An Explorative Model to Assess Individuals’ Phubbing Risk
Abstract
:1. Introduction
2. Aims of the Study
3. Sampling and Participants
4. Methods and Procedures
- Communication disturbances (5 items; = 0.87): high scores indicate that the person often disturbs the communication using the smartphone in a face-to-face environment. Examples of this factor’s items are: “My eyes go to the phone when I’m together with others” and “I’m dealing with my mobile phone when I’m with my friends”.
- Phone Obsession (5 items; = 0.85): high scores indicate that the person feels the constant need of his/her smartphone in an environment where there’s a lack of a face-to-face communications. Examples of this factor’s items are: “My phone is always within my reach” and “When I wake up in the morning, I first check my messages on my phone”.
5. Data Analysis
6. Results
6.1. Descriptive Statistics
6.2. Result 1: Univariate Operative
6.2.1. Phubbing Univariate Predictors: Psychological and Sociodemographical Effects
6.2.2. Phubbing Univariate Predictors: ICT and Social Media Effects
6.2.3. Phubbing Multivariate Modeling
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ling, R. The Mobile Connection: The Cell Phone’s Impact on Society; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Krasnova, H.; Abramova, O.; Notter, I.; Baumann, A. Why Phubbing Is Toxic for your Relationship: Understanding the Role of Smartphone Jealousy among “Generation y” Users; Research Paper 109; ECIS: Istanbul, Turkey, 2016. [Google Scholar]
- Mieczakowski, A.; Goldhaber, T.; Clarkson, P. Culture, Communication and Change: Summary of an Investigation of the Use and Impact of Modern Media and Technology in Our Lives; Technical Report; Cambridge Engineering Design Centre: Cambridge, UK, 2011. [Google Scholar]
- Moon, J.; Pu, J.; Lawrence, G. The role of virtual social identity through blog use in social life. In Proceedings of the AMCIS 2006 Proceedinds, Acapulco, Mexico, 4–6 August 2006. [Google Scholar]
- Kuss, D.J.; Griffiths, M.D. Online social networking and addiction—A review of the psychological literature. Int. J. Environ. Res. Public Health 2011, 8, 3528–3552. [Google Scholar] [CrossRef] [PubMed]
- Wickersham, A.; Salehi, H.; Pennathur, P.; Linson, E.; Kamath, A. Smartphones in the Improvement of Inter-Professional Communication. J. Hosp. Med. 2015, 10, 459–461. [Google Scholar]
- White, J.; Thompson, C.; Turner, H.; Dougherty, B.; Schmidt, D.C. Wreckwatch: Automatic traffic accident detection and notification with smartphones. Mob. Netw. Appl. 2011, 16, 285. [Google Scholar] [CrossRef]
- Baron, N.S.; Campbell, E.M. Gender and mobile phones in cross-national context. Lang. Sci. 2012, 34, 13–27. [Google Scholar] [CrossRef]
- Campbell, S.W.; Kwak, N. Mobile communication and civic life: Linking patterns of use to civic and political engagement. J. Commun. 2010, 60, 536–555. [Google Scholar] [CrossRef]
- Lee, Y.K.; Chang, C.T.; Lin, Y.; Cheng, Z.H. The dark side of smartphone usage: Psychological traits, compulsive behavior and technostress. Comput. Hum. Behav. 2014, 31, 373–383. [Google Scholar] [CrossRef]
- Chotpitayasunondh, V.; Douglas, K.M. How “phubbing” becomes the norm: The antecedents and consequences of snubbing via smartphone. Comput. Hum. Behav. 2016, 63, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Karadağ, E.; Tosuntaş, Ş.B.; Erzen, E.; Duru, P.; Bostan, N.; Şahin, B.M.; Çulha, İ.; Babadağ, B. Determinants of phubbing, which is the sum of many virtual addictions: A structural equation model. J. Behav. Addict. 2015, 4, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Balta, S.; Emirtekin, E.; Kircaburun, K.; Griffiths, M.D. Neuroticism, Trait Fear of Missing Out, and Phubbing: The Mediating Role of State Fear of Missing Out and Problematic Instagram Use. Int. J. Ment. Health Addict. 2018, 1–12. [Google Scholar] [CrossRef]
- Davey, S.; Davey, A.; Raghav, S.K.; Singh, J.V.; Singh, N.; Blachnio, A.; Przepiórkaa, A. Predictors and consequences of “Phubbing” among adolescents and youth in India: An impact evaluation study. J. Family Community Med. 2018, 25, 35. [Google Scholar]
- Roberts, J.A.; David, M.E. My life has become a major distraction from my cell phone: Partner phubbing and relationship satisfaction among romantic partners. Comput. Hum. Behav. 2016, 54, 134–141. [Google Scholar] [CrossRef]
- Geser, H. Sociology of the Mobile Phone; Unpublished; University of Zurich: Zurich, Switzerland, 2002. [Google Scholar]
- Roberts, J.; Yaya, L.; Manolis, C. The invisible addiction: Cell-phone activities and addiction among male and female college students. J. Behav. Addict. 2014, 3, 254–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beranuy, M.; Oberst, U.; Carbonell, X.; Chamarro, A. Problematic Internet and mobile phone use and clinical symptoms in college students: The role of emotional intelligence. Comput. Hum. Behav. 2009, 25, 1182–1187. [Google Scholar] [CrossRef]
- Park, B.W.; Ahn, J.H. Policy analysis for online game addiction problems. Syst. Dyn. Rev. 2010, 26, 117–138. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy conception of anxiety. Anxiety Res. 1988, 1, 77–98. [Google Scholar] [CrossRef]
- McCown, W.G.; Chamberlain, L.L. Best Possible Odds: Contemporary Treatment Strategies for Gambling Disorders; John Wiley & Sons Inc.: New York, NY, USA, 2000. [Google Scholar]
- Zinbarg, R.E.; Mineka, S.; Craske, M.G.; Griffith, J.W.; Sutton, J.; Rose, R.D.; Nazarian, M.; Mor, N.; Waters, A.M. The Northwestern-UCLA youth emotion project: Associations of cognitive vulnerabilities, neuroticism and gender with past diagnoses of emotional disorders in adolescents. Behav. Res. Ther. 2010, 48, 347–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, Z.; Williams, G.A.; Griffiths, M.D. An exploratory study of the association between online gaming addiction and enjoyment motivations for playing massively multiplayer online role-playing games. Comput. Hum. Behav. 2015, 50, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Mehroof, M.; Griffiths, M.D. Online gaming addiction: the role of sensation seeking, self-control, neuroticism, aggression, state anxiety, and trait anxiety. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Vosecky, J.; Hong, D.; Shen, V.Y. User identification across multiple social networks. In Proceedings of the 2009 First International Conference on Networked Digital Technologies, Ostrava, Czech Republic, 28–31 July 2009; pp. 360–365. [Google Scholar]
- Bullingham, L.; Vasconcelos, A.C. ‘The presentation of self in the online world’: Goffman and the study of online identities. J. Inf. Sci. 2013, 39, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Rand, D.G.; Brescoll, V.L.; Everett, J.A.; Capraro, V.; Barcelo, H. Social heuristics and social roles: Intuition favors altruism for women but not for men. J. Exp. Psychol. Gen. 2016, 145, 389. [Google Scholar] [CrossRef] [PubMed]
- Brañas-Garza, P.; Capraro, V.; Ramírez, E.R. Gender differences in altruism on Mechanical Turk: Expectations and actual behaviour. Econ. Lett. 2018, 170, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Guazzini, A.; Capelli, A.; Meringolo, P. Towards a Multidimensional Model for Phubbing. In Proceedings of the IV International Scientific Forum; Southern Federal University Press: Rostov, Russia, 2018; pp. 188–197. [Google Scholar]
- Tourangeau, R. Survey research and societal change. Annu. Rev. Psychol. 2004, 55, 775–801. [Google Scholar] [CrossRef] [PubMed]
- Chiorri, C.; Bracco, F.; Piccinno, T.; Modafferi, C.; Battini, V. Psychometric properties of a revised version of the ten item personality inventory. Eur. J. Psychol. Assess. 2015, 31, 109–119. [Google Scholar] [CrossRef]
- Gosling, S.D.; Rentfrow, P.J.; Swann, W.B. A very brief measure of the Big-Five personality domains. J. Res. Pers. 2003, 37, 504–528. [Google Scholar] [CrossRef] [Green Version]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.E. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1970. [Google Scholar]
- Spielberger, C.D.; Pedrabissi, L.; Santinello, M. Inventario per l’ansia di stato e di tratto: nuova versione italiana dello S.T.A.I., forma Y: manuale; Organizzazioni Speciali: Firenze, Italy, 1989; p. 44. ISBN 978-88-09-40023-8. [Google Scholar]
- Jerusalem, M.; Schwarzer, R. Self-efficacy as a resource factor in stress appraisal processes. In Self-Efficacy Thought Control Action; Taylor & Francis: Abingdon-on-Thames, UK, 1992; pp. 195–213. [Google Scholar]
- Sibilia, L.; Schwarzer, R.; Jerusalem, M. Italian Adaptation of the General Self-Efficacy Scale. Available online: http://userpage.fu-berlin.de/health/italian.htm (accessed on 25 December 2018).
- Rosenberg, M. Rosenberg self-esteem scale (RSE). Accept. Commit. Ther. Meas. Package 1965, 61, 52. [Google Scholar]
- Blanchard, A.L. Developing a sense of virtual community measure. Cyber Psychol. Behav. 2007, 10, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.M.; Betz, N.E. Development and validation of a scale of perceived social self-efficacy. J. Career Assess. 2000, 8, 283–301. [Google Scholar] [CrossRef]
- Mattick, R.P.; Clarke, J.C. Development and validation of measures of social phobia scrutiny fear and social interaction anxiety. Behav. Res. Ther. 1998, 36, 455–470. [Google Scholar] [CrossRef]
- Field, A. Analysis of variance (ANOVA). In Encyclopedia of Measurement and Statistics; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2007; pp. 33–36. [Google Scholar]
- Oulasvirta, A.; Rattenbury, T.; Ma, L.; Raita, E. Habits make smartphone use more pervasive. Pers. Ubiquitous Comput. 2012, 16, 105–114. [Google Scholar] [CrossRef]
- Park, S.; Burford, S. A longitudinal study on the uses of mobile tablet devices and changes in digital media literacy of young adults. Educ. Media Int. 2013, 50, 266–280. [Google Scholar] [CrossRef]
- Prensky, M. Digital natives, digital immigrants part 1. On Horizon 2001, 9, 1–6. [Google Scholar] [CrossRef]
- Barker, V. Older adolescents’ motivations for social network site use: The influence of gender, group identity, and collective self-esteem. Cyberpsychol. Behav. 2009, 12, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Chun, H.; Lee, H. Determining the factors that influence college students’ adoption of smartphones. J. Assoc. Inf. Sci. Technol. 2014, 65, 578–588. [Google Scholar] [CrossRef]
- Berenguer, A.; Goncalves, J.; Hosio, S.; Ferreira, D.; Anagnostopoulos, T.; Kostakos, V. Are Smartphones Ubiquitous?: An in-depth survey of smartphone adoption by seniors. IEEE Consum. Electr. Mag. 2017, 6, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Scragg, R.; Laugesen, M.; Robinson, E. Parental smoking and related behaviours influence adolescent tobacco smoking: Results from the 2001 New Zealand national survey of 4th form students. N. Z. Med. J. 2003, 116, 1187. [Google Scholar]
- Bicchieri, C.; Xiao, E. Do the right thing: But only if others do so. J. Behav. Decis. Mak. 2009, 22, 191–208. [Google Scholar] [CrossRef]
- Caplan, G. Principles of Preventive Psychiatry; Basic Books: New York, NY, USA, 1964; Available online: https://www.questia.com/library/100819079/principles-of-preventive-psychiatry (accessed on 25 December 2018).
- Pielot, M.; Church, K.; De Oliveira, R. An In-Situ Study of Mobile Phone Notifications; ACM: New York, NY, USA, 2014; pp. 233–242. [Google Scholar]
- Mark, G.; Voida, S.; Cardello, A. A Pace not Dictated by Electrons: An Empirical Study of Work without Email; ACM: New York, NY, USA, 2012; pp. 555–564. [Google Scholar]
- Persico, V.; Pescapé, A.; Picariello, A.; Sperlí, G. Benchmarking big data architectures for social networks data processing using public cloud platforms. Future Gener. Comput. Syst. 2018, 89, 98–109. [Google Scholar] [CrossRef]
- Amato, F.; Moscato, V.; Picariello, A.; Piccialli, F.; Sperlí, G. Centrality in heterogeneous social networks for lurkers detection: An approach based on hypergraphs. Concurr. Comput. Pract. Exp. 2018, 30, e4188. [Google Scholar] [CrossRef]
Descriptive Statistics | ||||
---|---|---|---|---|
Psychological Dimensions | ||||
Variable | Average (SE) | Std. Dev. | Skewness | Kurtosis |
Neuroticism | ||||
Trait Anxiety (STAI) | ||||
Sense of Virtual Community (SVC) | ||||
General Self Efficacy (GSE) | ||||
Social Anxiety (SIAS) | ||||
Digital Life Dimensions | ||||
Variable | Average (SE) | Std. Dev. | Skewness | Kurtosis |
Mobile Phone Usage Scale | ||||
SMS Usage Scale | ||||
Games Usage Scale | ||||
Social Media Usage Scale | ||||
Internet Usage Scale | ||||
ICT Usage frequency | ||||
Number of ICT Services owned | ||||
ICT Social Pervasiveness | ||||
Number of SNSs | ||||
SNSs daily accesses | ||||
SNSs daily duration of connections | ||||
Number of Activities on SNSs | ||||
Number of Topics on SNSs | ||||
Frequency of contacts on SNSs |
Operative Descriptive Statistics | |||||
---|---|---|---|---|---|
Variable | Score (SE) | Average | Std. Dev. | Skewness | Kurtosis |
Personal Phubbing Scale (PePS) | |||||
PePS Factor: Communication Disturbances | |||||
PePS Factor: Phone Obsession | |||||
Partner Phubbing Scale (PaPS) |
Observable | Social Anxiety | STAI (Trait) | General Self Efficacy | Neuroticism | Age |
---|---|---|---|---|---|
Phubbing Factor: Communication disturbance | 0.282 *** | 0.281 *** | *** | 0.233 *** | *** |
Phubbing Factor: Phone obsession | 0.160 *** | 0.157 *** | * | 0.214 *** | *** |
Personal Phubbing (Total) | 0.246 *** | 0.244 *** | *** | 0.252 *** | *** |
Partner Phubbing | ns | 0.151 ** | ns | ns | ns |
Observable | Phubbing Factor 1 | Phubbing Factor 2 | Total Phubbing | Partner Phubbing |
---|---|---|---|---|
Mobile Phone Usage | *** | *** | *** | *** |
SMS Usage/Addiction | *** | *** | *** | *** |
Games Usage/Addiction | *** | ** | *** | *** |
Social Media Usage/Addiction | *** | *** | *** | *** |
Internet Usage/Addiction | *** | *** | *** | *** |
MANCOVA General Model (: ) | ||||||
---|---|---|---|---|---|---|
Factor | Wilks’ | F | Power () | |||
ICT Pervasitvity | 0.969 | *** | 0.857 | |||
Number of SNSs | 0.969 | *** | 0.859 | |||
SMS usage | 0.946 | *** | 0.985 | |||
Social media usage | 0.928 | *** | 0.998 | |||
Internet usage | 0.941 | *** | 0.991 | |||
Neuroticism | 0.977 | ** | 0.737 | |||
STAI (Trait) | 0.969 | *** | 0.857 | |||
Virtual Sense of Community | 0.977 | ** | 0.732 | |||
Principal effects and Parameters | ||||||
Parameter | Phubbing Factor | F(Df) | Studentt | Power () | ||
ICT Pervasivity | Phubbing | *** | 0.307 | *** | 0.865 | |
Phubbing | * | 0.266 | * | 0.656 | ||
Number of SNSs | Phubbing | * | −0.210 | * | 0.496 | |
Phubbing | ns | - | - | - | - | |
SMS usage addiction | Phubbing | *** | 0.116 | *** | 0.778 | |
Phubbing | *** | 0.207 | *** | 0.991 | ||
Social Media usage addiction | Phubbing | *** | 0.106 | *** | 0.991 | |
Phubbing | *** | 0.118 | *** | 0.989 | ||
Internet usage addiction | Phubbing | *** | 0.158 | *** | 0.994 | |
Phubbing | *** | 0.114 | *** | 0.819 | ||
Neuroticism | Phubbing | ns | - | - | - | - |
Phubbing | *** | 0.263 | *** | 0.814 | ||
STAI (Trait) | Phubbing | ns | - | - | - | - |
Phubbing | *** | −0.060 | *** | 0.868 | ||
Virtual Sense of Community | Phubbing | ns | - | - | - | - |
Phubbing | *** | −0.059 | *** | 0.800 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guazzini, A.; Duradoni, M.; Capelli, A.; Meringolo, P. An Explorative Model to Assess Individuals’ Phubbing Risk. Future Internet 2019, 11, 21. https://doi.org/10.3390/fi11010021
Guazzini A, Duradoni M, Capelli A, Meringolo P. An Explorative Model to Assess Individuals’ Phubbing Risk. Future Internet. 2019; 11(1):21. https://doi.org/10.3390/fi11010021
Chicago/Turabian StyleGuazzini, Andrea, Mirko Duradoni, Ambra Capelli, and Patrizia Meringolo. 2019. "An Explorative Model to Assess Individuals’ Phubbing Risk" Future Internet 11, no. 1: 21. https://doi.org/10.3390/fi11010021