The Impact of Quality of Experience of Chinese College Students on Internet-Based Resources English Learning
Abstract
:1. Introduction
2. Literature Review
2.1. Cultural Intelligence (CQ)
2.2. English Self-Efficacy
2.3. Hedonic Motivation
2.4. Quality of Experience
2.5. English Continuous Learning Intention
3. Methodology
3.1. Measures
3.1.1. Cultural Intelligence (CQ)
3.1.2. English Self-Efficacy (ESE)
3.1.3. Hedonic Motivation (HM)
3.1.4. Quality of Experience (QE)
3.1.5. English Continues Learning Intention (ECL)
3.2. Data Collection
3.3. Data Analysis
4. Analysis Results
4.1. Measurement Model
4.1.1. Convergent Validity
4.1.2. Second-Order Confirmatory Factor Analysis
4.1.3. Target Coefficient
4.1.4. Discriminant Validity
4.2. Structural Model Analysis
4.2.1. Path Analysis
4.2.2. Indirect Effects Analysis
5. Discussion and Conclusions
5.1. The Influence of Internet QoE on English Continuous Learning Intention
5.2. The Influence of English Learning Hedonic Motivation on Internet QoE
5.3. Conclusion, Limitation, and Future Work
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Thakre, S.B.; Thakre, S.S.; Reddy, M.; Rathi, N.; Pathak, K.; Ughade, S. Menstrual hygiene: Knowledge and practice among adolescent school girls of Saoner, Nagpur district. Clin. Diagn. Res. 2011, 5, 1027–1033. [Google Scholar]
- Selwyn, N. The Internet and Education. OpenMind BBVA. Available online: https://www.bbvaopenmind.com/en/articles/the-internet-and-education/ (accessed on 17 June 2021).
- Jurado de los Santos, P.; Moreno-Guerrero, A.-J.; Marín-Marín, J.-A.; Soler Costa, R. The Term Equity in Education: A Literature Review with Scientific Mapping in Web of Science. Int. J. Environ. Res. Public Health 2020, 17, 3526. [Google Scholar] [CrossRef]
- Moreno-Guerrero, A.-J.; Soler-Costa, R.; Marín-Marín, J.-A.; López-Belmonte, J. Flipped learning and good teaching practices in secondary education. Comunicar 2021, 68. [Google Scholar] [CrossRef]
- Bamgboe, A. World Englishes and globalization. World Engl. 2001, 20, 357–363. [Google Scholar] [CrossRef]
- Karimi, P.; Lotfi, A.R.; Biria, R. Enhancing Pilot’s Aviation English Learning, Attitude and Motivation through the Application of Content and Language Integrated Learning. Int. J. Instr. 2019, 12, 751–766. [Google Scholar] [CrossRef]
- Wen, Q. The production-oriented approach to teaching university students English in China. Lang. Teach. 2018, 51, 526–540. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Meng, Q. Exploring personality traits as predictors of English achievement and global competence among Chinese university students: English learning motivation as the moderator. Learn. Individ. Differ. 2020, 77, 101814. [Google Scholar] [CrossRef]
- Ching, S.M.; Hamidin, A.; Vasudevan, R.; Sazlyna, M.; Wan Aliaa, W.; Foo, Y.L.; Yee, A.; Hoo, F. Prevalence and factors associated with internet addiction among medical students-A cross-sectional study in Malaysia. Med. J. Malays. 2017, 72, 7. [Google Scholar]
- Chang, C.-T.; Tu, C.-S.; Hajiyev, J. Integrating academic type of social media activity with perceived academic performance: A role of task-related and non-task-related compulsive Internet use. Comput. Educ. 2019, 139, 157–172. [Google Scholar] [CrossRef]
- Chomphuchart, N. Thai university students’ attitudes toward the Use of the Internet in Learning English. Rangsit J. Educ. Stud. 2017, 4, 13–30. [Google Scholar]
- Li, J. Mobile-assisted Autonomous English Learning in College Students’ Extra-curriculum Time: A Case Study in China. Tech. Soc. Sci. J. 2021, 19, 129–143. [Google Scholar]
- Liu, M. Exploration and Practice of Internet-based Blending Learning of English Writing. In Proceedings of the 2020 2nd Asia-Pacific Conference on Advance in Education, Learning and Teaching (ACAELT 2020), Guangzhou, China, 14–16 December 2020. [Google Scholar]
- Li, Y. Research on the Mixed Teaching Mode of College English in the “Internet” Education Environment. In E3S Web of Conferences; EDP Sciences: Ulis, France, 2021. [Google Scholar]
- Al-Emran, M.; Arpaci, I.; Salloum, S.A. An empirical examination of continuous intention to use m-learning: An integrated model. Educ. Inf. Technol. 2020, 25, 2899–2918. [Google Scholar] [CrossRef]
- Al-Azawei, A.; Alowayr, A. Predicting the intention to use and hedonic motivation for mobile learning: A comparative study in two Middle Eastern countries. Technol. Soc. 2020, 62, 101325. [Google Scholar] [CrossRef]
- Sivadas, E.; Baker-Prewitt, J.L. An examination of the relationship between service quality, customer satisfaction, and store loyalty. Int. J. Retail Distrib. Manag. 2000. [Google Scholar] [CrossRef]
- Hussein, A.S. Shopping experience and subjective well-being: An empirical study. J. Indones. Econ. Bus. 2018, 33, 273–285. [Google Scholar] [CrossRef]
- Rachmawaty, N.; Wello, M.B.; Akil, M.; Dollah, S. Do Cultural Intelligence and Language Learning Strategies Influence Students’ English Language Proficiency? J. Lang. Teach. 2018, 9, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Barnes, K.J.; Smith, G.E.; Hernández-Pozas, O. What’s Your CQ? A framework to assess and develop individual student cultural intelligence. Organ. Manag. J. 2017, 14, 34–44. [Google Scholar] [CrossRef]
- Kitikanan, P.; Sasimonton, P.; Network, A.R. The Relationship between English Self-Efficacy and English Learning Achievement of L2 Thai Learners. Learn J. Lang. Educ. 2017, 10, 149–164. [Google Scholar]
- Torres, J.; Alieto, E. English learning motivation and self-efficacy of Filipino senior high school students. Asian EFL J. 2019, 22, 51–72. [Google Scholar]
- Schmidt, F.L.; Hunter, J. Select on intelligence. In Handbook of Principles of Organizational Behavior; John Wiley & Sons: Hoboken, NJ, USA, 2000; pp. 3–14. [Google Scholar]
- Detterman, D.K.; Sternberg, R.J. What Is Intelligence?: Contemporary Viewpoints on Its Nature and Definition; Ablex: Norwood, NJ, USA, 1986. [Google Scholar]
- Earley, P.C.; Ang, S. Cultural Intelligence: Individual Interactions across Cultures; Stanford University Press: Palo Alto, CA, USA, 2003. [Google Scholar]
- Ng, K.-Y.; Van Dyne, L.; Ang, S. Developing global leaders: The role of international experience and cultural intelligence. In Advances in Global Leadership; Emerald Group Publishing Limited: Bingley, UK, 2009. [Google Scholar]
- Lee, C.H.; Templer, K.J. Cultural intelligence assessment and measurement. In Cultural Intelligence: Individual Interactions across Cultures; Stanford University Press: Palo Alto, CA, USA, 2003; pp. 185–208. [Google Scholar]
- Imai, L.; Gelfand, M.J. The culturally intelligent negotiator: The impact of cultural intelligence (CQ) on negotiation sequences and outcomes. Organ. Behav. Hum. Decis. Process. 2010, 112, 83–98. [Google Scholar] [CrossRef]
- Rehg, M.T.; Gundlach, M.J.; Grigorian, R.A. Examining the influence of cross-cultural training on cultural intelligence and specific self-efficacy. Cross Cult. Manag. Int. J. 2012. [Google Scholar] [CrossRef]
- Cabral, Â.M.R.; Carvalho, F.M.P.; Ferreira, J.A.V. International Strategic Management: A Conceptual Model with Top Managers’ Emotional Intelligence, Cultural Intelligence, and Networking. Information 2020, 11, 577. [Google Scholar] [CrossRef]
- Eisenberg, J.; Lee, H.-J.; Brück, F.; Brenner, B.; Claes, M.-T.; Mironski, J.; Bell, R. Can business schools make students culturally competent? Effects of cross-cultural management courses on cultural intelligence. Acad. Manag. Learn. Educ. Adm. Q. 2013, 12, 603–621. [Google Scholar] [CrossRef] [Green Version]
- Suharti, L.; Handoko, Y.A.; Huruta, A.D. Linking cultural intelligence and adaptive performance: Do intercultural interactions and Host University Support™ play important roles? Bus. Manag. Econ. Eng. 2019, 17, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Morrell, D.L.; Ravlin, E.C.; Ramsey, J.R.; Ward, A.-K. Past experience, cultural intelligence, and satisfaction with international business studies. J. Teach. Int. Bus. 2013, 24, 31–43. [Google Scholar] [CrossRef]
- Hu, S.; Gu, J.; Liu, H.; Huang, Q. The moderating role of social media usage in the relationship among multicultural experiences, cultural intelligence, and individual creativity. Inf. Technol. People 2017. [Google Scholar] [CrossRef]
- Alahdadi, S.; Ghanizadeh, A. The dynamic interplay among EFL learners’ ambiguity tolerance, adaptability, cultural intelligence, learning approach, and language achievement. Iran. J. Lang. Teach. Res. 2017, 5, 37–50. [Google Scholar]
- Bandura, A. The anatomy of stages of change. Am. J. Health Promot. AJHP 1997, 12, 8–10. [Google Scholar] [CrossRef]
- Wang, C.-H.; Harrison, J.; Cardullo, V.; Lin, X. Exploring the relationship among international students’ English self-efficacy, using English to learn self-efficacy, and academic self-efficacy. J. Int. Stud. 2018, 8, 233–250. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhan, J. The relationship between english language learner characteristics and online self-regulation: A structural equation modeling approach. Sustainability 2020, 12, 3009. [Google Scholar] [CrossRef] [Green Version]
- Yuniarinto, A.; Thoyib, A.; Solimun, S.; Sularso, A. Retail attribute’s effect on shopping motivation and customer loyalty: Age as a moderating variable. Sci. J. Bus. Manag. 2017, 5, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.L. E-Books to Enhance College Learners’ English SelfEfficacy. Educ. Q. Rev. 2018, 1, 66–82. [Google Scholar] [CrossRef]
- Trajkovik, V.; Malinovski, T.; Vasileva-Stojanovska, T.; Vasileva, M. Traditional games in elementary school: Relationships of student’s personality traits, motivation and experience with learning outcomes. PLoS ONE 2018, 13, e0202172. [Google Scholar] [CrossRef]
- Mikalef, P.; Giannakos, M.; Pateli, A. Shopping and word-of-mouth intentions on social media. J. Theor. Appl. Electron. Commer. Res. 2013, 8, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Babin, B.J.; Darden, W.R.; Griffin, M. Work and/or fun: Measuring hedonic and utilitarian shopping value. J. Consum. Res. 1994, 20, 644–656. [Google Scholar] [CrossRef]
- Morris, M.G.; Turner, J.M. Assessing users’ subjective quality of experience with the world wide web: An exploratory examination of temporal changes in technology acceptance. Int. J. Hum. Comput. Stud. 2001, 54, 877–901. [Google Scholar] [CrossRef]
- Tyrväinen, O.; Karjaluoto, H.; Saarijärvi, H. Personalization and hedonic motivation in creating customer experiences and loyalty in omnichannel retail. J. Retail. Consum. Serv. 2020, 57, 102233. [Google Scholar] [CrossRef]
- Das, A.; Lam, T.K.; Thomas, S.; Richardson, J.; Kam, B.H.; Lau, K.H.; Nkhoma, M.Z. Flipped classroom pedagogy: Using pre-class videos in an undergraduate business information systems management course. Educ. Train. 2019, 61, 756–774. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Gu, H.; Yang, B. The affordances of AI-enabled automatic scoring applications on learners’ continuous learning intention: An empirical study in China. Br. J. Educ. Technol. 2020, 51, 1674–1692. [Google Scholar] [CrossRef]
- Moorthy, K.; Yee, T.T.; T’ing, L.C.; Kumaran, V.V. Habit and hedonic motivation are the strongest influences in mobile learning behaviours among higher education students in Malaysia. Australas. J. Educ. Technol. 2019, 35. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Wang, C.; Ahn, H.S.; Bong, M. English language learners’ self-efficacy profiles and relationship with self-regulated learning strategies. Learn. Individ. Differ. 2015, 38, 136–142. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. A Bayesian analysis of attribution processes. Psychol. Bull. 1975, 82, 261. [Google Scholar] [CrossRef]
- Bassi, M.; Steca, P.; Delle Fave, A.; Caprara, G.V. Academic self-efficacy beliefs and quality of experience in learning. J. Youth Adolesc. 2007, 36, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Shao, Z.; Liu, Q.; Liu, C. Understanding the quality factors that influence the continuance intention of students toward participation in MOOCs. Educ. Technol. Res. Dev. 2017, 65, 1195–1214. [Google Scholar] [CrossRef]
- Apuke, O.D.; Iyendo, T.O. University students’ usage of the internet resources for research and learning: Forms of access and perceptions of utility. Heliyon 2018, 4, e01052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.S.-Y.; Lin, Y.-C. Speak to your heart: The joint moderating effects of language proficiencies on cultural intelligence and expatriates’ work performance. Corp. Manag. Rev. 2019, 39, 119–154. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998; Volume 5. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory 3E; Tata McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P. Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. Int. J. Inf. Manag. 2017, 37, 99–110. [Google Scholar] [CrossRef]
Variable | Value Label | Value | Frequency | Valid Percent |
---|---|---|---|---|
Gender | Male | 1 | 264 | 68.57 |
Female | 2 | 121 | 31.43 | |
Total | 385 | 100.0 | ||
Major | Science | 1 | 74 | 19.22 |
Engineering | 2 | 275 | 71.43 | |
Economics/Management | 3 | 17 | 4.42 | |
Liberal Arts | 4 | 12 | 3.12 | |
Languages | 5 | 3 | 0.78 | |
Others | 6 | 4 | 1.04 | |
Total | 385 | 100.0 | ||
Grade | Freshman | 1 | 20 | 5.19 |
Sophomore | 2 | 100 | 25.97 | |
Junior | 3 | 141 | 36.62 | |
Senior | 4 | 113 | 29.35 | |
Others | 5 | 11 | 2.86 | |
Total | 385 | 100.0 |
Construct | Item | Significance of Estimated Parameters | Item Reliability | Construct Reliability | Convergence Validity | ||||
---|---|---|---|---|---|---|---|---|---|
Unstd. | S.E. | Unstd./S.E. | p-Value | Std. | SMC | CR | AVE | ||
HM | HM1 | 1.000 | 0.875 | 0.766 | 0.968 | 0.860 | |||
HM2 | 1.137 | 0.040 | 28.528 | 0.000 | 0.931 | 0.867 | |||
HM3 | 1.177 | 0.039 | 29.997 | 0.000 | 0.951 | 0.904 | |||
HM4 | 1.172 | 0.040 | 29.395 | 0.000 | 0.947 | 0.897 | |||
HM5 | 1.178 | 0.042 | 28.191 | 0.000 | 0.931 | 0.867 | |||
QoE | QE1 | 1.000 | 0.728 | 0.530 | 0.882 | 0.557 | |||
QE2 | 1.168 | 0.076 | 15.319 | 0.000 | 0.793 | 0.629 | |||
QE3 | 1.262 | 0.085 | 14.857 | 0.000 | 0.786 | 0.618 | |||
QE4 | 1.041 | 0.084 | 12.324 | 0.000 | 0.667 | 0.445 | |||
QE5 | 1.214 | 0.094 | 12.907 | 0.000 | 0.737 | 0.543 | |||
QE6 | 1.181 | 0.088 | 13.393 | 0.000 | 0.758 | 0.575 | |||
ECL | ECL1 | 1.000 | 0.837 | 0.701 | 0.928 | 0.764 | |||
ECL2 | 1.011 | 0.051 | 19.950 | 0.000 | 0.824 | 0.679 | |||
ECL3 | 1.037 | 0.045 | 22.802 | 0.000 | 0.894 | 0.799 | |||
ECL4 | 1.117 | 0.046 | 24.259 | 0.000 | 0.937 | 0.878 |
Construct | Item | Significance of Estimated Parameters | Item Reliability | Construct Reliability | Convergence Validity | ||||
---|---|---|---|---|---|---|---|---|---|
Unstd. | S.E. | Unstd./S.E. | p-Value | Std. | SMC | CR | AVE | ||
MCQ | MCQ1 | 1.000 | 0.764 | 0.584 | 0.759 | 0.515 | |||
MCQ2 | 0.757 | 0.072 | 10.522 | 0.000 | 0.620 | 0.384 | |||
MCQ3 | 1.008 | 0.083 | 12.193 | 0.000 | 0.759 | 0.576 | |||
CCQ | CCQ6 | 1.000 | 0.642 | 0.412 | 0.870 | 0.575 | |||
CCQ7 | 1.113 | 0.091 | 12.203 | 0.000 | 0.730 | 0.533 | |||
CCQ8 | 1.323 | 0.105 | 12.547 | 0.000 | 0.774 | 0.599 | |||
CCQ9 | 1.395 | 0.111 | 12.600 | 0.000 | 0.801 | 0.642 | |||
CCQ10 | 1.430 | 0.111 | 12.899 | 0.000 | 0.830 | 0.689 | |||
OCQ | OCQ11 | 1.000 | 0.647 | 0.419 | 0.845 | 0.522 | |||
OCQ12 | 1.350 | 0.110 | 12.310 | 0.000 | 0.771 | 0.594 | |||
OCQ13 | 1.073 | 0.090 | 11.982 | 0.000 | 0.725 | 0.526 | |||
OCQ14 | 1.400 | 0.114 | 12.278 | 0.000 | 0.762 | 0.581 | |||
OCQ15 | 1.138 | 0.099 | 11.512 | 0.000 | 0.702 | 0.493 | |||
BCQ | BCQ16 | 1.000 | 0.699 | 0.489 | 0.771 | 0.457 | |||
BCQ18 | 0.802 | 0.069 | 11.606 | 0.000 | 0.706 | 0.498 | |||
BCQ19 | 0.889 | 0.083 | 10.737 | 0.000 | 0.665 | 0.442 | |||
BCQ20 | 0.869 | 0.086 | 10.155 | 0.000 | 0.630 | 0.397 | |||
ESEL | ESEL1 | 1.000 | 0.900 | 0.810 | 0.908 | 0.768 | |||
ESEL2 | 0.926 | 0.041 | 22.475 | 0.000 | 0.845 | 0.714 | |||
ESEL3 | 1.021 | 0.042 | 24.600 | 0.000 | 0.883 | 0.780 | |||
ESES | ESES4 | 1.000 | 0.819 | 0.671 | 0.860 | 0.672 | |||
ESES5 | 0.972 | 0.052 | 18.551 | 0.000 | 0.840 | 0.706 | |||
ESES6 | 1.101 | 0.066 | 16.644 | 0.000 | 0.799 | 0.638 | |||
ESER | ESER7 | 1.000 | 0.807 | 0.651 | 0.859 | 0.671 | |||
ESER8 | 1.130 | 0.061 | 18.624 | 0.000 | 0.874 | 0.764 | |||
ESER9 | 0.935 | 0.058 | 15.999 | 0.000 | 0.773 | 0.598 | |||
ESEW | ESEW10 | 1.000 | 0.783 | 0.613 | 0.836 | 0.631 | |||
ESEW11 | 0.907 | 0.052 | 17.286 | 0.000 | 0.845 | 0.714 | |||
ESEW12 | 0.912 | 0.061 | 14.963 | 0.000 | 0.752 | 0.566 | |||
CQ | MCQ | 1.000 | 0.649 | 0.421 | 0.851 | 0.593 | |||
CCQ | 1.205 | 0.151 | 8.002 | 0.000 | 0.808 | 0.653 | |||
OCQ | 1.352 | 0.164 | 8.248 | 0.000 | 0.852 | 0.726 | |||
BCQ | 1.213 | 0.151 | 8.012 | 0.000 | 0.766 | 0.587 | |||
ESE | ESEL | 1.000 | 0.742 | 0.551 | 0.905 | 0.706 | |||
ESES | 0.909 | 0.073 | 12.491 | 0.000 | 0.852 | 0.726 | |||
ESER | 0.891 | 0.074 | 12.072 | 0.000 | 0.845 | 0.714 | |||
ESEW | 1.165 | 0.094 | 12.336 | 0.000 | 0.917 | 0.841 |
Construct | Model | χ2 | DF | Δχ2 | ΔDF | p-Value | Target Coefficient |
---|---|---|---|---|---|---|---|
CQ | First order | 353.771 | 113 | 8.231 | 2 | 0.016 | 0.977 |
Second-order | 362.002 | 115 | |||||
ESE | First order | 161.225 | 48 | 16.902 | 2 | 0.000 | 0.905 |
Second-order | 178.127 | 50 |
AVE | HM | QE | ECL | CQ | ESE | |
---|---|---|---|---|---|---|
HM | 0.860 | 0.927 | ||||
QE | 0.557 | 0.642 | 0.746 | |||
ECL | 0.764 | 0.463 | 0.721 | 0.874 | ||
CQ | 0.593 | 0.628 | 0.579 | 0.417 | 0.770 | |
ESE | 0.706 | 0.554 | 0.557 | 0.401 | 0.633 | 0.84 |
Model Fit | Criteria | Model Fit of the Research Model |
---|---|---|
ML χ2 | The small the better | 2177.135 |
DF | The large the better | 887.000 |
Normed Chi-sqr (χ2/DF) | 1 < χ2/DF < 3 | 2.454 |
RMSEA | <0.08 | 0.061 |
SRMR | <0.08 | 0.064 |
TLI (NNFI) | >0.9 | 0.889 |
CFI | >0.9 | 0.896 |
GFI | >0.9 | 0.837 |
AGFI | >0.9 | 0.827 |
DV | IV | Unstd. | S.E. | Unstd./S.E. | p-Value | Std. | R2 |
---|---|---|---|---|---|---|---|
QoE | HM | 0.301 | 0.048 | 6.319 | 0.000 | 0.405 | 0.488 |
CQ | 0.277 | 0.111 | 2.500 | 0.012 | 0.190 | ||
ESE | 0.189 | 0.060 | 3.158 | 0.002 | 0.213 | ||
ECL | QE | 0.829 | 0.068 | 12.172 | 0.000 | 0.721 | 0.519 |
Effect | Point Estimate | Product of Coefficients | Bootstrap 1000 Times | |||
---|---|---|---|---|---|---|
Bias-Corrected 95% | ||||||
S.E. | Z-Value | p-Value | Lower Bound | Upper Bound | ||
Total indirect effect | ||||||
HM→QoE→ECL | 0.249 | 0.071 | 3.503 | 0.000 | 0.124 | 0.403 |
Total indirect effect | ||||||
CQ→QoE→ECL | 0.230 | 0.115 | 2.001 | 0.045 | 0.006 | 0.458 |
Total indirect effect | ||||||
ESE→QoE→ECL | 0.157 | 0.066 | 2.383 | 0.017 | 0.039 | 0.300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.-L. The Impact of Quality of Experience of Chinese College Students on Internet-Based Resources English Learning. Future Internet 2021, 13, 162. https://doi.org/10.3390/fi13070162
Gao H-L. The Impact of Quality of Experience of Chinese College Students on Internet-Based Resources English Learning. Future Internet. 2021; 13(7):162. https://doi.org/10.3390/fi13070162
Chicago/Turabian StyleGao, Hui-Li. 2021. "The Impact of Quality of Experience of Chinese College Students on Internet-Based Resources English Learning" Future Internet 13, no. 7: 162. https://doi.org/10.3390/fi13070162
APA StyleGao, H. -L. (2021). The Impact of Quality of Experience of Chinese College Students on Internet-Based Resources English Learning. Future Internet, 13(7), 162. https://doi.org/10.3390/fi13070162