TX Type | Arrival Rate (TXs/s) | |||||
---|---|---|---|---|---|---|
1 | 50 | 100 | 150 | 200 | 250 | |
Min (W) | 0.2614 | 1.7064 | 1.5032 | 1.3114 | 1.2914 | 1.5289 |
Max (W) | 2.9949 | 2.9607 | 5.2011 | 8.5050 | 7.4365 | 16.9094 |
Avg (W) | 2.6118 | 2.5993 | 2.5347 | 4.8506 | 5.5883 | 10.4323 |
TX Type | Arrival Rate (TXs/s) | |||||
1 | 50 | 100 | 150 | 200 | 250 | |
Min (R) | 0.0092 | 0.0567 | 0.0927 | 0.0667 | 0.0350 | 0.0219 |
Max (R) | 0.7147 | 1.1744 | 1.4469 | 1.9189 | 2.4340 | 5.6863 |
Avg (R) | 0.1203 | 0.3718 | 0.5430 | 0.8163 | 1.0652 | 2.4928 |
TX Type | Arrival Rate (TXs/s) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | |
Min (W) | 0.1011 | 1.6937 | 1.8288 | 1.9917 | 4.4555 | 4.8983 | 5.1942 | 5.5093 | 5.7745 | 6.0929 | 6.3293 |
Max (W) | 2.0067 | 2.1450 | 2.2595 | 4.3912 | 5.0304 | 5.1658 | 5.6114 | 6.2726 | 6.5005 | 6.9145 | 10.1340 |
Avg (W) | 1.7733 | 1.7860 | 1.9137 | 3.9115 | 4.7391 | 5.0067 | 5.3868 | 5.8393 | 6.1832 | 6.5251 | 7.1020 |
TX Type | Arrival Rate (TXs/s) | ||||||||||
1 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | |
Min (R) | 0.0178 | 0.0856 | 0.2053 | 0.2155 | 0.4517 | 0.6864 | 0.6904 | 0.7717 | 0.8427 | 1.0742 | 1.1358 |
Max (R) | 0.0474 | 0.2229 | 0.4658 | 0.6657 | 0.8918 | 1.1936 | 1.2290 | 1.4729 | 1.7036 | 1.9957 | 2.1096 |
Avg (R) | 0.0266 | 0.1401 | 0.2849 | 0.4032 | 0.5625 | 0.7290 | 0.8534 | 0.9997 | 1.1217 | 1.3038 | 1.3950 |
TX Type | Arrival Rate (TXs/s) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | |
Min (W) | 0.1004 | 1.6858 | 1.4348 | 2.3036 | 4.7245 | 5.1294 | 4.5748 | 5.8767 | 6.3978 | 6.7831 | 7.1836 |
Max (W) | 2.0020 | 2.2518 | 3.3587 | 4.8211 | 5.0167 | 5.4596 | 5.9855 | 6.3402 | 6.8323 | 8.5989 | 7.7109 |
Avg (W) | 1.7919 | 1.8107 | 1.7563 | 3.9873 | 4.8259 | 5.2884 | 5.6173 | 6.1577 | 6.6395 | 7.1475 | 7.4985 |
TX Type | Arrival Rate (TXs/s) | ||||||||||
1 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | |
Min (R) | 0.0143 | 0.1694 | 0.2172 | 0.3529 | 0.6244 | 0.5323 | 0.7636 | 0.8521 | 0.9900 | 1.3708 | 1.3517 |
Max (R) | 0.0263 | 0.2425 | 0.4751 | 0.7329 | 0.9451 | 1.1434 | 1.3563 | 1.5009 | 1.7062 | 2.0700 | 2.3891 |
Avg (R) | 0.0214 | 0.1526 | 0.2926 | 0.4009 | 0.5749 | 0.7272 | 0.8616 | 0.9998 | 1.1941 | 1.3387 | 1.4752 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pflanzner, T.; Baniata, H.; Kertesz, A. Latency Analysis of Blockchain-Based SSI Applications. Future Internet 2022, 14, 282. https://doi.org/10.3390/fi14100282
Pflanzner T, Baniata H, Kertesz A. Latency Analysis of Blockchain-Based SSI Applications. Future Internet. 2022; 14(10):282. https://doi.org/10.3390/fi14100282
Chicago/Turabian StylePflanzner, Tamas, Hamza Baniata, and Attila Kertesz. 2022. "Latency Analysis of Blockchain-Based SSI Applications" Future Internet 14, no. 10: 282. https://doi.org/10.3390/fi14100282
APA StylePflanzner, T., Baniata, H., & Kertesz, A. (2022). Latency Analysis of Blockchain-Based SSI Applications. Future Internet, 14(10), 282. https://doi.org/10.3390/fi14100282