Next Article in Journal
Dynamic Lognormal Shadowing Framework for the Performance Evaluation of Next Generation Cellular Systems
Next Article in Special Issue
Convolutional Two-Stream Network Using Multi-Facial Feature Fusion for Driver Fatigue Detection
Previous Article in Journal
Analysis of the Structure and Use of Digital Resources on the Websites of the Main Football Clubs in Europe
Open AccessArticle

Combining Facial Expressions and Electroencephalography to Enhance Emotion Recognition

School of Software, South China Normal University, Guangzhou 510641, China
Author to whom correspondence should be addressed.
Future Internet 2019, 11(5), 105;
Received: 28 February 2019 / Revised: 10 April 2019 / Accepted: 16 April 2019 / Published: 2 May 2019
(This article belongs to the Special Issue Special Issue on the Future of Intelligent Human-Computer Interface)
Emotion recognition plays an essential role in human–computer interaction. Previous studies have investigated the use of facial expression and electroencephalogram (EEG) signals from single modal for emotion recognition separately, but few have paid attention to a fusion between them. In this paper, we adopted a multimodal emotion recognition framework by combining facial expression and EEG, based on a valence-arousal emotional model. For facial expression detection, we followed a transfer learning approach for multi-task convolutional neural network (CNN) architectures to detect the state of valence and arousal. For EEG detection, two learning targets (valence and arousal) were detected by different support vector machine (SVM) classifiers, separately. Finally, two decision-level fusion methods based on the enumerate weight rule or an adaptive boosting technique were used to combine facial expression and EEG. In the experiment, the subjects were instructed to watch clips designed to elicit an emotional response and then reported their emotional state. We used two emotion datasets—a Database for Emotion Analysis using Physiological Signals (DEAP) and MAHNOB-human computer interface (MAHNOB-HCI)—to evaluate our method. In addition, we also performed an online experiment to make our method more robust. We experimentally demonstrated that our method produces state-of-the-art results in terms of binary valence/arousal classification, based on DEAP and MAHNOB-HCI data sets. Besides this, for the online experiment, we achieved 69.75% accuracy for the valence space and 70.00% accuracy for the arousal space after fusion, each of which has surpassed the highest performing single modality (69.28% for the valence space and 64.00% for the arousal space). The results suggest that the combination of facial expressions and EEG information for emotion recognition compensates for their defects as single information sources. The novelty of this work is as follows. To begin with, we combined facial expression and EEG to improve the performance of emotion recognition. Furthermore, we used transfer learning techniques to tackle the problem of lacking data and achieve higher accuracy for facial expression. Finally, in addition to implementing the widely used fusion method based on enumerating different weights between two models, we also explored a novel fusion method, applying boosting technique. View Full-Text
Keywords: emotion recognition; EEG; facial expressions; decision-level fusion; transfer learning emotion recognition; EEG; facial expressions; decision-level fusion; transfer learning
Show Figures

Figure 1

MDPI and ACS Style

Huang, Y.; Yang, J.; Liu, S.; Pan, J. Combining Facial Expressions and Electroencephalography to Enhance Emotion Recognition. Future Internet 2019, 11, 105.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop