Predictive Power Management for Wind Powered Wireless Sensor Node
Abstract
:1. Introduction
2. Motivation and Related Work
2.1. MPPT Mechanism
2.2. Predictive Energy Management
2.3. Transmission Power Control
2.4. Joint Optimization Design
3. System Model
3.1. Hardware Model
3.1.1. WTG
3.1.2. MPTT Unit
3.1.3. TPC-Enabled Buck-Boost Converter
3.2. Wireless Link Model
3.3. Power Consumption Model
3.3.1. Energy Consumption of Boost Converter
3.3.2. Energy Consumption of Buck-Boost Converter
4. Predictive Power Manager for EH-WSN
4.1. Optimal Working Point
4.1.1. Step 1
4.1.2. Step 2
Algorithm 1 DC-TPC calculation |
1 BEGIN |
2 Input multiple TPC-based current, = 1,…,N, # of levels, |
3 While () Do |
4 ← GetOptimal W(, ); |
5 If ] |
6 Then |
7 Else If ( < ) = |
8 Else = |
9 Return |
10 |
11 END |
Algorithm 2 calculation algorithm |
1 BEGIN |
2 multiple TPC-based current, = 1,…,N, # of levels, |
3 : maximum number of evaluations, |
4 = 1 |
5 Initialization: Generate an initial set of 3 points (), representing the vertices of the initial simplex, in which is a vector [, ] and so forth |
6 While () Do |
7 Identify the vertices with the maximum, minimum value of the function , for the purpose of explanation, let’s assume |
8 Reflection: The highest point is then reflected to the opposite side (point ) along the line of the original simplex |
9 If |
10 Expansion: the reflected point is further extended to |
11 in the same direction according to: |
12 |
13 Go to line 18 |
14 Else if |
15 Contraction: the reflected point is further contracted to according to: |
16 |
17 Go to line 18 |
18 if |
19 Collapse: the entire simplex collapses by 50% |
20 in each dimension towards |
21 Else go to line 7 with the new simplex |
22 |
23 Else go to line 7 with the new simplex |
24 |
25 Return with which minimize |
26 END |
4.1.3. Step 3
4.2. Predictive Energy Allocation
Algorithm 3 Harvested energy classification algorithm for different weather conditions |
1 BEGIN |
2 If () |
3 {day is a Strong breeze day, update } |
4 Else if () |
5 {day is a Breeze day, update } |
6 Else |
7 {day is a Moderate breeze day, update } |
8 END |
4.3. Transmission Power Control
Algorithm 4 Energy Efficient Transmission Power Control |
1 BEGIN |
2 Input {}, , . |
3 RSSI = post-backed message from the receiver; |
4 then can be deduced from a function with RSSI; |
5 for do |
6 ; |
7 ; |
8 ; |
9 ; |
10 end for |
11 Output ; |
12 END |
5. Experimental Results
5.1. MPTT Testing
5.2. Prediction Algorithm Analysis
5.3. TPC Execution
5.4. Power Conversion Efficiency of the Whole System
5.5. Power Failure Time Detection
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shin, M.; Joe, I. Energy management algorithm for solar-powered energy harvesting wireless sensor node for Internet of Things. IET Commun. 2016, 10, 1508–1521. [Google Scholar] [CrossRef]
- Stankovic, J.A. Research directions for the internet of things. IEEE Internet Things J. 2014, 1, 3–9. [Google Scholar] [CrossRef]
- Lee, S.; Kwon, B.; Lee, S.; Bovik, A.C. BUCKET: Scheduling of Solar-Powered Sensor Networks via Cross-Layer Optimization. IEEE Sens. J. 2015, 15, 1489–1503. [Google Scholar] [CrossRef]
- Le, T.N.; Pegatoquet, A.; Berder, O.; Sentieys, O.; Carer, A. Energy-Neutral Design Framework for Supercapacitor-Based Autonomous Wireless Sensor Networks. ACM J. Emerg. Technol. Comput. Syst. 2015, 12, 19. [Google Scholar] [CrossRef]
- Erbay, C.; Carreon-Bautista, S.; Sanchez-Sinencio, E.; Han, A. High Performance Monolithic Power Management System with Dynamic Maximum Power Point Tracking for Microbial Fuel Cells. Environ. Sci. Technol. 2014, 48, 13992–13999. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.; Wu, H.; Wei, C. A low-power-consumption boost converter with maximum power tracking algorithm for indoor photovoltaic energy harvesting. In Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, Taiwan, 10–12 May 2017; pp. 1–3. [Google Scholar]
- Ongaro, F.; Saggini, S. Li-Ion Battery-Supercapacitor Hybrid Storage System for a Long Lifetime, Photovoltaic based Wireless Sensor Network. IEEE Trans. Power Electron. 2012, 27, 3944–3952. [Google Scholar] [CrossRef]
- Yang, F.; Wang, K.; Huang, Y. Energy-Neutral Communication Protocol for Very Low Power Microbial Fuel Cell Based Wireless Sensor Network. IEEE Sens. J. 2015, 15, 2306–2315. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, J.; Zhou, G.; Gu, L.; Stankovic, J.A.; He, T. ATPC: Adaptive transmission power control for wireless sensor networks. In Proceedings of the 4th ACM Conference on Embedded Networked Sensor Systems, Boulder, CO, USA, 31 October–3 November 2006; pp. 223–236. [Google Scholar]
- Hsia, K.; Hung, C.; Chang, H.T.; Lai, Y. Transmission Power Control for Wireless Sensor Network. J. Robot. Netw. Artif. Life 2017, 3, 279–282. [Google Scholar] [CrossRef]
- Mondal, S.; Paily, R. On-Chip Photovoltaic Power Harvesting System with Low-Overhead Adaptive MPPT for IoT nodes. IEEE Internet Things J. 2017, 4, 1624–1633. [Google Scholar] [CrossRef]
- Omairi, A.; Ismail, Z.H.; Danapalasingam, K.A.; Ibrahim, M. Power Harvesting in Wireless Sensor Networks and Its Adaptation with Maximum Power Point Tracking: Current Technology and Future Directions. IEEE Internet Things J. 2017, 4, 2104–2115. [Google Scholar] [CrossRef]
- Konstantopoulos, C.; Koutroulis, E.; Mitianoudis, N.; Bletsas, A. Converting a Plant to a Battery and Wireless Sensor with Scatter Radio and Ultra-Low Cost. IEEE Trans. Instrum. Meas. 2016, 65, 388–398. [Google Scholar] [CrossRef]
- Le, T.N.; Pegatoquet, A.; Berder, O.; Sentieys, O. Energy-Efficient Power Manager and MAC Protocol for Multi-Hop Wireless Sensor Networks Powered by Periodic Energy Harvesting Sources. IEEE Sens. J. 2015, 15, 7208–7220. [Google Scholar] [CrossRef]
- Aoudia, F.A.; Gautier, M.; Berder, O. Fuzzy power management for energy harvesting Wireless Sensor Nodes. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Peng, S.; Low, C.P. Prediction free energy neutral power management for energy harvesting wireless sensor nodes. Ad Hoc Netw. 2014, 13, 351–367. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, Z.; Wang, J.; Shim, B. Optimal Power Control for Transmitting Correlated Sources with Energy Harvesting Constraints. IEEE Trans. Wirel. Commun. 2018, 17, 461–476. [Google Scholar] [CrossRef]
- Kody, A.; Scruggs, J. Optimal packet scheduling for a piezoelectric energy harvesting node. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, 12–15 December 2017; pp. 133–138. [Google Scholar]
- Biason, A.; Zorzi, M. Joint Transmission and Energy Transfer Policies for Energy Harvesting Devices with Finite Batteries. IEEE J. Sel. Areas Commun. 2015, 33, 2626–2640. [Google Scholar] [CrossRef]
- Ulukus, S.; Yener, A.; Erkip, E.; Simeone, O.; Zorzi, M.; Grover, P.; Huang, K. Energy Harvesting Wireless Communications: A Review of Recent Advances. IEEE J. Sel. Areas Commun. 2015, 33, 360–381. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, C.; Sheng, Z.; Kamalinejad, P.; Leung, V.C.M.; Mirabbasi, S. Optimal Power Control in Green Wireless Sensor Networks With Wireless Energy Harvesting, Wake-Up Radio and Transmission Control. IEEE Access 2017, 5, 501–518. [Google Scholar] [CrossRef] [Green Version]
- Castagnetti, A.; Pegatoquet, A.; Le, T.N.; Auguin, M. A Joint Duty-Cycle and Transmission Power Management for Energy Harvesting WSN. IEEE Trans. Ind. Inform. 2014, 10, 928–936. [Google Scholar] [CrossRef]
- Basagni, S.; di Valerio, V.; Koutsandria, G.; Petrioli, C.; Spenza, D. WHARP: A Wake-Up Radio and Harvesting-Based Forwarding Strategy for Green Wireless Networks. In Proceedings of the 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, USA, 22–25 October 2017; pp. 257–265. [Google Scholar]
- Porcarelli, D.; Spenza, D.; Brunelli, D.; Cammarano, A.; Petrioli, C.; Benini, L. Adaptive Rectifier Driven by Power Intake Predictors for Wind Energy Harvesting Sensor Networks. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 471–482. [Google Scholar] [CrossRef]
- Tan, Y.K.; Panda, S.K. Self-Autonomous Wireless Sensor Nodes with Wind Energy Harvesting for Remote Sensing of Wind-Driven Wildfire Spread. IEEE Trans. Instrum. Meas. 2011, 60, 1367–1377. [Google Scholar] [CrossRef]
- Lee, Y.; Blaauw, D.; Sylvester, D. Ultralow Power Circuit Design for Wireless Sensor Nodes for Structural Health Monitoring. Proc. IEEE 2016, 104, 1529–1546. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, W. Efficient power management for wireless sensor node with wind energy harvesting. Int. J. Sens. Netw. 2012, 12, 223–231. [Google Scholar] [CrossRef]
- Jörke, P.; Böcker, S.; Liedmann, F.; Wietfeld, C. Urban channel models for smart city IoT-networks based on empirical measurements of LoRa-links at 433 and 868 MHz. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar]
- Lee, W.; Schubert, M.J.W.; Ooi, B.; Ho, S.J. Multi-Source Energy Harvesting and Storage for Floating Wireless Sensor Network Nodes With Long Range Communication Capability. IEEE Trans. Ind. Appl. 2018, 54, 2606–26015. [Google Scholar] [CrossRef]
- Kazimierczuk, M.K. Pulse-Width Modulated DC-DC Power Converters, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2016. [Google Scholar]
- Choi, Y.; Chang, N.; Kim, T. DC–DC converter-aware power management for low-power embedded systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2007, 26, 1367–1381. [Google Scholar] [CrossRef]
- Kansal, A.; Hsu, J.; Zahedi, S.; Srivastava, M.B. Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 2007, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Wang, X. Energy Allocation and Utilization for Wirelessly Powered IoT Networks. IEEE Internet Things J. 2018, 5, 2781–2792. [Google Scholar] [CrossRef]
- Espressif Systems. ESP8266 Datasheet. 2018. Available online: https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf (accessed on 3 September 2018).
- Semtech Corporation. SX1278 Datasheet. 2016. Available online: https://www.semtech.com/uploads/documents/DS_SX1276-7-8-9_W_APP_V5.pdf (accessed on 3 September 2018).
- Piorno, J.R.; Bergonzini, C.; Atienza, D.; Rosing, T.S. Prediction and management in energy harvested wireless sensor nodes. In Proceedings of the 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronics Systems Technology, Aalborg, Denmark, 17–20 May 2009; pp. 6–10. [Google Scholar]
- Wu, Y.; Li, B.; Zhu, Y.; Liu, W. Energy-Neutral Communication Protocol for Living-Tree Bioenergy-Powered Wireless Sensor Network. Mob. Inf. Syst. 2018, 2018, 5294026. [Google Scholar] [CrossRef]
- Ju, Q.; Zhang, Y. Predictive Power Management for Internet of Battery-Less Things. IEEE Trans. Power Electron. 2018, 33, 299–312. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Cin | 220 uF |
NMOS1/2 | Si1563EDH |
L1 | 220 uH |
Supercapacitor | 2 F, 5.5 V |
D1/2 | IN5819 |
L2 | 15 uH |
Cout | 47 uF |
PWM generator | LTC6906 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Li, B.; Zhang, F. Predictive Power Management for Wind Powered Wireless Sensor Node. Future Internet 2018, 10, 85. https://doi.org/10.3390/fi10090085
Wu Y, Li B, Zhang F. Predictive Power Management for Wind Powered Wireless Sensor Node. Future Internet. 2018; 10(9):85. https://doi.org/10.3390/fi10090085
Chicago/Turabian StyleWu, Yin, Bowen Li, and Fuquan Zhang. 2018. "Predictive Power Management for Wind Powered Wireless Sensor Node" Future Internet 10, no. 9: 85. https://doi.org/10.3390/fi10090085
APA StyleWu, Y., Li, B., & Zhang, F. (2018). Predictive Power Management for Wind Powered Wireless Sensor Node. Future Internet, 10(9), 85. https://doi.org/10.3390/fi10090085