Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions
Abstract
:1. Introduction
2. Results
2.1. Overview of Expression Profiles under Differentiation Conditions
Number of probe sets | Number of valid probe sets | Number of unique genes | Number of genes signal detected | Number of genes signal not detected | |
---|---|---|---|---|---|
Total | 23,863 * | 7908 | 6339 | ND | ND |
ABC | 35 | 21 | 21 | 13 | 8 |
SLC | 157 | 106 | 83 | 36 | 47 |
CYP | 37 | 18 | 14 | 2 | 12 |
Culture condition comparison | No. (%) of probe sets that changed significantly * | Genes up-regulated | Genes down-regulated |
---|---|---|---|
3d-T vs. 3d-P | 1565 (28.2%) | 761 | 804 |
5d-T vs. 3d-T | 232 (4.2%) | 124 | 108 |
7d-T vs. 5d-T | 22 (0.4%) | 17 | 5 |
9d-T vs. 7d-T | 22 (0.4%) | 18 | 4 |
2.2. Expression of Drug and Nutrient Absorption Related Genes during Cell Culture on the Transwell® Membranes
2.2.1. ATP-Binding Cassette (ABC) Transporter Family Members Expression
2.2.2. Solute Carrier (SLC) Transporter Family Members Expression
Gene symbol | Synonym (RefSeq ID) | Function | 3d-T/3d-P | 5d-T/3d-T | 7d-T/5d-T | 9d-T/7d-T |
---|---|---|---|---|---|---|
ABCA5 | (XM_537573) | Unknown | * 4.0 | * −1.5 | 1.2 | 1.3 |
ABCB2 | TAP1, RING4, ABC17, APT1, (XM_532101) | half-abc transporter, peptide transporter | * −2.3 | * 1.6 | 1.1 | 1.2 |
ABCB3 | TAP2, RING11, (XM_532099) | half-abc transporter, peptide transporter | * −1.7 | 1.2 | 1.1 | −1.2 |
ABCB4 | MDR-3, PGP3 (XM_539403) | biliary phosphatidylcholine secretion from hepatocytes | * −2.0 | 1.2 | −1.3 | −1.3 |
ABCC2 | MRP2, CMOAT (NM_001003081) | efflux pump for drugs, anionic conjugates with glutathione, sulfate, or glucuronosyl | * Transwell®s only | 1.1 | −1.1 | −1.1 |
ABCC3 | MRP3, cMOAT2, MOAT-D (XM_548204) | transport of biliary and intestinal excretion of organic anions including bile salts | * 2.7 | −1.1 | 1.1 | 1.1 |
ABCC5 | MRP5 (XM_535820) | organic anion transporter for cyclic nucleotides and some nucleoside monophosphates | * −1.8 | −1.3 | −1.3 | 1.3 |
ABCD4 | PXMP1L, P70R (XM_547903) | possible heterodimer for peroxisomal ABC transporter involved in import of fatty acids and/or fatty acyl-CoAs | * 2.4 | −1.3 | 1.3 | −1.3 |
Gene symbol | Synonym (RefSeq ID) | Function | 3d-T/3d-P | 5d-T/3d-T | 7d-T/5d-T | 9d-T/7d-T |
---|---|---|---|---|---|---|
SLC1A1 | EAA3, EAAT3, EAAC1 (NM_001003139) | high affinity glutamate and neutral amino acid transporter | * 7.0 | * −1.7 | −1.0 | −1.1 |
SLC2A1 | GLUT1 (XM_539554) | facilitative GLUT transporter | * −2.0 | * 1.5 | −1.1 | 1.1 |
SLC4A11 | NaBC1, BTR1 (XM_542919) | bicarbonate transporter | * −2.2 | * 1.6 | −1.0 | −1.1 |
SLC5A6 | SMVT (XM_532905) | sodium glucose co-transporter | * −1.9 | 1.1 | −1.1 | −1.2 |
SLC6A12 | BGT1 (NM_001003322) | sodium- and chloride- dependent neurotransmitter transporter | * Transwell®s only | 1.3 | * 1.8 | 1.4 |
SLC15A2 | PEPT2 (XM_545128) | proton oligopeptide co-transporter | * Transwell®s only | * 1.5 | * −1.5 | 1.1 |
SLC16A13 | MCT13 (XM_844349) | monocarboxylate transporter | * 1.9 | 1.2 | −1.2 | 1.1 |
SLC22A2 | OCT2 gene (XM_533466) | organic cation transporter | * Transwell®s only | −1.2 | 1.1 | −1.0 |
SLC25A5 | AAC2, ANT 2, T2 (XM_549215) | mitochondrial carrier | * −1.6 | 1.1 | −1.2 | −1.2 |
SLC25A12 | AGC1, aralar1 (XM_535962) | mitochondrial carrier | * −1.5 | −1.1 | −1.2 | −1.1 |
SLC25A37 | (XM_543241) | mitochondrial carrier | * −1.7 | 1.3 | −1.0 | −1.1 |
SLC26A11 | (XM_540473) | multifunctional anion exchanger | * 3.0 | −1.3 | −1.0 | −1.0 |
SLC29A1 | ENT1 (NM_001003367) | facilitative nucleoside transporter | * −1.9 | * 1.7 | 1.0 | 1.1 |
SLC35A1 | CST (NM_001003058) | nucleoside-sugar transporter | *1.5 | −1.3 | −1.1 | 1.0 |
SLC35A3 | UGTrel2 (NM_001003385) | nucleoside-sugar transporter | * 1.6 | −1.1 | 1.1 | 1.2 |
SLC35C1 | FUCT1 (XM_540762) | nucleoside-sugar transporter | 1.3 | −1.4 | * 1.7 | −1.3 |
SLC37A4 | SPX4, G6PT1 (XM_546493) | sugar-phosphate/phosphate exchanger | * 4.5 | * −1.6 | −1.0 | 1.0 |
SLC38A1 | SNAT1, ATA1, GlnT, NAT2 (XM_534827) | System A & N, sodium-coupled neutral amino acid transporter | * −2.6 | 1.4 | −1.1 | −1.1 |
2.2.3. Cytochrome P450 (CYP) Enzyme Expression
2.3. Transporter Expression in MDCK Cells by qRT-PCR
3. Discussion
3.1. Overall Gene Expression Patterns
3.2. Expression of Drug and Nutrient Absorption Related Genes
3.2.1. ABC Transporters
3.2.2. SLC Transporters
3.3. Cytochrome P450 Enzymes
4. Experimental Section
4.1. Tissue Culture
4.2. Microarray Hybridization
4.3. RT-PCR
4.4. Data Analysis
5. Conclusions
Conflict of Interest
References
- Balimane, P.V.; Chong, S. Cell culture-based models for intestinal permeability: A critique. Drug. Discov. Today 2005, 10, 335–343. [Google Scholar] [CrossRef]
- Sun, D.; Lennernas, H.; Welage, L.S.; Barnett, J.L.; Landowski, C.P.; Foster, D.; Fleisher, D.; Lee, K.D.; Amidon, G.L. Comparison of human duodenum and caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm. Res. 2002, 19, 1400–1416. [Google Scholar] [CrossRef]
- Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on caco-2 cell functional characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar]
- Tang, F.; Horie, K.; Borchardt, R.T. Are mdck cells transfected with the human mrp2 gene a good model of the human intestinal mucosa? Pharm. Res. 2002, 19, 773–779. [Google Scholar] [CrossRef]
- Braun, A.; Hammerle, S.; Suda, K.; Rothen-Rutishauser, B.; Gunthert, M.; Kramer, S.D.; Wunderli-Allenspach, H. Cell cultures as tools in biopharmacy. Eur. J. Pharm. Sci. 2000, 11, S51–S60. [Google Scholar] [CrossRef]
- Cho, M.J.; Thompson, D.P.; Cramer, C.T.; Vidmar, T.J.; Scieszka, J.F. The madin darby canine kidney (mdck) epithelial cell monolayer as a model cellular transport barrier. Pharm. Res. 1989, 6, 71–77. [Google Scholar]
- Simons, K.; Fuller, S.D. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1985, 1, 243–288. [Google Scholar] [CrossRef]
- Butor, C.; Davoust, J. Apical to basolateral surface area ratio and polarity of mdck cells grown on different supports. Exp. Cell. Res. 1992, 203, 115–127. [Google Scholar] [CrossRef]
- Balcarova-Stander, J.; Pfeiffer, S.E.; Fuller, S.D.; Simons, K. Development of cell surface polarity in the epithelial madin-darby canine kidney (mdck) cell line. Embo. J. 1984, 3, 2687–2694. [Google Scholar]
- Fuller, S.D.; Simons, K. Transferrin receptor polarity and recycling accuracy in “tight” and “leaky” strains of madin-darby canine kidney cells. J. Cell. Biol. 1986, 103, 1767–1779. [Google Scholar] [CrossRef]
- Richardson, J.C.; Simmons, N.L. Demonstration of protein asymmetries in the plasma membrane of cultured renal (mdck) epithelial cells by lactoperoxidase-mediated iodination. FEBS Lett. 1979, 105, 201–204. [Google Scholar] [CrossRef]
- Simmons, N.L. Cultured monolayers of mdck cells: A novel model system for the study of epithelial development and function. Gen. Pharmacol. 1982, 13, 287–291. [Google Scholar] [CrossRef]
- Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, J.R. Mdck (madin-darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 1999, 88, 28–33. [Google Scholar]
- Lai, Y.; Bakken, A.H.; Unadkat, J.D. Simultaneous expression of hcnt1-cfp and hent1-yfp in madin-darby canine kidney cells. Localization and vectorial transport studies. J. Biol. Chem. 2002, 277, 37711–37717. [Google Scholar]
- Konig, J.; Cui, Y.; Nies, A.T.; Keppler, D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem. 2000, 275, 23161–23168. [Google Scholar]
- Herrera-Ruiz, D.; Faria, T.N.; Bhardwaj, R.K.; Timoszyk, J.; Gudmundsson, O.S.; Moench, P.; Wall, D.A.; Smith, R.L.; Knipp, G.T. A novel hpept1 stably transfected cell line: Establishing a correlation between expression and function. Mol. Pharm. 2004, 1, 136–144. [Google Scholar] [CrossRef]
- Yang, Z.; Horn, M.; Wang, J.; Shen, D.D.; Ho, R.J. Development and characterization of a recombinant madin-darby canine kidney cell line that expresses rat multidrug resistance-associated protein 1 (rmrp1). AAPS Pharm. Sci. 2004, 6, E8. [Google Scholar]
- Pastan, I.; Gottesman, M.M.; Ueda, K.; Lovelace, E.; Rutherford, A.V.; Willingham, M.C. A retrovirus carrying an mdr1 cdna confers multidrug resistance and polarized expression of P-glycoprotein in mdck cells. Proc. Nat. Acad. Sci. USA 1988, 85, 4486–4490. [Google Scholar]
- Balakrishnan, A.; Sussman, D.J.; Polli, J.E. Development of stably transfected monolayer overexpressing the human apical sodium-dependent bile acid transporter (hasbt). Pharm. Res. 2005, 22, 1269–1280. [Google Scholar] [CrossRef]
- Tang, F.; Horie, K.; Borchardt, R.T. Are mdck cells transfected with the human mdr1 gene a good model of the human intestinal mucosa? Pharm. Res. 2002, 19, 765–772. [Google Scholar] [CrossRef]
- Hammerle, S.P.; Rothen-Rutishauser, B.; Kramer, S.D.; Gunthert, M.; Wunderli-Allenspach, H. P-glycoprotein in cell cultures: A combined approach to study expression, localisation, and functionality in the confocal microscope. Eur. J. Pharm. Sci. 2000, 12, 69–77. [Google Scholar] [CrossRef]
- Litman, T.; Brangi, M.; Hudson, E.; Fetsch, P.; Abati, A.; Ross, D.D.; Miyake, K.; Resau, J.H.; Bates, S.E. The multidrug-resistant phenotype associated with overexpression of the new abc half-transporter, mxr (abcg2). J. Cell. Sci. 2000, 113 ( Pt 11), 2011–2021. [Google Scholar]
- Goh, L.B.; Spears, K.J.; Yao, D.; Ayrton, A.; Morgan, P.; Roland Wolf, C.; Friedberg, T. Endogenous drug transporters in in vitro and in vivo models for the prediction of drug disposition in man. Biochem. Pharmacol. 2002, 64, 1569–1578. [Google Scholar] [CrossRef]
- Cook, J.R.; Crute, B.E.; Patrone, L.M.; Gabriels, J.; Lane, M.E.; Van Buskirk, R.G. Microporosity of the substratum regulates differentiation of mdck cells in vitro. In Vitro Cell Dev. Biol. 1989, 25, 914–922. [Google Scholar] [CrossRef]
- Karst, W.; Merker, H.J. The differentiation behaviour of mdck cells grown on matrix components and in collagen gels. Cell Differ. 1988, 22, 211–224. [Google Scholar] [CrossRef]
- Mecham, B.H.; Wetmore, D.Z.; Szallasi, Z.; Sadovsky, Y.; Kohane, I.; Mariani, T.J. Increased measurement accuracy for sequence-verified microarray probes. Physiol. Genomics 2004, 18, 308–315. [Google Scholar] [CrossRef]
- Harbig, J.; Sprinkle, R.; Enkemann, S.A. A sequence-based identification of the genes detected by probe sets on the affymetrix u133 plus 2.0 array. 0 array. Nucleic. Acids Res. 2005, 33, e31. [Google Scholar]
- Bourgine, J.; Billaut-Laden, I.; Happillon, M.; Lo-Guidice, J.M.; Maunoury, V.; Imbenotte, M.; Broly, F. Gene expression profiling of systems involved in the metabolism and the disposition of xenobiotics: Comparison between human intestinal biopsy samples and colon cell lines. Drug. Metab. Dispos. 2012, 40, 694–705. [Google Scholar] [CrossRef]
- Horio, M.; Chin, K.V.; Currier, S.J.; Goldenberg, S.; Williams, C.; Pastan, I.; Gottesman, M.M.; Handler, J. Transepithelial transport of drugs by the multidrug transporter in cultured madin-darby canine kidney cell epithelia. J. Biol. Chem. 1989, 264, 14880–14884. [Google Scholar]
- Balimane, P.V.; Chong, S.; Patel, K.; Quan, Y.; Timoszyk, J.; Han, Y.H.; Wang, B.; Vig, B.; Faria, T.N. Peptide transporter substrate identification during permeability screening in drug discovery: Comparison of transfected mdck-hpept1 cells to caco-2 cells. Arch. Pharm. Res. 2007, 30, 507–518. [Google Scholar] [CrossRef]
- Putnam, W.S.; Ramanathan, S.; Pan, L.; Takahashi, L.H.; Benet, L.Z. Functional characterization of monocarboxylic acid, large neutral amino acid, bile acid and peptide transporters, and P-glycoprotein in mdck and caco-2 cells. J. Pharm. Sci. 2002, 91, 2622–2635. [Google Scholar] [CrossRef]
- Putnam, W.S.; Pan, L.; Tsutsui, K.; Takahashi, L.; Benet, L.Z. Comparison of bidirectional cephalexin transport across mdck and caco-2 cell monolayers: Interactions with peptide transporters. Pharm. Res. 2002, 19, 27–33. [Google Scholar] [CrossRef]
- Agarwal, S.; Pal, D.; Mitra, A.K. Both P-gp and mrp2 mediate transport of lopinavir, a protease inhibitor. Int. J. Pharm. 2007, 339, 139–147. [Google Scholar] [CrossRef]
- Brayden, D.J.; Griffin, J. Avermectin transepithelial transport in mdr1- and mrp-transfected canine kidney monolayers. Vet. Res. Commun. 2008, 32, 93–106. [Google Scholar] [CrossRef]
- Kuteykin-Teplyakov, K.; Luna-Tortos, C.; Ambroziak, K.; Loscher, W. Differences in the expression of endogenous efflux transporters in mdr1-transfected versus wildtype cell lines affect P-glycoprotein mediated drug transport. Br. J. Pharmacol. 2010, 160, 1453–1463. [Google Scholar] [CrossRef]
- Hediger, M.A.; Romero, M.F.; Peng, J.B.; Rolfs, A.; Takanaga, H.; Bruford, E.A. The abcs of solute carriers: Physiological, pathological and therapeutic implications of human membrane transport proteinsintroduction. Pflugers Arch. 2004, 447, 465–468. [Google Scholar] [CrossRef]
- Boerner, P.; Evans-Laying, M.U.H.S.; Saier, M.H., Jr. Polarity of neutral amino acid transport and characterization of a broad specificity transport activity in a kidney epithelial cell line, mdck. J. Biol. Chem. 1986, 261, 13957–13962. [Google Scholar]
- Berger, U.V.; Hediger, M.A. Distribution of peptide transporter pept2 mrna in the rat nervous system. Anat. Embryol. (Berl) 1999, 199, 439–449. [Google Scholar] [CrossRef]
- Groneberg, D.A.; Nickolaus, M.; Springer, J.; Doring, F.; Daniel, H.; Fischer, A. Localization of the peptide transporter pept2 in the lung: Implications for pulmonary oligopeptide uptake. Am. J. Pathol. 2001, 158, 707–714. [Google Scholar] [CrossRef]
- Groneberg, D.A.; Doring, F.; Theis, S.; Nickolaus, M.; Fischer, A.; Daniel, H. Peptide transport in the mammary gland: Expression and distribution of pept2 mrna and protein. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E1172–E1179. [Google Scholar]
- Daniel, H.; Kottra, G. The proton oligopeptide cotransporter family slc15 in physiology and pharmacology. Pflugers Arch. 2004, 447, 610–618. [Google Scholar] [CrossRef]
- Bhardwaj, R.K.; Herrera-Ruiz, D.; Eltoukhy, N.; Saad, M.; Knipp, G.T. The functional evaluation of human peptide/histidine transporter 1 (hpht1) in transiently transfected cos-7 cells. Eur. J. Pharm. Sci. 2006, 27, 533–542. [Google Scholar] [CrossRef]
- Botka, C.W.; Wittig, T.W.; Graul, R.C.; Nielsen, C.U.; Higaka, K.; Amidon, G.L.; Sadee, W. Human proton/oligopeptide transporter (pot) genes: Identification of putative human genes using bioinformatics. AAPS Pharm. Sci. 2000, 2, E16. [Google Scholar] [CrossRef]
- Terada, T.; Sawada, K.; Ito, T.; Saito, H.; Hashimoto, Y.; Inui, K. Functional expression of novel peptide transporter in renal basolateral membranes. Am. J. Physiol. Renal. Physiol. 2000, 279, F851–F857. [Google Scholar]
- Ng, K.H.; Lim, B.G.; Wong, K.P. Sulfate conjugating and transport functions of mdck distal tubular cells. Kidney Int. 2003, 63, 976–986. [Google Scholar] [CrossRef]
- Zalups, R.K.; Ahmad, S. Handling of cysteine s-conjugates of methylmercury in mdck cells expressing human oat1. Kidney Int. 2005, 68, 1684–1699. [Google Scholar] [CrossRef]
- Koepsell, H.; Endou, H. The slc22 drug transporter family. Pflugers Arch. 2004, 447, 666–676. [Google Scholar] [CrossRef]
- Shu, Y.; Bello, C.L.; Mangravite, L.M.; Feng, B.; Giacomini, K.M. Functional characteristics and steroid hormone-mediated regulation of an organic cation transporter in madin-darby canine kidney cells. J. Pharmacol. Exp. Ther. 2001, 299, 392–398. [Google Scholar]
- Hammond, J.R.; Stolk, M.; Archer, R.G.; McConnell, K. Pharmacological analysis and molecular cloning of the canine equilibrative nucleoside transporter 1. Eur. J. Pharmacol. 2004, 491, 9–19. [Google Scholar]
- Rosenberg, S.O.; Fadil, T.; Schuster, V.L. A basolateral lactate/h+ co-transporter in madin-darby canine kidney (mdck) cells. Biochem. J. 1993, 289 (Pt 1), 263–268. [Google Scholar]
- Debeljak, N.; Horvat, S.; Vouk, K.; Lee, M.; Rozman, D. Characterization of the mouse lanosterol 14alpha-demethylase (cyp51), a new member of the evolutionarily most conserved cytochrome p450 family. Arch. Biochem. Biophys. 2000, 379, 37–45. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Quan, Y.; Jin, Y.; Faria, T.N.; Tilford, C.A.; He, A.; Wall, D.A.; Smith, R.L.; Vig, B.S. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions. Pharmaceutics 2012, 4, 314-333. https://doi.org/10.3390/pharmaceutics4020314
Quan Y, Jin Y, Faria TN, Tilford CA, He A, Wall DA, Smith RL, Vig BS. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions. Pharmaceutics. 2012; 4(2):314-333. https://doi.org/10.3390/pharmaceutics4020314
Chicago/Turabian StyleQuan, Yong, Yisheng Jin, Teresa N. Faria, Charles A. Tilford, Aiqing He, Doris A. Wall, Ronald L. Smith, and Balvinder S. Vig. 2012. "Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions" Pharmaceutics 4, no. 2: 314-333. https://doi.org/10.3390/pharmaceutics4020314
APA StyleQuan, Y., Jin, Y., Faria, T. N., Tilford, C. A., He, A., Wall, D. A., Smith, R. L., & Vig, B. S. (2012). Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions. Pharmaceutics, 4(2), 314-333. https://doi.org/10.3390/pharmaceutics4020314