Aster koraiensis Nakai: Insights into Its Phytoconstituents and Pharmacological Properties
Abstract
1. Introduction
2. Literature Search Strategy
3. Biochemical Constituents
4. Pharmacological Properties
4.1. Antioxidant and Anti-Inflammatory
4.2. Anti-Diabetic
| Extract Type | Parts Used | Model and Dose | Major Findings | Ref. |
|---|---|---|---|---|
| Water | Leaves | 3T3-L1 cells + extract (0, 12.5, 25, or 50 μg/mL) + NBDG (150 μg/mL) in glucose-free medium, 1 h | Viability not affected ↑ glucose uptake | [2] |
| Diet induced mice + extract (250 or 500 mg/kg), orally (30 min) before glucose (2 g/kg) loading, + metformin (350 mg/kg), 4 weeks | ↓ glucose AUC levels: Extract 250, 1002 mg min/dL and extract 500, 1051 mg min/dL, vehicle control group 1313 mg min/dL, ↑ plasma insulin | |||
| Ethanol | Aerial parts | SD rats, streptozotocin (60 mg/kg, i.p.), aminoguanidine (positive control, 100 mg/kg BW), extract (100 and 200 mg/kg BW), 13 weeks | ↓ mesangial expansion, proteinuria, and albuminuria. ↓ serum AGEs, ↓ podocytes apoptosis, ↓ Bax, ↑ Bcl-2 | [34] |
| Ethanol | Aerial parts (flowers, stems, and leaves) and roots | Extracted compounds: 3,5-di-O-caffeoylquinic acid and CA, In vitro assay | Inhibited AGE formation Inhibited AGE/RAGE binding activity | [5] |
| SD rats, normal group, diabetic group, A. koraiensis extract-treated group (100 mg/kg BW), once a day, 4 months, STZ (60 mg/kg) | Hyperglycemia or body weight: no significant change, ↓ TUNEL positive cells, ↓ caspase 3 positive cells, ↓ AGEs, ↓ iNOS, ↓ NF-kB | |||
| Ethanol | Flowers, leaves, and stems | SDT rats: Normal group, SDT group, SDT + extract (50 and 100 mg/kg BW), 6 weeks | ↓ Blood glucose levels, ↓ BRB breakage, restored occludin, ↓ TUNEL-positive cells, ↓ AGEs | [35] |
| Ethanol | Flowers, leaves, and stems | Human umbilical vein endothelial cells + extract and CA (0.1, 1, 10 μg/mL) + human VEGF (20 ng/mL), 17 h | Viability not affected Inhibited tube formation CA > extract | [36] |
| C57BL/6 + exposure to oxygen 75% on postnatal day 7 (P7) and normal oxygen pressure (P12) + extract (25 and 50 mg/kg BW) + CA (25 and 50 mg/kg BW) per day, last 5 days i.p. | Reduced neovascular tufts size (%) Extract: (25 = 26.27; 50 = 38.75) CA: (25 = 29.68; 50 = 50.24) ↓ VEGF mRNA expression | |||
| Ethanol | Aerial parts | 18 compounds *, AGE assay and RLAR inhibition assay | Inhibitory activity against AGEs | [8] |
| Inhibition of RLAR | ||||
| Ethanol | Aerial parts | Human keratinocytes + extract (3, 10, 30, or 100 μg/mL) + hyperglycemic conditions with glucose (200 mM in media) | Reversed keratinocyte migration: Hyperglycemic cells (13%), control (46%), extract (30 and 100 μg/mL = 21%), ↓ MMP-2, ↓ MMP-9 activity | [37] |
| SD rats: normal group, diabetes group, extract (100 mg/kg BW), once daily, 18 days + STZ (75 mg/kg, i.p.) | Faster wound healing in the extract-treated rats compared to the diabetes rats. Reversed skin disruption. ↓ MMP-2, ↓ MMP-9 |
4.3. Anti-Metabolic Syndrome
4.4. Hepatoprotective
4.5. Anti-Tumor
4.6. Antithrombotic and Anticoagulant
4.7. Antinociceptive
| Extract Type | Parts Used | Model and Dose | Major Findings | Ref. |
|---|---|---|---|---|
| Ethanol, Nakaiase (protease) | Leaves | In vitro antithrombotic activity: Nakaiase (50, 100, 200, and 500 μg) + alteplase (tPA), positive control (10, 20, and 30 U), 1 h at 37 °C, absorbance at 410 nm Inhibition (%): nakaiase (1, 2, and 4 μg) + thrombin (0.25 U) or FXa (0.5 U), 30 min | Degraded blood clot (at 410 nm), nakaiase (500 μg) = 1.79, tPA (30U) = 1.38 Inhibition (%): thrombin (3.1%, 7.5%, and 11.9%), FXa (9.9%, 13.0%, and 21.0%) | [9] |
| Turbidity assay (Fibrin clot inhibition): t-PA (20 U) and nakaiase (30, 20, or 10 μg) | Inhibited fibrin clot formation: by nakaiase: 6.6–82.5%, by tPA: 94.8% | |||
| In vitro anticoagulant activity Nakaiase (5, 10, 20, and 50 μg) APTT, PT + coagulometer | Nakaiase (at 5, 10, 20, and 50 μg): prolonged APTT by 35.1 s, 54.8 s, 95.2 s, and 112.7 s. Prolonged PT by 14.7 s, 20.1 s, 22.5 s, and 30.5 s | |||
| ICR mice, Group 1: saline, Group 2: human thrombin (3300 NIHU/mg, tail vein, 0.1 mL), Group 3: thrombin + aspirin (20 mg/kg), Group 4: thrombin + nakaiase (10 mg/kg), Group 5: human thrombin + nakaiase (20 mg/kg), 15 min | Antithrombotic activity Protection (%) of mice: Aspirin-treated (60%) Nakaiase-treated (10 mg/kg = 30%) (20 mg/kg = 50%) | |||
| Ethanol (80%) | A. koraiensis | ICR mice + extract (oral administration 200 mg/kg BW) 30 min before Hot-plate paw licking or tail flick tests Acetic acid (1%)-induced writhing and formalin (5%) tests Nociceptive behavioral test (Substance P, 0.7 µg/5 µL intrathecal injection) | ↑ Latencies of the tail-flick and hot-plate paw-licking ↓ (70%) writhing numbers. ↓ Nociceptive behaviors following formalin treatment (60% reduction, 2nd phase). Substance P: Cumulative nociceptive response reduced (76%) | [65] |
4.8. Antiviral
4.9. Neuroprotective and Cognitive Enhancement
| Extract Type | Parts Used | Model and Dose | Major Findings | Ref. |
|---|---|---|---|---|
| Ethanol (94%) | Aerial parts | RGC-5 cells + pretreatment with EAGK and 3,5-DCQA (10, 1, 0.1, and 0.05 μg/mL) + H2O2 (300 μM), 24 h | ↑ cell viability, ↓ PI and Hoechst 33342 positive cells, ↓ cleaved PARP, ↓ cleaved caspase-3, ↓ apoptosis-inducing factor, ↓ ROS, ↑ rGSH/GSSG ratio, ↑ catalase, ↑ Gpx-1, ↓ Bcl-2 | [74] |
| SD rats, Group 1: non-treated, Group 2: NMDA (5 nmol, I.I.), Group 3: NMDA + EAGK (2 μg/mL), Group 4: NMDA + 3,5-DCQA (10 nmoL), 7 days. Rat forebrain homogenates + sodium nitroprusside (20 μM) | Inhibited IPL thinning, ↓ TUNEL-positive cells, ↓ Lipid peroxidation, Rat retinas: ↑ SOD, ↑ catalase, ↑ Gpx-1 | |||
| Ethanol (95%), butanol, n-hexane, ethylacetate | Dried whole plant | SH-SY5Y cells + ethanol, n-butanol, and ethyl acetate extracts (50, 25, and 12.5 μg/mL) + astersaponin I (20, 10, and 5 μg/mL), n-hexane extract (12.5 μg/mL) | Ethyl acetate and n-hexane: No effect on LC-3 expression. Ethanol and butanol: ↑ expression of LC-3 II/I dose-dependent. Astersaponin I: ↑ LC-3 II/I expression | [22] |
| Astersaponin I from A. koraiensis | Leaves | SH-SY5Y cells + astersaponin I (5, 10, or 20 µM), 24 h + inhibitor treatment 30 min prior to sample treatment + MPP+ (2 mM) 1 h after the compound treatment | ↑ LC-3 II/I expression, ↓ sequestosome 1 (p62), ↑ p-Erk, ↑ p-AMPK, ↑ p-ULK, ↓ p-mTOR | [77] |
| Autophagy induction: SH-SY5Y + U0126 (10 µM, 30 min) or AMPK (50 nM, 36 h) siRNA + astersaponin I (5 and 10 µM) + MPP+ (2 mM) 1 h after the compound treatment + 3-MA (inhibitor) | No significant effect on viability ↑ cell viability, ↑ LC-3 II/I expression, ↓ p62, ↑ TH, ↓ α-synuclein, Activated Erk/mTOR pathway Activated AMPK/mTOR pathway | |||
| C57BL/6j mice, Group 1 and Group 2 (saline), Group 3 (5 mg/kg ropinirole), Group 4 (5 mg/kg astersaponin I) Group 5 (15 mg/kg astersaponin I (p.o.)) + MPTP (30 mg/kg (i.p.) post 1 h, 8 days | Improved behavior performance Restored dopamine level ↑ TH, ↓ α-synuclein, Induced autophagy | |||
| Ethanol (70%) | Leaves | BV2 microglial + extract (0, 10, 20, 40, and 60 μg/mL)and RAW264.7 cells + extract (0, 5, 10, 12.5, 20, 25, 50, and 100 μg/mL) + LPS (0.5 μg/mL) | BV2 cells: ↑ proliferation Inhibited NO production, RAW264.7: ↓ TNF-α, ↓ COX-2, ↓ iNOS | [10] |
| SH-SY5Y cells + Aꞵ (0.1 or 0.3 μM), 21–48 h and extract (0.625 and 1.25 μg/mL) | ↓ p-NF-kB, ↓ p-tau protein | |||
| SD rats, Normal group: diet + saline, Negative control group: diet + scopolamine (S, 1 mg/kg), Low dose group: (103.23 mg/kg/day extract + S), High dose group: (300.51 mg/kg/day extract + S), Donepezil group (positive control): diet + donepezil (1 mg/kg/day) + S., 21 days | ↑ Hippocampal ChAT activity ↑ Ach activity, ↑ BDNF, ↑ Bcl-2, ↓ p-ERK/ERK, Y-maze test: ↑ alterations ↑ Latency to escape | |||
| Memory deficit model: ICR male mice. Normal control: diet + saline, Negative control: diet + scopolamine, Low dose: diet + low dose extract + scopolamine, High dose: diet + high dose extract + scopolamine, Donepezil: diet + donepezil. | Improved long-term and spatial memory | |||
| Control: transgenic mice (5XFAD) + saline; extract group: mice + extract (OA, 200 mg/kg/day), 21 days | ↓ β-amyloid accumulation, Protected neuronal cells |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prabakaran, M.; Kim, S.-H.; Mugila, N.; Hemapriya, V.; Parameswari, K.; Chitra, S.; Chung, I.-M. Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid. J. Ind. Eng. Chem. 2017, 52, 235–242. [Google Scholar] [CrossRef]
- Kim, J.; Hyun, S.-W.; Lee, I.S.; Jo, K.; Kim, Y.S.; Kim, J.S.; Kim, C.-S. Aster koraiensis extract lowers postprandial glucose in normoglycemic and high-fat-diet-induced obese mice. Food Sci. Biotechnol. 2019, 28, 563–568. [Google Scholar] [CrossRef]
- Im, N.H.; Lee, D.M.; Ahn, M.S.; Lee, H.B.; Lee, J. Photoperiodic Flowering Response of Three Korean Native Aster Species. Flower Res. J. 2025, 33, 78–82. [Google Scholar] [CrossRef]
- Seo, Y.-H.; Kim, J.-Y.; Ryu, S.-M.; Hwang, S.-Y.; Lee, M.-H.; Kim, N.; Son, H.; Lee, A.-Y.; Kim, H.-S.; Moon, B.-C.; et al. New Sesquiterpene Glycosides from the Flowers of Aster koraiensis and Their Inhibition Activities on EGF- and TPA-Induced Cell Transformation. Plants 2023, 12, 1726. [Google Scholar] [CrossRef]
- Kim, J.; Jo, K.; Lee, I.-S.; Kim, C.-S.; Kim, J.S. The extract of Aster koraiensis prevents retinal pericyte apoptosis in diabetic rats and its active compound, chlorogenic acid inhibits AGE formation and AGE/RAGE interaction. Nutrients 2016, 8, 585. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Kim, H.-M.; Son, S.-R.; An, H.-J.; Jang, D.S. Discovery of Chemical Constituents with Anti-Atopic Dermatitis Properties from Aster koraiensis. Molecules 2024, 29, 5002. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D. Illustrated Book of Korean Medicinal Herbs; Kyohaksa Publishing Co., Ltd.: Seoul, Republic of Korea, 1998; Volume 497, pp. 208–214. [Google Scholar]
- Lee, J.; Lee, Y.M.; Lee, B.W.; Kim, J.-H.; Kim, J.S. Chemical constituents from the aerial parts of Aster koraiensis with protein glycation and aldose reductase inhibitory activities. J. Nat. Prod. 2012, 75, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kim, K.J.; Kim, S.J.; Kim, S. Novel protease from the leaves of edible medicinal plant Aster koraiensis Nakai with antithrombotic activity: Purification and partial characterization. J. Food Biochem. 2017, 41, e12334. [Google Scholar] [CrossRef]
- Lee, S.-E.; Park, S.; Jang, G.Y.; Lee, J.; Moon, M.; Ji, Y.-J.; Jung, J.W.; Nam, Y.; Shin, S.J.; Lee, Y.; et al. Extract of Aster koraiensis Nakai Leaf Ameliorates Memory Dysfunction via Anti-inflammatory Action. Int. J. Mol. Sci. 2023, 24, 5765. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, H.H.; Kim, K.S. Estimating cardinal temperatures of Aster koraiensis seed by beta distribution function. Hortic. Environ. Biotechnol. 2010, 51, 130–133. [Google Scholar]
- Won, H.J.; Lee, J.H.; Ahn, H.R.; Jung, S.H.; Jung, J.H. A preliminary open-field study investigating commercial smart farming of a potential alternative crop, Aster koraiensis. Hortic. J. 2020, 89, 244–250. [Google Scholar] [CrossRef]
- Kang, H.J.; Jeong, J.S.; Park, N.J.; Go, G.B.; Kim, S.O.; Park, C.; Kim, B.W.; Hong, S.H.; Choi, Y.H. An ethanol extract of Aster yomena (Kitam.) Honda inhibits lipopolysaccharide-induced inflammatory responses in murine RAW 264.7 macrophages. Biosci. Trends 2017, 11, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, M.; Zhang, X.; Ma, L.; Song, S.; Pan, M.; Huang, S.; Ren, W.; Ma, W. Aster tataricus L. f.: A review on the botany, phytochemistry, ethnopharmacology, pharmacology, toxicology and comprehensive utilization. Front. Pharmacol. 2025, 16, 1581505. [Google Scholar] [CrossRef]
- Liao, Y.; Bae, H.J.; Park, J.H.; Zhang, J.; Koo, B.; Lim, M.K.; Han, E.H.; Lee, S.H.; Jung, S.Y.; Lew, J.H. Aster glehni extract ameliorates scopolamine-induced cognitive impairment in mice. J. Med. Food 2019, 22, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Kim, J.-Y.; Kwon, H.C.; Jeon, S.; Lee, S.J.; Jung, H.; Kim, S.; Jang, D.S.; Lee, C.J. Astersaponin I from Aster koraiensis is a natural viral fusion blocker that inhibits the infection of SARS-CoV-2 variants and syncytium formation. Antivir. Res. 2022, 208, 105428. [Google Scholar] [CrossRef]
- Jung, H.-J.; Min, B.-S.; Park, J.-Y.; Kim, Y.-H.; Lee, H.-K.; Bae, K.-H. Gymnasterkoreaynes A–F, Cytotoxic Polyacetylenes from Gymnaster koraiensis. J. Nat. Prod. 2002, 65, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Min, B.; Jung, H.; Kim, Y.; Lee, H.; Bae, K. Polyacetylene glycosides from Gymnaster koraiensis. Chem. Pharm. Bull. 2002, 50, 685–687. [Google Scholar] [CrossRef]
- Dat, N.T.; Cai, X.F.; Shen, Q.; Lee, I.S.; Lee, E.J.; Park, Y.K.; Bae, K.; Kim, Y.H. Gymnasterkoreayne G, a new inhibitory polyacetylene against NFAT transcription factor from Gymnaster koraiensis. Chem. Pharm. Bull. 2005, 53, 1194–1196. [Google Scholar] [CrossRef]
- Lee, S.B.; Kang, K.; Oidovsambuu, S.; Jho, E.H.; Yun, J.H.; Yoo, J.-H.; Lee, E.-H.; Pan, C.-H.; Lee, J.K.; Jung, S.H. A polyacetylene from Gymnaster koraiensis exerts hepatoprotective effects in vivo and in vitro. Food Chem. Toxicol. 2010, 48, 3035–3041. [Google Scholar] [CrossRef]
- Nhoek, P.; Ahn, J.; Chae, H.-S.; Pel, P.; Kim, Y.-M.; Lee, S.E.; Lee, J.H.; Kim, J.; Choi, Y.H.; Lee, K. Isolation of polyacetylenes with proprotein convertase/kexin type 9 downregulating activity and two new sesquiterpenes from the aerial parts of Aster koraiensis. Tetrahedron Lett. 2020, 61, 151957. [Google Scholar] [CrossRef]
- Kwon, J.; Ko, K.; Zhang, L.; Zhao, D.; Yang, H.O.; Kwon, H.C. An autophagy inducing triterpene saponin derived from Aster koraiensis. Molecules 2019, 24, 4489. [Google Scholar] [CrossRef]
- Lee, I.-K.; Kim, K.-H.; Ryu, S.-Y.; Choi, S.-U.; Lee, K.-R. Phytochemical constituents from the flowers of Gymnaster koraiensis and their cytotoxic activities in vitro. Bull. Korean Chem. Soc. 2010, 31, 227–229. [Google Scholar] [CrossRef]
- Dat, N.T.; Kiem, P.V.; Cai, X.F.; Shen, Q.; Bae, K.; Kim, Y.H. Gymnastone, a new benzofuran derivative from Gymnaster koraiensis. Arch. Pharmacal Res. 2004, 27, 1106–1108. [Google Scholar] [CrossRef]
- Hong, S.-C.; Ha, J.-H.; Lee, J.K.; Jung, S.H.; Kim, J.-C. In Vivo Anti-Inflammation Potential of Aster koraiensis Extract for Dry Eye Syndrome by the Protection of Ocular Surface. Nutrients 2020, 12, 3245. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Seo, Y.H.; Lee, I.-H.; Choi, H.Y.; Kwon, H.C.; Choi, J.-H.; Lee, J.; Jang, D.S. New eudesmane-type sesquiterpene glycosides from the leaves of Aster koraiensis. Plants 2020, 9, 1811. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Kim, T.Y.; Son, S.-R.; Kim, S.Y.; Kwon, J.; Kwon, H.C.; Lee, C.J.; Jang, D.S. Triterpenoidal saponins from the leaves of Aster koraiensis offer inhibitory activities against SARS-CoV-2. Plants 2024, 13, 303. [Google Scholar] [CrossRef]
- Nwozo, O.S.; Effiong, E.M.; Aja, P.M.; Awuchi, C.G. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. Int. J. Food Prop. 2023, 26, 359–388. [Google Scholar] [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Shakya, S.; Wang, Y.; Mack, J.A.; Maytin, E.V. Hyperglycemia-induced changes in hyaluronan contribute to impaired skin wound healing in diabetes: Review and perspective. Int. J. Cell Biol. 2015, 2015, 701738. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Nazarian-Samani, Z.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Medicinal Plants with Multiple Effects on Diabetes Mellitus and Its Complications: A Systematic Review. Curr. Diab. Rep. 2018, 18, 72. [Google Scholar] [CrossRef] [PubMed]
- Nishad, R.; Tahaseen, V.; Kavvuri, R.; Motrapu, M.; Singh, A.K.; Peddi, K.; Pasupulati, A.K. Advanced-glycation end-products induce podocyte injury and contribute to proteinuria. Front. Med. 2021, 8, 685447. [Google Scholar] [CrossRef] [PubMed]
- Sohn, E.; Kim, J.; Kim, C.-S.; Kim, Y.S.; Jang, D.S.; Kim, J.S. Extract of the aerial parts of Aster koraiensis reduced development of diabetic nephropathy via anti-apoptosis of podocytes in streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun. 2010, 391, 733–738. [Google Scholar] [CrossRef]
- Kim, J.; Jo, K.; Kim, C.-S.; Kim, J.S. Aster koraiensis extract prevents diabetes-induced retinal vascular dysfunction in spontaneously diabetic Torii rats. BMC Complement. Altern. Med. 2017, 17, 497. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.M.; Jung, W.; Park, S.-B.; Kim, C.-S.; Kim, J.S. Aster koraiensis extract and chlorogenic acid inhibit retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Evid.-Based Complement. Alternat. Med. 2018, 2018, 6402650. [Google Scholar] [CrossRef]
- Hyun, S.-W.; Kim, J.; Jo, K.; Kim, J.S.; Kim, C.-S. Aster koraiensis extract improves impaired skin wound healing during hyperglycemia. Integr. Med. Res. 2018, 7, 351–357. [Google Scholar] [CrossRef]
- Dubey, R.; Prabhakar, P.K.; Gupta, J. Epigenetics: Key to improve delayed wound healing in type 2 diabetes. Mol. Cell. Biochem. 2022, 477, 371–383. [Google Scholar] [CrossRef]
- Kerr, J.A.; Cini, K.I.; Francis, K.L.; Sawyer, S.M.; Azzopardi, P.S.; Patton, G.C.; Dhungel, B.; Jebasingh, F.K.; Abate, Y.H.; Abbas, N. Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 813–838. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Nansseu, J.R.; Nyaga, U.F.; Ndoadoumgue, A.L.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.-L.; Foka, A.J.; Lontchi-Yimagou, E.; Nkeck, J.R.; et al. Worldwide trends in metabolic syndrome from 2000 to 2023: A systematic review and modelling analysis. Nat. Commun. 2025, 17, 573. [Google Scholar] [CrossRef]
- Silveira, E.A.; Mendonça, C.R.; Delpino, F.M.; Souza, G.V.E.; de Souza Rosa, L.P.; de Oliveira, C.; Noll, M. Sedentary behavior, physical inactivity, abdominal obesity and obesity in adults and older adults: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2022, 50, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.S.; Son, Y.J.; Shin, J.M.; Won, H.J.; Le, T.T.; Jung, S.H.; Lee, C.H.; Nho, C.W. Gymnaster koraiensis extract alleviated metabolic syndrome symptoms and stimulated UCP1-independent energy consumption via AMPK activation in white adipose tissue. Mol. Nutr. Food Res. 2020, 64, 2000490. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Ramachandran, A.; Jaeschke, H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol. 2016, 10, 148–156. [Google Scholar] [CrossRef]
- Sharma, P.; Nandave, M.; Nandave, D.; Yadav, S.; Vargas-De-La-Cruz, C.; Singh, S.; Tandon, R.; Ramniwas, S.; Behl, T. Reactive oxygen species (ROS)-mediated oxidative stress in chronic liver diseases and its mitigation by medicinal plants. Am. J. Transl. Res. 2023, 15, 6321. [Google Scholar] [PubMed]
- Thilagavathi, R.; Begum, S.S.; Varatharaj, S.D.; Balasubramaniam, A.K.; George, J.S.; Selvam, C. Recent insights into the hepatoprotective potential of medicinal plants and plant-derived compounds. Phytother. Res. 2023, 37, 2102–2118. [Google Scholar] [CrossRef] [PubMed]
- Chiou, T.-J.; Tzeng, W.-F. The roles of glutathione and antioxidant enzymes in menadione-induced oxidative stress. Toxicology 2000, 154, 75–84. [Google Scholar] [CrossRef]
- Jho, E.H.; Kang, K.; Oidovsambuu, S.; Lee, E.H.; Jung, S.H.; Shin, I.-S.; Nho, C.W. Gymnaster koraiensis and its major components, 3, 5-di-O-caffeoylquinic acid and gymnasterkoreayne B, reduce oxidative damage induced by tert-butyl hydroperoxide or acetaminophen in HepG2 cells. BMB Rep. 2013, 46, 513–518. [Google Scholar] [CrossRef]
- Choe, S.Y.; Seo, Y.; Bang, C.Y.; Woo, S.H.; Kang, M. Protective effects of Gymnaster koraiensis extract on high fat diet-induced fatty liver in mice. Adv. Tradit. Med. 2021, 21, 361–369. [Google Scholar] [CrossRef]
- Pouwels, S.; Sakran, N.; Graham, Y.; Leal, A.; Pintar, T.; Yang, W.; Kassir, R.; Singhal, R.; Mahawar, K.; Ramnarain, D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 2022, 22, 63. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J.; Sanyal, A.; Neuschwander-Tetri, B.; Tiribelli, C.; Kleiner, D.E.; Brunt, E.; Bugianesi, E.; Yki-Järvinen, H. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, H.-J. A Review on the Protecting Effects and Molecular Mechanisms of Berries Against a Silent Public Health Concern: Non-Alcoholic Fatty Liver Disease. Antioxidants 2024, 13, 1389. [Google Scholar] [CrossRef]
- Rouhi-Boroujeni, A.R.; Aliakbari, F.; Bakhshian-Dehkordi, E.; Afzali, L.; Rouhi-Boroujeni, H. A Systematic Review on Important Risk Factors and Possible Involved Mechanisms of Medicinal Plants on Nonalcoholic Fatty Liver Disease. Adv. Biomed. Res. 2025, 14, 20. [Google Scholar] [CrossRef]
- Albahri, G.; Badran, A.; Abdel Baki, Z.; Alame, M.; Hijazi, A.; Daou, A.; Baydoun, E. Potential Anti-Tumorigenic Properties of Diverse Medicinal Plants against the Majority of Common Types of Cancer. Pharmaceuticals 2024, 17, 574. [Google Scholar] [CrossRef]
- Lee, J.Y.; Song, D.-G.; Lee, E.H.; Jung, S.H.; Nho, C.W.; Cha, K.H.; Pan, C.-H. Inhibitory effects of 3, 5-O-dicaffeoyl-epi-quinic acid from Gymnaster koraiensis on AKR1B10. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 731–734. [Google Scholar] [CrossRef]
- Butler, S.M.; Wallig, M.A.; Nho, C.W.; Pan, C.-H.; Lee, E.-H.; Jung, S.H.; Jeffery, E.H. A polyacetylene-rich extract from Gymnaster koraiensis strongly inhibits colitis-associated colon cancer in mice. Food Chem. Toxicol. 2013, 53, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.-x.; Huang, M.C.; Ma, J.; Gao, Z.; Liao, D.-f.; Cao, D. Aldo-keto reductase family 1, member B10 is secreted through a lysosome-mediated non-classical pathway. Biochem. J. 2011, 438, 71–80. [Google Scholar] [CrossRef]
- Huang, L.; He, R.; Luo, W.; Zhu, Y.S.; Li, J.; Tan, T.; Zhang, X.; Hu, Z.; Luo, D. Aldo-Keto Reductase Family 1 Member B10 Inhibitors: Potential Drugs for Cancer Treatment. Recent Pat. Anticancer Drug Discov. 2016, 11, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Maccari, R.; Ottanà, R. In Search for Inhibitors of Human Aldo-Keto Reductase 1B10 (AKR1B10) as Novel Agents to Fight Cancer and Chemoresistance: Current State-of-the-Art and Prospects. J. Med. Chem. 2025, 68, 860–885. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.H.; Zhong, W.X.; Wang, Y.L.; Liu, Y.S.; Song, J.W.; Guo, Y.R.; Zeng, B.; Guo, Y.P.; Guo, L. Therapeutic effects and molecular mechanisms of natural products in thrombosis. Phytother. Res. 2024, 38, 2128–2153. [Google Scholar] [CrossRef]
- Memariani, Z.; Moeini, R.; Hamedi, S.S.; Gorji, N.; Mozaffarpur, S.A. Medicinal plants with antithrombotic property in Persian medicine: A mechanistic review. J. Thromb. Thrombolysis 2018, 45, 158–179. [Google Scholar] [CrossRef]
- Kubatka, P.; Mazurakova, A.; Koklesova, L.; Samec, M.; Sokol, J.; Samuel, S.M.; Kudela, E.; Biringer, K.; Bugos, O.; Pec, M.; et al. Antithrombotic and antiplatelet effects of plant-derived compounds: A great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine. EPMA J. 2022, 13, 407–431. [Google Scholar] [CrossRef]
- Bojić, M.; Maleš, Ž.; Antolić, A.; Babić, I.; Tomičić, M. Antithrombotic activity of flavonoids and polyphenols rich plant species. Acta Pharm. 2019, 69, 483–495. [Google Scholar] [CrossRef]
- Aly, S.H.; Thabet, A.A.; Bahgat, D.M.; Mahmoud, O.A.; Elhawary, E.A.; El-Nashar, H.A.; Eldahshan, O.A. Plant-Derived Compounds: A Potential Treasure for Development of Analgesic and Antinociceptive Therapeutics. Phytother. Res. 2026, 40, 35–63. [Google Scholar] [CrossRef]
- Park, S.-H.; Sim, Y.-B.; Kim, S.-M.; Kang, Y.-J.; Lee, J.-K.; Lim, S.-S.; Kim, J.-K.; Suh, H.-W. Antinociceptive profiles and mechanisms of orally administered Aster Koraiensis extract in the mouse. J. Med. Plants Res. 2011, 5, 6267–6272. [Google Scholar] [CrossRef]
- Ribeiro, G.d.J.G.; De Souza, E.E.; Palmisano, G.; Durigon, E.L.; Liebau, E.; Wrenger, C. Plant-derived extracts and natural products with antiviral activity. Front. Virol. 2025, 5, 1632734. [Google Scholar] [CrossRef]
- Denaro, M.; Smeriglio, A.; Barreca, D.; De Francesco, C.; Occhiuto, C.; Milano, G.; Trombetta, D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother. Res. 2020, 34, 742–768. [Google Scholar] [CrossRef]
- Saifulazmi, N.F.; Rohani, E.R.; Harun, S.; Bunawan, H.; Hamezah, H.S.; Nor Muhammad, N.A.; Azizan, K.A.; Ahmed, Q.U.; Fakurazi, S.; Mediani, A.; et al. A Review with Updated Perspectives on the Antiviral Potentials of Traditional Medicinal Plants and Their Prospects in Antiviral Therapy. Life 2022, 12, 1287. [Google Scholar] [CrossRef]
- Sharma, S.; Ghosh, P.; Kar, C.; Ghosh, R. Anticipating Viral Challenges: A Perspective on Phytochemicals against Existing and Emerging Viruses. Anti-Infective Agents 2025, 23, E22113525312781. [Google Scholar] [CrossRef]
- Santamaria-Castro, I.; Leiva-Rebollo, R.; Marín-Wong, S.; Jimenez-Guardeño, J.M.; Ortega-Prieto, A.M. Molecular mechanisms of SARS-CoV-2 entry: Implications for biomedical strategies. Microbiol. Mol. Biol. Rev. 2025, 89, e0026024. [Google Scholar] [CrossRef] [PubMed]
- Artero-Castro, A.; Rodriguez-Jimenez, F.J.; Jendelova, P.; VanderWall, K.B.; Meyer, J.S.; Erceg, S. Glaucoma as a Neurodegenerative Disease Caused by Intrinsic Vulnerability Factors. Prog. Neurobiol. 2020, 193, 101817. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.W.; Chan, N.C.; Sadun, A.A. Glaucoma as Neurodegeneration in the Brain. Eye Brain 2021, 13, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.Y.-C.; Liu, P.-K.; Wen, Y.-T.; Quinn, P.M.; Levi, S.R.; Wang, N.-K.; Tsai, R.-K. Role of oxidative stress in ocular diseases associated with retinal ganglion cells degeneration. Antioxidants 2021, 10, 1948. [Google Scholar] [CrossRef]
- Kim, K.-A.; Kang, K.D.; Lee, E.H.; Nho, C.W.; Jung, S.H. Edible wild vegetable, Gymnaster koraiensis protects retinal ganglion cells against oxidative stress. Food Chem. Toxicol. 2011, 49, 2131–2143. [Google Scholar] [CrossRef] [PubMed]
- Kocak, M.; Ezazi Erdi, S.; Jorba, G.; Maestro, I.; Farrés, J.; Kirkin, V.; Martinez, A.; Pless, O. Targeting autophagy in disease: Established and new strategies. Autophagy 2022, 18, 473–495. [Google Scholar] [CrossRef]
- Condello, M.; Pellegrini, E.; Caraglia, M.; Meschini, S. Targeting autophagy to overcome human diseases. Int. J. Mol. Sci. 2019, 20, 725. [Google Scholar] [CrossRef]
- Zhang, L.; Park, J.Y.; Zhao, D.; Kwon, H.C.; Yang, H.O. Neuroprotective effect of Astersaponin I against Parkinson’s disease through autophagy induction. Biomol. Ther. 2021, 29, 615. [Google Scholar] [CrossRef]
- Tripathi, P.N.; Lodhi, A.; Rai, S.N.; Nandi, N.K.; Dumoga, S.; Yadav, P.; Tiwari, A.K.; Singh, S.K.; El-Shorbagi, A.-N.A.; Chaudhary, S. Review of pharmacotherapeutic targets in Alzheimer’s disease and its management using traditional medicinal plants. Degener. Neurol. Neuromuscul. Dis. 2024, 14, 47–74. [Google Scholar] [CrossRef] [PubMed]
- Jaqua, E.E.; Tran, M.-L.N.; Hanna, M. Alzheimer Disease: Treatment of cognitive and functional symptoms. Am. Fam. Physician 2024, 110, 281–293. [Google Scholar]
- Ortiz-Islas, E.; Montes, P.; Rodríguez-Pérez, C.E.; Ruiz-Sánchez, E.; Sánchez-Barbosa, T.; Pichardo-Rojas, D.; Zavala-Tecuapetla, C.; Carvajal-Aguilera, K.; Campos-Peña, V. Evolution of Alzheimer’s Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy. Pharmaceutics 2025, 17, 128. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Gajowniczek-Ałasa, D.; Pawlikowska-Pawlęga, B.; Szwajgier, D. The Potential Role of Phytochemicals in Alzheimer’s Disease. Nutrients 2025, 17, 653. [Google Scholar] [CrossRef]
- Yu, J.; Wu, X.; Liu, C.; Newmaster, S.; Ragupathy, S.; Kress, W.J. Progress in the use of DNA barcodes in the identification and classification of medicinal plants. Ecotoxicol. Environ. Saf. 2021, 208, 111691. [Google Scholar] [CrossRef]
- Raclariu, A.C.; Heinrich, M.; Ichim, M.C.; de Boer, H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem. Anal. 2018, 29, 123–128. [Google Scholar] [CrossRef]
- Huang, L.; Nie, L.; Wang, X.; Wu, Y.; Dong, J.; Kang, S.; Wei, F.; Ma, S. Rapid Authentication of Medicinal Plants: Exploring the Applicability of Mass Spectrometry Imaging for Species Discrimination. J. Am. Soc. Mass Spectrom. 2024, 35, 2187–2196. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawab, M. Considerations to Be Taken When Carrying Out Medicinal Plant Research—What We Learn from an Insight into the IC50 Values, Bioavailability and Clinical Efficacy of Exemplary Anti-Inflammatory Herbal Components. Pharmaceuticals 2021, 14, 437. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi Abdolmaleky, H.; Zhou, J.-R. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants 2024, 13, 985. [Google Scholar] [CrossRef] [PubMed]
- Karalija, E.; Macanović, A.; Ibragić, S. Revisiting Traditional Medicinal Plants: Integrating Multiomics, In Vitro Culture, and Elicitation to Unlock Bioactive Potential. Plants 2025, 14, 2029. [Google Scholar] [CrossRef]



| Name of the Compound | Identified from | Refs. |
|---|---|---|
| (1R,5S,6R,7S,9S,10R)-1,6,9-trihydroxy-eudesm-3-ene-6-O-β-d-glucopyranoside | Dried flowers and leaves | [4,26] |
| (1R,5S,6R,7S,9S,10R)-9-O-(E-feruloyl)-1,6,9-trihydroxy-eudesm-3-ene-6-O-β-d-glucopyranoside | Leaves | [26] |
| (1R,5S,6R,7S,9S,10R)-9-O-(E-p-coumaroyl)-1,6,9-trihydroxy-eudesm-3-ene-6-O-β-d-glucopyranoside | Leaves | [26] |
| (1R,5S,6R,7S,9S,10R)-9-O-(Z-p-coumaroyl)-1,6,9-trihydroxy-eudesm-3-ene-6-O-β-d-glucopyranoside | Leaves | [26] |
| (1R,5S,6R,7S,9S,10S)-1,6,9-trihydroxy-eudesm-3-ene-1,6-di-O-β-d-glucopyranoside | Dried flowers and leaves | [4,26] |
| (1R,5S,6S,7R,9S,10R)-1,6,9,11-tetrahydroxy-eudesm-3-ene-6-O-β-d-glucopyranoside | Dried flowers and leaves | [4,26] |
| (1R,5S,6S,7R,9S,10S)-1,6,9,11-tetrahydroxy-eudesm-3-ene-1,6-di-O—β-d-glucopyranoside | Leaves | [26] |
| 2R,3S)-6-acetyl-2-[1-O-(β-d-glucopyranosyl)-2-propenyl]-5-hydroxy-3-methoxy-2,3-dihydrobenzofuran | Dried plant material and leaves | [6,8] |
| (2S,8E)-2-hydroxydeca-8-en-4,6-diynoic acid | Leaf extract | [6] |
| (3S,5R,6R,7E,9S)-megastigman-7-ene-3,5,6,9-tetrol 3-O-β-d-glucopyranoside | Aerial parts | [21] |
| 1-(3,4-dihydroxycinnamoyl)cyclopentane-2,3-diol | Dried flower | [4] |
| 1,9,16-heptadecatriene-4,6-diyn-3,8-diol | Roots, G. koraiensis | [17] |
| 1-O-syringoyl-β-d-glucopyranoside | Aerial parts | [21] |
| 1β,4β,13-trihydroxy-trans-eudesm-6-ene-1-O-β-glucopyranoside | Aerial parts and dried flowers | [21] |
| 1β,6β,9α,11-tetrahydroxy-trans-eudesm-3-ene-6-O-β-d-glucopyranoside | Leaves | [4,26] |
| 2(E),9(Z),16-heptadecatriene-4,6-diyn-8-ol | Dried flower | [4] |
| 2,9,16-heptadecatrien-4,6-diyn-8-ol | Roots, G. koraiensis | [17] |
| 3,5-di-O-caffeoylquinic acid | Aerial parts (flowers, leaves, and stems), dried plant material, and leaves | [5,8,26] |
| 3,8-dihydroxydec-9-en-4,6-yne-1-O-β-d-glucopyranoside | Aerial parts | [21] |
| 3-O-β-D-glucopyranosyl-2β,3β,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-α-L-rhamnopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-[β-d-xylopyranosyl-(1→3)]-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside | Leaf extract | [6] |
| 4,5-di-O-caffeoylquinic acid | Dried plant material and leaves | [8,26] |
| 4-O-caffeoylquinic acid | Leaves | [10] |
| 5-O-caffeoylquinic acid | Dried plant material | [8] |
| 6″-O-(syringoyl)-1β,6β,9β,11-tetrahydroxy-trans-eudesm-3-en-6-O-β-d-glucopyranoside | Aerial parts | [21] |
| 8E-decaene-4,6-diyn-1-O-β-d-glucopyranoside | Dried plant material | [8] |
| 9α-O-(E-p-hydroxycinnamoyl)-1α,6α-11-trihydroxy-trans-eudesm-3-en-6-O-β-d-glucopyranoside | Dried plant material, aerial parts | [8,21] |
| 9β-O-(E-p-hydroxycinnamoyl)-1β,6β-dihydroxy-trans-eudesm-3-en-6-O-β-d-glucopyranoside | Dried plant material, aerial parts | [8,21] |
| Alangioside A | Aerial parts | [21] |
| Apigenin | Dried flower | [4] |
| Apigenin-7-O-β-d-glucuronide methyl ester | Dried flower | [4] |
| Apigenin-7-O-β-d-glucuronopyranoside | Dried flower | [4] |
| Apigenin-7-O-glucoside | Leaves | [10] |
| Askoseoside A | Dried flower | [4] |
| Askoseoside B | Dried flower | [4] |
| Askoseoside C | Dried flower | [4] |
| Askoseoside D | Dried flower | [4] |
| Astersaponin I | Extract, whole plant, and leaves | [6,22,27] |
| Astersaponin J | Leaves | [6,27] |
| Astersaponin K | Leaf extract | [27] |
| Astersaponin L | Leaf extract | [6,27] |
| Cannabiside D | Aerial parts | [21] |
| Carpeside B | Aerial parts | [21] |
| Chlorogenic acid | Aerial parts (flowers, leaves, and stems) | [5] |
| Citrusin C | Aerial parts | [21] |
| Conyzasaponin J | Leaf extract | [6,27] |
| Daucosterol | Dried plant material | [8] |
| Dehydrochorismic acid methyl ester | Leaf extract | [6] |
| Eugenol rutinoside | Aerial parts | [21] |
| Eugenyl-4-O-β-d-glucopyranoside | Dried plant material | [8] |
| Gymnasterkoreaside A | Aerial parts, dried plant material, leaves, and roots of G. koraiensis | [6,8,18,21] |
| Gymnasterkoreaside B | Roots of G. koraiensis | [18] |
| Gymnasterkoreaside C | Leaf extract | [6] |
| Gymnasterkoreayne A | Leaf extract and roots of G. koraiensis | [6,17] |
| Gymnasterkoreayne B | Aerial parts, dried plant material, roots of G. koraiensis, and dried flowers | [4,8,17,21] |
| Gymnasterkoreayne C | Dried flowers and roots of G. koraiensis | [4,17] |
| Gymnasterkoreayne D | Aerial parts, dried plant material, and roots of G. koraiensis | [8,17,21] |
| Gymnasterkoreayne E | Dried flowers, aerial parts, dried plant material, and roots of G. koraiensis | [4,17,21] |
| Gymnasterkoreayne F | Roots of G. koraiensis | [17] |
| Gymnasterkoreayne G | Dried flower | [4] |
| Isochaftoside | Leaves | [10] |
| Isochlorogenic acid A | Leaves | [10] |
| Isochlorogenic acid B | Leaves | [10] |
| Isochlorogenic acid C | Leaves | [10] |
| Isoquercitrin | Dried plant material, aerial parts | [8,21] |
| Isorhamnetin-3-O-β-d-glucopyranoside | Dried plant material, aerial parts, and dried flowers | [4,8] |
| Isorhamnetin-3-O-β-d-rutinoside | Dried plant material and dried flowers | [4,8] |
| Kaempferol-3-O-β-d-rutinoside | Dried plant material | [8] |
| Larycitrin-3-O-α-L-rhamnopyranoside | Dried plant material | [8] |
| Linarin | Aerial parts | [21] |
| Luteolin | Leaves | [10] |
| Luteolin 7-O-glucoside | Leaves | [10] |
| Neochlorogenic acid | Leaves | [10] |
| Phlomisiomoside | Aerial parts | [21] |
| Quercetin-3-O-β-d-glucopyranoside | Dried flower | [4] |
| Quercetin-3-O-β-d-rutinoside | Dried flower | [4] |
| Quercetin-3-O-α-L-arabinopyranoside | Dried plant material | [8] |
| Scopolin | Aerial parts | [21] |
| Spatholosineside A | Aerial parts, leaf extract | [6,21] |
| α-spinasterol | Dried plant material | [8] |
| Extract Type | Parts Used | Assay, Model, and Dose | Major Findings | Ref. |
|---|---|---|---|---|
| Ethanol | Leaves and flowers | Extract (10, 5, 1, 0.5, and 0.1 mg/mL) TEAC | Scavenging (g TE/mL): 10 = 2.9, 5 = 2.7, 1 = 0.9, 0.5 = 0.4, 0.1 = 0.2 | [25] |
| Extract (10, 5, 1, 0.5, and 0.1 mg/mL) FRAP | Scavenging (nM FeSO4/mL): 10 = 9.7, 5 = 7.8, 1 = 2.0, 0.5 = 1.0, 0.1 = 0.2 | |||
| Extract (10, 5, 1, 0.5, and 0.1 mg/mL) DPPH | Scavenging (mg ascorbic acid/g): 10 = 118.4, 5 = 117.8, 1 = 112.7, 0.5 = 80.0, 0.1 = 30.8 | |||
| Ethanol (95%) # | Dried leaves | RAW 264.7 cells + LPS (1 μg/mL, 1 h) + compounds 1–9 (100 μM), 24 h | Compound 7 IC50 (μM) NO = 95.7and PGE2 = 111.6 Other compounds inactive | [26] |
| Ethanol | Leaves and flowers | ARPE-19 cells + TNF-α (10 μg/mL) or thapsigargin (5 μmol/L) | TNF-α: ↓ IL-1β, ↓ TNF-α, ↓ IL-8, ↓ IL-6, ↓ MMP-9, ↓ P-p-38, ↓ P-p-ERK. Thapsigargin: ↓ VEGF-α, ↓ calcium ion efflux. | [25] |
| BALB/c mice, scopolamine (200 μL, i.p., twice) daily + A. koraiensis extract (AKE) (100, 50, or 10 mg/kg), once/day, 2 weeks | Ameliorated corneal damage, ↑ tear production (dose-dependent), reversed TBUT (100 mg/kg), and inhibited thinning of corneal epithelium. Corneal tissue and lacrimal glands: ↓ IL-1β, ↓ IFN-γ, ↓ TNF-α, ↓ MMP-9 Lacrimal gland: ↓ p-IkB/ IkB, ↓ p-NF-kB/NF-kB | |||
| Ethanol (95%) * | Leaves | HaCaT keratinocytes + extract (125, 250, and 500 μM) and compounds (0.625, 1.25, 5, and 10 μM, 1 h) before treatment with TNF-α or IFN-γ (10 ng/mL), 24 h | ↓ IL-1 β, ↓ TNF-α, ↓ IL-6 | [6] |
| Extract Type | Parts Used | Model and Dose | Major Findings | Ref. |
|---|---|---|---|---|
| Ethanol | Foliage part | 3T3-L1 cells + extract (10, 20, 40, and 80 μg/mL) + IBMX 0.1% (0.5 mM), + DEX 0.05% (2.5 mM), insulin 0.1% (10 mg/mL) | ↓ lipid accumulation in cells, ↓ C/EBPα, ↑ p-ACC/ACC, ↓ SREBP-1, ↓ FAS, ↓ TG in media | [42] |
| C57BL/6N mice, normal group, HFD group, HFD + Orlistat (30 mg/kg), HFD + extract (100 mg/kg), oral administration, 8 weeks | ↓ body weight, ↓ epididymal, perirenal, and mesenteric WAT. In serum: ↓ TG, ↓ TC, ↓ LDL-C, ↓ leptin, ↓ ghrelin, ↑ adiponectin. Epididymal WAT: ↓ size and number of adipocytes, ↓ PPAR-γ, ↓ C/EBPα, ↓ SREBP-1, ↓ FAS, ↑ p-AMPK/AMPK, ↑ p-ACC/ACC, ↑ CPT1. ↓ MDA, ↑ NQO1, ↑ HO-1, ↑ SOD2, ↓ serum IL-1β. WAT: ↓ IL-1β, ↓ IFNγ, ↓ M1-specific markers. Improved fasting glucose. Energy expenditure: ↑ p-AMPK, ↑ Cyto C, ↑ PRDM16, ↓ UCP1, ↑ PPARα, ↑ PGC1α, ↑ Nrf2, ↑ TFAM, ↑ CPT2, ↑ UCP3, ↑ ATGL, ↑ HSL, ↑ PEPCK, ↓ PDK4. |
| Extract Type | Parts Used | Model and Dose | Major Findings | Ref. |
|---|---|---|---|---|
| Ethanol (94%) | Aerial parts | Hepa1c1c7 cells (0–125 μM, GKB), HepG2 cells (50 μM GKB, 24 h), for GSH, pretreatment with 10 μM GKB, 24 h + 40 μM menadione, 3 h, cell viability (pretreated with GKB 0.8, 1.6, 3.1, 6.3, 12.5 μM), 24 h + menadione (40 μM), 3 h | ↑ QR in Hepa1c1c7 cells HepG2 cells: ↑ QR, ↑ HO-1, ↑ GSR, ↑ Nrf2 and its nuclear translocation, ↑ GSH Protection against menadione induced cytotoxicity | [20] |
| Certified Disease-Free Fisher 344 (CDF 344) rats; control, sulforaphane (500 μmol/kg BW); GKB (1000 and 500 μmol/kg of BW), 5 days | ↑ QR activity in liver. Phase II detoxification enzymes: ↑ NQO1 (QR), ↑ Gsta2, ↑ Ugt1a6, ↑ Gsta3, ↑ Ugt2b17, ↑ Ugt2a1, ↑ GSR | |||
| EA | -- | HepG2 cells + t-BHP (200 μM) + extract, EA extract, hexane extract (7.5, 15, 30, and 60 μM), DCQA (1.25, 2.5, 5, 10, 20, 40, 80), 24 h | ↑ cell viability, ↑ GSH, Reduced DNA damage, ↓ apoptosis | [47] |
| Hexane | HepG2 cells + acetaminophen (40 mM) + extract, EA extract, hexane extract (3.5, 7.5, 15, 30, and 60 μM), GKB (1.25, 2.5, 5, 10, 20, 40, 80), 24 h | ↑ cell viability, ↑ GSH, ↓ sub G0/G1 content, ↓ CYP 3A4 activity, ↓ apoptosis | ||
| Ethanol (95%) | Flowers | C57/BL6J + normal group, HF group, HF + silymarin (200 mg/kg), HF + extract (125, 250, and 500 mg/kg), 12 weeks | ↓ body weight gain (dose-dependent), ↓ liver fat, ↓ epididymal fat, ↓ mesenteric fat, ↓ ALT, ↓ AST, ↓ TG, ↓ TC, ↓ LDL-C, ↓ NAFLD activity score, ↓ lobular inflammation score, ↓ ballooning score, ↓ subsection steatosis score | [48] |
| Extract Type | Parts Used | Model and Dose | Major Findings | Ref. |
|---|---|---|---|---|
| Ethanolic | Dried roots | Mouse leukemia L1210 cells, compounds treatment (1–8) $, 48 h | ED50 (μg/mL) value: C3 (2.1) and C8 (0.12). C2 (3.3), C4 (7.7), C5 (9.6), C6 (3.1), C7 (10.4), Cisplatin (0.02) | [17] |
| Ethyl acetate | Dried arial parts | Recombinant human AKR1B10 | 3,5-O-dicaffeoyl-epi-quinic acid inhibited AKR1B10 | [55] |
| Ethanol (70%) | Dried flower | JB6 Cl41 cell + EGF or TPA (10 ng/mL) + each compound (50 μM) *, two weeks | Inhibited cell transformation | [4] |
| NHDF + compounds 9, 14, and 22 ** (6.25, 12.5, 25, and 50 μM), 48 h | No significant effect on cell viability | |||
| Ethanol | Dried plant material | C57BL/6 mice, GKB or GKB-rich EE = GE (500 or 250 μmol/kg diet daily) + AOM (10 mg/kg) i.p. day 0 and DSS 7–13 days | ↑ NQO1 = GE > GKB, ↓ DAI score = GE > GKB, ↓ adenocarcinomas multiplicity 90% high dose GE, ↓ COX-2 in tumor tissue, ↓ IL-6 by GE (both doses) | [56] |
| Extract Type | Parts Used | Model and Dose | Major Findings | Ref. |
|---|---|---|---|---|
| Ethanol (95%) | Flowers | ACE2-positive (ACE2+) cells | IC50 values: astersaponin I = 1.46 μM, astersaponin J = 2.92 μM, astersaponin K = 3.16 μM, astersaponin L = no activity, compound 5 = 6.19 μM, conyzasaponin J = 7.26 μM | [27] |
| ACE2/TMPRSS2+ H1299 cells | IC50 value: astersaponin J = 2.96 μM | |||
| Ethanol (95%) | Leaves | ACE2+ cells | IC50 values: extract = 48.4 μg/mL, astersaponin I =1.60 μM | [16] |
| ACE2/TMPRSS2+ | IC50 values: extract = 62.4 μg/mL, astersaponin I = 2.89 μM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sharma, A.; Lee, H.-J. Aster koraiensis Nakai: Insights into Its Phytoconstituents and Pharmacological Properties. Pharmaceutics 2026, 18, 182. https://doi.org/10.3390/pharmaceutics18020182
Sharma A, Lee H-J. Aster koraiensis Nakai: Insights into Its Phytoconstituents and Pharmacological Properties. Pharmaceutics. 2026; 18(2):182. https://doi.org/10.3390/pharmaceutics18020182
Chicago/Turabian StyleSharma, Anshul, and Hae-Jeung Lee. 2026. "Aster koraiensis Nakai: Insights into Its Phytoconstituents and Pharmacological Properties" Pharmaceutics 18, no. 2: 182. https://doi.org/10.3390/pharmaceutics18020182
APA StyleSharma, A., & Lee, H.-J. (2026). Aster koraiensis Nakai: Insights into Its Phytoconstituents and Pharmacological Properties. Pharmaceutics, 18(2), 182. https://doi.org/10.3390/pharmaceutics18020182

