Ketamine in Diabetes Care: Metabolic Insights and Clinical Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Eligibility
2.2. Information Sources and Search Strategy
2.3. Study Selection
2.4. Data Charting and Synthesis
3. Results
3.1. T1DM
3.2. T2DM
3.3. GDM
3.4. DN
3.5. Animal Models
4. Discussion
4.1. Pharmacology and Population Pharmacokinetics
4.1.1. Pharmacodynamic Profile
4.1.2. Pharmacokinetics with Relevance to Diabetes
4.1.3. Elimination and Clearance
4.1.4. Diabetes-Specific popPK/PK-PD Framework for Ketamine (Proposed for Future Research)
- (1)
- Structural models
- i.
- Racemic IV ketamine: Future models may use a two-compartment disposition structure with linear elimination. Between-subject variability (BSV) could be modeled as log-normal on clearance (CL), central volume (V1), intercompartmental clearance (Q), and peripheral volume (V2). Inter-occasion variability (IOV) on CL and V1 may be necessary for repeated infusions. If chiral bioanalysis is available, stereospecific extensions (separate CL and V1 for S- and R-ketamine and formation clearances) are recommended; otherwise, the racemate may be modeled as a single analyte.
- ii.
- IN esketamine: A prospective model could include an absorption compartment with absolute bioavailability (F), first-order absorption rate (Ka), and a lag time to account for device- and administration-related variability. Distribution would follow a two-compartment model. Zero-order input or mixed-order input may be evaluated in sensitivity analyses for mucosal saturation or device pooling.
- iii.
- Metabolites (norketamine, HNK): Joint parent–metabolite modeling using metabolic formation clearances and first-order elimination could be used. If chiral measurements are available, parallel S- and R-norketamine/HNK pathways are recommended. This structure would allow unbiased estimation of parent CL and enable exposure–response assessment for metabolites with putative antidepressant and anti-inflammatory activity.
- iv.
- Error models and below-limit-of-quantification (BLQ): Combined additive–proportional residual error models may be appropriate. BLQ data could be handled using the M3 likelihood method.
- v.
- Allometry: Theory-based allometric scaling (CL and Q scaled to body weight^0.75; V1, V2 to weight^1.0) may be applied, with sensitivity analyses for extreme BMI values.
- (2)
- Pre-specified covariates
- i.
- Size: Body weight (kg) via allometry; BMI may be an exploratory predictor of F and Ka for IN dosing.
- ii.
- Renal function: eGFR may influence metabolite clearances and, secondarily, parent CL. A nephropathy indicator (yes/no) may capture non-linear impairment beyond eGFR.
- iii.
- Hepatic function: ALT, AST, and bilirubin could inform parent CL and F (IN). Hepatic impairment categories (mild/moderate) may also be incorporated.
- iv.
- Inflammation: CRP and IL-6 may serve as time-varying covariates on CL to represent cytokine-mediated CYP down-regulation (e.g., CL = CL_pop × (1 − θ_IL6 × (IL-6 − IL-6_ref)).
- v.
- Glycemic control: HbA1c, diabetes type/duration, and insulin regimen may influence CL/F and PD baselines.
- vi.
- Pharmacogenomics: Variants such as CYP2B6*6, CYP3A4*22, BDNF Val66Met, and COMT Val158Met may be evaluated as modifiers of popPK/PK-PD responses.
- vii.
- Concomitant medications: Strong CYP3A4/2B6 inhibitors/inducers and antidiabetic therapies (metformin, GLP-1 receptor agonists, SGLT2 inhibitors, insulin) should be examined as covariates.
- viii.
- Route/formulation: Indicators for IV/IN/PO/IM may be included; for IN, device type and administration technique (unilateral vs. bilateral) could be modeled.
- (3)
- Clinic-feasible sampling design
- i.
- IV TRD infusions: Pre-dose, 10–15 min, end infusion (~40–50 min), and 2–4 h.
- ii.
- IN esketamine: ~15, 45, 120, and 240 min.
- (4)
- PK–PD endpoints and models
- i.
- Antidepressant response: MADRS/HDRS with E_max or indirect response models.
- ii.
- Analgesia: Pain VAS or neuropathy scores using E_max or ordered categorical models.
- iii.
- Hemodynamics: BP/HR linked to concentrations with effect compartments.
- iv.
- Glycemia: Indirect response models for glucose turnover with optional mixture components.
- v.
- Safety: Dissociation, urinary symptoms, cognitive change, LFTs, and eGFR as PD outcomes.
- (5)
- Estimation, qualification, and missing data
- (6)
- Simulation and decision support
- i.
- Drug–drug interactions (DDIs) (strong CYP inhibitors/inducers, grapefruit juice).
- ii.
- Disease-state scenarios (eGFR strata, CRP/IL-6 quartiles, HbA1c levels).
- iii.
- MIPD nomograms for safe dosing across patient subgroups.
- iv.
- Benefit–risk curves linking exposure to clinical response and AEs.
- (7)
- Operational considerations
4.2. Systemic Effects
4.2.1. Cardiovascular Effects
4.2.2. Renal Effects
4.2.3. Neurocognitive Effects
4.2.4. Overall Systemic Profile
4.3. Clinical Applications in Diabetes
4.3.1. Neuropathic Pain
4.3.2. Depression in Diabetes
4.4. Metabolic Implications and Therapeutic Limitations
Mechanistic Considerations for Hyperglycemic and Hypoglycemic Responses
4.5. Place in Therapy: Model-Informed, Multidisciplinary, and Equitable
Practical Monitoring and Prescribing Considerations in Diabetes
4.6. Limitations
5. Conclusions
6. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADA | American Diabetes Association |
| AEs | Adverse events |
| AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
| ALT | Alanine Aminotransferase |
| AST | Aspartate Aminotransferase |
| AUC | Area Under Curve |
| BDNF | Brain-Derived Neurotrophic Factor |
| BLQ | Below-limit-of-quantification |
| BMI | Body mass index |
| BP | Blood pressure |
| BSV | Between-subject variability |
| CKD | Chronic Kidney Disease |
| CK-MB | Creatine Kinase–Myocardial Band |
| CL | Clearance |
| C_max | Maximum Concentration |
| CNS | Central Nervous System |
| COMT | Catechol-O-Methyltransferase |
| CRP | C-reactive protein |
| CVD | Cardiovascular disease |
| CYP2B6 | Cytochrome P450 Family 2 Subfamily B Member 6 |
| CYP2C9 | Cytochrome P450 Family 2 Subfamily C Member 9 |
| CYP3A4 | Cytochrome P450 Family 3 Subfamily A Member 4 |
| CYP450 | Cytochrome P450 |
| DDI | Drug–drug interaction |
| DHNK | Dehydroxynorketamine |
| DN | Diabetic Neuropathy |
| eGFR | Estimated Glomerular Filtration Rate |
| E_max | Maximum effect |
| FDA | Food and Drug Administration |
| FOCEI | First-Order Conditional Estimation with Interaction |
| GABA | Gamma-Aminobutyric Acid |
| GDM | Gestational diabetes |
| GLP-1 | Glucagon-Like Peptide-1 |
| HbA1c | Hemoglobin A1c |
| HCN | Hyperpolarization-activated cyclic nucleotide-gated |
| HDRS | Hamilton Depression Rating Scale |
| HNK | Hydroxynorketamine |
| HPA | Hypothalamic–Pituitary–Adrenal (axis) |
| HR | Heart Rate |
| IL-1β | Interleukin-1 beta |
| IL-6 | Interleukin-6 |
| IM | Intramuscular |
| IN | Intranasal |
| IOV | Inter-occasion variability |
| i.p. | Intraperitoneal |
| I/R | Ischemia/Reperfusion |
| IV | Intravenous |
| KAP | Ketamine-Assisted Psychotherapy |
| KET | Ketamine |
| LDH | Lactate Dehydrogenase |
| LFT | Liver Function Tests |
| MADRS | Montgomery–Åsberg Depression Rating Scale |
| MCAo | Middle Cerebral Artery Occlusion |
| MDD | Major Depressive Disorder |
| MIPD | Model-informed precision dosing |
| mTor | Mammalian target of rapamycin |
| NMDA | N-Methyl-D-Aspartate |
| norKET | Norketamine |
| PCP | Phencyclidine |
| pcVPC | Prediction-Corrected Visual Predictive Check |
| PK | Pharmacokinetic |
| PD | Pharmacodynamic |
| PK-PD | Pharmacokinetic-pharmacodynamic |
| PO | Per os (by mouth) |
| popPK | Population pharmacokinetics |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| RCT | Randomized controlled trial |
| SAEM | Stochastic Approximation Expectation-Maximization |
| SBP | Systolic Blood Pressure |
| s.c. | Subcutaneous |
| SGLT2 | Sodium-Glucose Co-Transporter 2 |
| SNRI | Serotonin-Norepinephrine Reuptake Inhibitor |
| SSRI | Selective Serotonin Reuptake Inhibitor |
| T1DM | Type 1 Diabetes Mellitus |
| T2DM | Type 2 Diabetes Mellitus |
| TCA | Tricyclic Antidepressant |
| T_max | Time to maximum concentration |
| TNF-α | Tumor Necrosis Factor-alpha |
| TRD | Treatment-Resistant Depression |
| VAS | Visual Analog Scale for pain |
| VPC | Visual Predictive Check |
| WHO | World Health Organization |
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013, 37, S81–S90. [Google Scholar] [CrossRef]
- World Health Organization. Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 28 September 2025).
- Aschner, P.; Gagliardino, J.J.; Ilkova, H.; Lavalle, F.; Ramachandran, A.; Mbanya, J.C.; Shestakova, M.; Bourhis, Y.; Chantelot, J.-M.; Chan, J.C.N. High Prevalence of Depressive Symptoms in Patients with Type 1 and Type 2 Diabetes in Developing Countries: Results From the International Diabetes Management Practices Study. Diabetes Care 2021, 44, 1100–1107. [Google Scholar] [CrossRef]
- Fanelli, G.; Raschi, E.; Hafez, G.; Matura, S.; Schiweck, C.; Poluzzi, E.; Lunghi, C. The interface of Depression and Diabetes: Treatment Considerations. Transl. Psychiatry 2025, 15, 22. [Google Scholar] [CrossRef]
- Herder, C.; Zhu, A.; Schmitt, A.; Spagnuolo, M.C.; Kulzer, B.; Roden, M.; Hermanns, N.; Ehrmann, D. Associations between Biomarkers of Inflammation and Depressive Symptoms—Potential Differences between Diabetes Types and Symptom Clusters of Depression. Transl. Psychiatry 2025, 15, 9. [Google Scholar] [CrossRef]
- Zarate, C.A., Jr.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A Randomized Trial of an N-Methyl-D-Aspartate Antagonist in Treatment-Resistant Major Depression. Arch. Gen. Psychiatry 2006, 63, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Sleigh, J.; Harvey, M.; Voss, L.; Denny, B. Ketamine—More mechanisms of action than just NMDA blockade. Trends Anaesth. Crit. Care 2014, 4, 76–81. [Google Scholar] [CrossRef]
- Domino, E.F. Taming the ketamine tiger, 1965. Anesthesiology 2010, 113, 678–684. [Google Scholar] [CrossRef]
- Yavi, M.; Lee, H.; Henter, I.D.; Park, L.T.; Zarate, C.A., Jr. Ketamine treatment for depression: A review. Discov. Ment. Health 2022, 2, 9. [Google Scholar] [CrossRef]
- Balzer, N.; McLeod, S.L.; Walsh, C.; Grewal, K. Low-dose ketamine for acute pain control in the emergency department: A systematic review and meta-analysis. Acad. Emerg. Med. 2021, 28, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Israel, J.E.; St Pierre, S.; Ellis, E.; Hanukaai, J.S.; Noor, N.; Varrassi, G.; Wells, M.; Kaye, A.D. Ketamine for the treatment of chronic pain: A comprehensive review. Health Psychol. Res. 2021, 9, 25535. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.; Howes, S.; Chilton, R. Ketamine in insulin resistance: Pharmacokinetics, cardiovascular implications and cellular effects on cardiomyocytes. Diabetes Obes. Metab. 2025, 27, 2339–2341. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Le, G.H.; Mansur, R.; Rosenblat, J.D.; Kwan, A.T.H.; Teopiz, K.M.; McIntyre, R.S. Effects of ketamine on metabolic parameters in depressive disorders: A systematic review. J. Affect. Disord. 2024, 367, 164–173. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Lortrakul, J.; Pattanaseri, K. A case report of ketamine-induced hypoglycemia in treatment-resistant depression. Clin. Psychopharmacol. Neurosci. 2024, 22, 541–543. [Google Scholar] [CrossRef] [PubMed]
- Easterly, C.W.; Taylor, R. Ketamine augmentation of electroconvulsive therapy in an adolescent patient with suicidal ideation, disordered eating, and type 1 diabetes mellitus: A case report. J. ECT 2023, 39, 63–64. [Google Scholar] [CrossRef]
- Alzahid, A.; Alghamdi, M.; Alkhadra, F.; Almulihi, Q.; Assiri, M.; Almulhim, M.; Alhawas, A. Isolated subtalar dislocations: Insights from a case study and literature review. Med. Arch. 2024, 78, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.P.; Jones, B.; Walker, K.; Berry, M.S. Case report: Adult with bipolar disorder and autism treated with ketamine-assisted psychotherapy. Front. Psychiatry 2024, 15, 1322679. [Google Scholar] [CrossRef]
- Han, T.; Chen, Q.; Huang, J.; Zhang, J.; Li, A.; Xu, W.; Peng, Z.; Li, Z.; Chen, L. Low-dose esketamine with sufentanil for postcesarean analgesia in women with gestational diabetes mellitus: A prospective, randomized, double-blind study. Front. Endocrinol. 2023, 14, 1202734. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Jude, E.B. Novel treatment modalities for painful diabetic neuropathy. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 287–293. [Google Scholar] [CrossRef]
- Elbeddini, A.; Tanvir, A.; Yilmaz, O.; Rahman, Y.; Mongon, R. Assessing the efficacy of topical formulations in diabetic neuropathy: A narrative review. J. Diabetes Metab. Disord. 2024, 23, 1613–1620. [Google Scholar] [CrossRef]
- Yilmaz, M.; Dokuyucu, R. Assessment of sensitivity to the anesthesia in a diabetic rat model. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 9029–9033. [Google Scholar] [CrossRef]
- Sedky, A.A.; Magdy, Y. Reduction in TNF alpha and oxidative stress by liraglutide: Impact on ketamine-induced cognitive dysfunction and hyperlocomotion in rats. Life Sci. 2021, 278, 119523. [Google Scholar] [CrossRef]
- Chavda, V.; Patel, S. Voglibose and saxagliptin ameliorate the post-surgical stress and cognitive dysfunction in chronic anesthesia-exposed diabetic MCAo-induced ischemic rats. IBRO Neurosci. Rep. 2022, 13, 426–435. [Google Scholar] [CrossRef]
- Tao, Z.; Lin, R.; Zhang, R.; He, P.; Lei, C.; Li, Y. Ischemia reperfusion myocardium injuries in type 2 diabetic rats: Effects of ketamine and insulin on LC3-II and mTOR expression. Int. J. Immunopathol. Pharmacol. 2023, 37, 3946320231196450. [Google Scholar] [CrossRef]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Riggs, L.M.; Highland, J.N.; Georgiou, P.; Pereira, E.F.R.; Albuquerque, E.X.; Thomas, C.J.; Zarate, C.A., Jr.; et al. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacol. Rev. 2018, 70, 621–660. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chang, L.; Hashimoto, K. A historical review of antidepressant effects of ketamine and its enantiomers. Pharmacol. Biochem. Behav. 2020, 190, 172870. [Google Scholar] [CrossRef]
- Mion, G.; Villevieille, T. Ketamine pharmacology: An update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci. Ther. 2013, 19, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Malinovsky, J.M.; Servin, F.; Cozian, A.; Lepage, J.Y.; Pinaud, M. Ketamine and norketamine plasma concentrations after i.v., nasal and rectal administration in children. Br. J. Anaesth. 1996, 77, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Clements, J.A.; Nimmo, W.S. Pharmacokinetics and analgesic effect of ketamine in man. Br. J. Anaesth. 1981, 53, 27–30. [Google Scholar] [CrossRef]
- Wong, C.S.; Liaw, W.J.; Tung, C.S.; Su, Y.F.; Ho, S.T. Ketamine potentiates analgesic effect of morphine in postoperative epidural pain control. Reg. Anesth. 1996, 21, 534–541. [Google Scholar] [CrossRef]
- Peltoniemi, M.A.; Hagelberg, N.M.; Olkkola, K.T.; Saari, T.I. Ketamine: A review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy. Clin. Pharmacokinet. 2016, 55, 1059–1077. [Google Scholar] [CrossRef]
- Fanta, S.; Kinnunen, M.; Backman, J.T.; Kalso, E. Population pharmacokinetics of S-ketamine and norketamine in healthy volunteers after intravenous and oral dosing. Eur. J. Clin. Pharmacol. 2015, 71, 441–447. [Google Scholar] [CrossRef]
- Szarmach, J.; Cubała, W.J.; Włodarczyk, A.; Gałuszko-Węgielnik, M. Somatic comorbidities and cardiovascular safety in ketamine use for treatment-resistant depression. Medicina 2021, 57, 274. [Google Scholar] [CrossRef] [PubMed]
- Saliba, F.; Mina, J.; Aoun, L.; Khattar, G.; Bou Sanayeh, E.; Jdaidani, J.; Al Saidi, I. Ketamine induced acute systolic heart failure. Eur. J. Case Rep. Intern. Med. 2024, 11, 004470. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-H.; Cha, T.-L.; Lin, C.-M.; Tsao, C.-W.; Tang, S.-H.; Chuang, F.-P.; Wu, S.-T.; Sun, G.-H.; Yu, D.-S.; Chang, S.-Y. Ketamine-associated bladder dysfunction. Int. J. Urol. 2009, 16, 826–829. [Google Scholar] [CrossRef] [PubMed]
- Brucculeri, M.; Johnson, D.; Yang, Y.; Rennke, H. Ketamine-induced acute interstitial nephritis. Kidney Int. Rep. 2022, 8, 929–931. [Google Scholar] [CrossRef]
- Marguilho, M.; Figueiredo, I.; Castro-Rodrigues, P. A Unified Model of Ketamine’s Dissociative and Psychedelic Properties. J. Psychopharmacol. 2023, 37, 14–32. [Google Scholar] [CrossRef]
- Davis, M.T.; DellaGiogia, N.; Maruff, P.; Pietrzak, R.H.; Esterlis, I. Acute Cognitive Effects of Single-Dose Intravenous Ketamine in Major Depressive and Posttraumatic Stress Disorder. Transl. Psychiatry 2021, 11, 205. [Google Scholar] [CrossRef]
- Christ, G.; Mundigler, G.; Merhaut, C.; Zehetgruber, M.; Kratochwill, C.; Heinz, G.; Siostrzonek, P. Adverse cardiovascular effects of ketamine infusion in patients with catecholamine-dependent heart failure. Anaesth. Intensive Care 1997, 25, 255–259. [Google Scholar] [CrossRef]
- Szarmach, J.; Cubała, W.J.; Włodarczyk, A.; Gałuszko-Węgielnik, M. Metabolic risk factors and cardiovascular safety in ketamine use for treatment resistant depression. Neuropsychiatr. Dis. Treat. 2020, 16, 2539–2551. [Google Scholar] [CrossRef] [PubMed]
- McMullin, P.R.; Hynes, A.T.; Arefin, M.A.; Saeed, M.; Gandhavadi, S.; Arefin, N.; Eckmann, M.S. Infusion therapy in the treatment of neuropathic pain. Curr. Pain Headache Rep. 2022, 26, 693–699. [Google Scholar] [CrossRef]
- Pereira, J.E.G.; Pereira, L.F.G.; Linhares, R.M.; Bersot, C.D.A.; Aslanidis, T.; Ashmawi, H.A. Efficacy and safety of ketamine in the treatment of neuropathic pain: A systematic review and meta-analysis of randomized controlled trials. J. Pain Res. 2022, 15, 1011–1037. [Google Scholar] [CrossRef]
- Bosma, R.L.; Cheng, J.C.; Rogachov, A.; Kim, J.A.; Hemington, K.S.; Osborne, N.R.; Raghavan, L.V.; Bhatia, A.; Davis, K.D. Brain dynamics and temporal summation of pain predicts neuropathic pain relief from ketamine infusion. Anesthesiology 2018, 129, 1015–1024. [Google Scholar] [CrossRef]
- De Groot, M.; Anderson, R.; Freedland, K.E.; Clouse, R.E.; Lustman, P.J. Association of depression and diabetes complications: A meta-analysis. Psychosom. Med. 2001, 63, 619–630. [Google Scholar] [CrossRef]
- Holt, R.I.G.; de Groot, M.; Golden, S.H. Diabetes and depression. Curr. Diab. Rep. 2014, 14, 491. [Google Scholar] [CrossRef]
- Derese, A.; Gebreegzhiabhere, Y.; Medhin, G.; Sirgu, S.; Hanlon, C. Impact of depression on self-efficacy, illness perceptions and self-management among people with type 2 diabetes: A systematic review of longitudinal studies. PLoS ONE 2024, 19, e0302635. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.D. Psychosocial aspects of diabetes with an emphasis on depression. Curr. Diab. Rep. 2003, 3, 49–55. [Google Scholar] [CrossRef]
- Li, L.; Vlisides, P.E. Ketamine: 50 Years of Modulating the Mind. Front. Hum. Neurosci. 2016, 10, 612. [Google Scholar] [CrossRef]
- Fava, M.; Freeman, M.P.; Flynn, M.; Judge, H.; Hoeppner, B.B.; Cusin, C.; Ionescu, D.F.; Mathew, S.J.; Chang, L.C.; Iosifescu, D.V.; et al. Double-Blind, Placebo-Controlled, Dose-Ranging Trial of Intravenous Ketamine as Adjunctive Therapy in Treatment-Resistant Depression (TRD). Mol. Psychiatry 2020, 25, 1592–1603. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.S.; Palanca, B.J.A.; Ances, B.M.; Kharasch, E.D.; Schweiger, J.A.; Yingling, M.D.; Snyder, A.Z.; Nicol, G.E.; Lenze, E.J.; Farber, N.B. Prolonged Ketamine Infusion Modulates Limbic Connectivity and Induces Sustained Remission of Treatment-Resistant Depression. Psychopharmacology 2021, 238, 1157–1169. [Google Scholar] [CrossRef]
- Fisher, L.; Gonzalez, J.S.; Polonsky, W.H. The Confusing Tale of Depression and Distress in Patients with Diabetes: A Call for Greater Clarity and Precision. Diabet. Med. 2014, 31, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Musselman, D.L.; Betan, E.; Larsen, H.; Phillips, L.S. Relationship of depression to diabetes types 1 and 2: Epidemiology, biology, and treatment. Biol. Psychiatry 2003, 54, 317–329. [Google Scholar] [CrossRef]
- Williams, M.M.; Clouse, R.E.; Lustman, P.J. Treating depression to prevent diabetes and its complications: Understanding depression as a medical risk factor. Clin. Diabetes 2006, 24, 79–86. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S86–S127. [Google Scholar] [CrossRef] [PubMed]
- Singh, B. Ketamine and esketamine for depression in daily practice: Opportunities and challenges. J. Clin. Psychopharmacol. 2024, 44, 451–455. [Google Scholar] [CrossRef]
- Chuang, H.-W.; Wei, I.-H.; Li, C.-T.; Huang, C.-C. Decreased efficacy of the ketamine and scopolamine-induced sustained antidepressant-like effects in rats receiving metformin. Pharmacol. Rep. 2022, 74, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, K.; Iguchi, A. Role of central neural mechanisms in the regulation of hepatic glucose metabolism. Life Sci. 1997, 60, 797–807. [Google Scholar] [CrossRef]
- Long, B.; Lentz, S.; Koyfman, A.; Gottlieb, M. Euglycemic diabetic ketoacidosis: Etiologies, evaluation, and management. Am. J. Emerg. Med. 2021, 44, 157–160. [Google Scholar] [CrossRef]
- Biessels, G.J.; Despa, F. Cognitive Decline and Dementia in Diabetes Mellitus: Mechanisms and Clinical Implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef]
- Choudhury, D.; Autry, A.E.; Tolias, K.F.; Krishnan, V. Ketamine: Neuroprotective or Neurotoxic? Front. Neurosci. 2021, 15, 672526. [Google Scholar] [CrossRef]
- Kataria, V.; Kang, T.; Bradley, K.M. Ketamine-Induced Diabetes Insipidus. J. Pain Palliat. Care Pharmacother. 2018, 32, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, L.; Xia, H. Diabetes alters the blood glucose response to ketamine in streptozotocin-diabetic rats. Int. J. Clin. Exp. Med. 2015, 8, 11347–11351. [Google Scholar] [PubMed]
- Sharif, S.I.; Abouazra, H.A. Effect of Intravenous Ketamine Administration on Blood Glucose Levels in Conscious Rabbits. Am. J. Pharmacol. Toxicol. 2009, 4, 38–45. [Google Scholar] [CrossRef]
- Haas, A.; Borsook, D.; Adler, G.; Freeman, R. Stress, hypoglycemia, and the autonomic nervous system. Auton. Neurosci. 2022, 240, 102983. [Google Scholar] [CrossRef]
- Biessels, G.J.; Whitmer, R.A. Cognitive dysfunction in diabetes: How to implement emerging guidelines. Diabetologia 2020, 63, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Sanacora, G.; Frye, M.A.; McDonald, W.; Mathew, S.J.; Turner, M.S.; Schatzberg, A.F.; Summergrad, P.; Nemeroff, C.B. A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiatry 2017, 74, 399–405. [Google Scholar] [CrossRef]
- Cohen, S.P.; Bhatia, A.; Buvanendran, A.; Schwenk, E.S.; Wasan, A.D.; Hurley, R.W.; Viscusi, E.R.; Narouze, S.; Davis, F.N.; Ritchie, E.C.; et al. Consensus guidelines on the use of intravenous ketamine infusions for chronic pain from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med. 2018, 43, 521–546. [Google Scholar] [CrossRef]
- Rodrigues, N.B.; McIntyre, R.S.; Lipsitz, O.; Lee, Y.; Cha, D.S.; Shekotikhina, M.; Vinberg, M.; Gill, H.; Subramaniapillai, M.; Kratiuk, K.; et al. A simplified 6-item clinician-administered dissociative symptom scale (CADSS-6) for monitoring dissociative effects of sub-anesthetic ketamine infusions. J. Affect. Disord. 2021, 282, 160–164. [Google Scholar] [CrossRef]
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Ketamine. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548337/ (accessed on 23 December 2025).
- Noppers, I.M.; Niesters, M.; Aarts, L.P.H.J.; Bauer, M.C.R.; Drewes, A.M.; Dahan, A.; Sarton, E.Y.S. Drug-induced liver injury following a repeated course of ketamine treatment for chronic pain in CRPS type 1 patients: A report of 3 cases. Pain 2011, 152, 2173–2178. [Google Scholar] [CrossRef]
- Sherman, R.E.; Anderson, S.A.; Dal Pan, G.J.; Gray, G.W.; Gross, T.; Hunter, N.L.; LaVange, L.; Marinac-Dabic, D.; Marks, P.W.; Robb, M.A.; et al. Real-world evidence—What is it and what can it tell us? N. Engl. J. Med. 2016, 375, 2293–2297. [Google Scholar] [CrossRef] [PubMed]



| Study | Design | Diabetes Context | Population/Model | Indication | Ketamine Regimen | Comparator | Outcomes | AEs | Main Findings |
|---|---|---|---|---|---|---|---|---|---|
| Lortrakul & Pattanaseri, 2024 [16] | Case report (primary) | T1DM | 36-year-old male with TRD | Depression | Racemic IV 0.5 mg/kg over 40 min per session; 11 sessions/year | No comparator | Depressive symptoms; point-of-care glucose | Hypoglycemia (<70 mg/dL) in 4/11 sessions; dizziness, sweating, palpitations | Mood improved; drop in glucose after some infusions—recommend stringent monitoring |
| Easterly & Taylor, 2023 [17] | Case report (primary) | T1DM (adolescent) | Psychiatric anesthesia setting | Depression/SI | Ketamine–propofol; multiple anesthetics (doses not reported) | No comparator | PROMIS depression/SD measures | Subjective memory complaints | Marked depressive symptom improvement; SI resolved |
| Alzahid et al., 2024 [18] | Case report (primary) | T1DM (adolescent) | Orthopedic reduction | Analgesia/sedation | Single-episode ketamine sedation (dose NR) + morphine | No comparator | Pain relief; reduction success | NR | Successful closed reduction; highlights multimodal pain needs in T1DM |
| Harris et al., 2024 [19] | Case report (primary) | T2DM | 29-year-old male (bipolar, ASD) | KAP for mood/behavior | 6 IV infusions titrated over 1 month (40–90 mg) + 2 boosters (90–110 mg) + psychotherapy | No comparator | GAD-7, PHQ-9, C-SSRS, PCL-5 | NR | Reduced outbursts and symptom scores; no reported metabolic AEs |
| Han et al., 2023 [20] | RCT (primary) | GDM, post-cesarean | n = 140 | Post-op analgesia | Esketamine 0.5 mg/kg in IV PCA with sufentanil + ondansetron up to 48 h | Placebo PCA | Sufentanil use; VAS pain at 6/24/48 h; bowel function | Nausea/vomiting/dizziness similar between groups | Less opioid use; lower movement-evoked pain; faster bowel recovery |
| Rastogi & Jude, 2021 [21] | Narrative review (secondary) | DN (T1DM/T2DM) | Multiple small trials | Neuropathic pain | Topical ketamine 5% (±amitriptyline) | No comparator | Pain VAS; neuropathic symptoms | Minimal (local irritation) | Mixed results; adjunctive role suggested |
| Elbeddini et al., 2024 [22] | Narrative review (secondary) | DN | Multiple studies | Neuropathic pain | Topical ketamine 2% (often with amitriptyline 4%) | Placebo and oral gabapentin | Pain; sleep interference; onset | Local burning/redness/rash | Moderate pain relief; favorable tolerability vs. oral gabapentinoids |
| Yilmaz & Dokuyucu, 2023 [23] | Animal (primary) | STZ-T1DM | Wistar rats | Anesthesia dynamics | Ketamine 80 mg/kg i.p. + xylazine 12 mg/kg i.p. | Non-diabetic controls | Induction time; weight; glucose | NR | Faster induction in diabetic rats; weight lower; glucose higher |
| Sedky & Magdy, 2021 [24] | Animal (primary) | Diet + low-dose STZ T2DM | Wistar rats | Cognition/behavior | Ketamine 25 mg/kg/day i.p. ×7 days; liraglutide 300 µg/kg/day s.c. ×4 weeks | Multiple groups | Open field; water maze; TNF-α, MDA, GSH, BDNF; histology | NR | Diabetes worsened ketamine-related hyperlocomotion/cognitive deficits; liraglutide attenuated inflammation/behavioral changes |
| Chavda & Patel, 2022 [25] | Animal (primary) | T2DM + MCAo stroke | Wistar rats | Neurocognition | Ketamine 100 mg/kg i.p. + xylazine 10 mg/kg i.p., daily ×7 days pre/post | Antidiabetic therapy arms | Maze latency; oxidative stress; neurochemistry | NR | Chronic anesthesia worsened cognition/stress markers; voglibose/saxagliptin improved outcomes |
| Tao et al., 2023 [26] | Animal (primary) | T2DM + cardiac I/R | SD rats | Cardiac injury/inflammation | Ketamine 1 mg/kg i.v. ± insulin ×10 days | Controls | Glucose; AST/LDH/CK-MB; IL-1β/IL-6/TNF-α; autophagy | NR | Ketamine ± insulin reduced injury and inflammation combination superior |
| Drug/Class | Mechanisms Relevant to Ketamine | Expected Effect on Ketamine/Metabolites | Potential Diabetes-Specific Clinical Implications |
|---|---|---|---|
| Strong CYP3A4 inhibitors (e.g., azoles, macrolides) [27,33] | Inhibit N-demethylation and hydroxylation | ↑ ketamine/norketamine exposure | Greater dissociation, hemodynamic effects; consider lower starting dose and closer monitoring |
| Strong CYP3A4/2B6 inducers (e.g., some anticonvulsants, rifampin) [27,33] | ↑ metabolic clearance | ↓ exposure, shorter duration of effect | Reduced antidepressant/analgesic benefit; may require higher or more frequent dosing |
| Metformin [27,58] | Alters hepatic gluconeogenesis, may interact with AMPK/mTOR signaling | Possible attenuation of sustained antidepressant-like effects | Monitor depressive response and glycemic control; consider alternative antidepressant strategies if response is blunted |
| GLP-1 receptor agonists [24] | Improve insulin sensitivity; may modulate neuroinflammation | Potentially synergistic effects on inflammation and mood | Unknown PK interaction; monitor glucose and GI AE’s |
| SGLT2 inhibitors [12,59,60] | Promote glucosuria, risk of euglycemic DKA | No direct CYP interaction; osmotic diuresis may interact with ketamine-related hemodynamic shifts | Monitor ketones and volume status in those with high DKA risk |
| Insulin/insulin secretagogues [12,13] | Major determinant of hypoglycemia risk | No direct CYP effect; alters background glucose dynamics | Adjust insulin doses around infusion sessions; frequent bedside glucose checks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sukhram, S.D.; Sanchez, M.; Anidugbe, A.; Kupa, B.; Edwards, V.P.; Zia, M.; Yilmaz, G. Ketamine in Diabetes Care: Metabolic Insights and Clinical Applications. Pharmaceutics 2026, 18, 81. https://doi.org/10.3390/pharmaceutics18010081
Sukhram SD, Sanchez M, Anidugbe A, Kupa B, Edwards VP, Zia M, Yilmaz G. Ketamine in Diabetes Care: Metabolic Insights and Clinical Applications. Pharmaceutics. 2026; 18(1):81. https://doi.org/10.3390/pharmaceutics18010081
Chicago/Turabian StyleSukhram, Shiryn D., Majandra Sanchez, Ayotunde Anidugbe, Bora Kupa, Vincent P. Edwards, Muhammad Zia, and Grozdena Yilmaz. 2026. "Ketamine in Diabetes Care: Metabolic Insights and Clinical Applications" Pharmaceutics 18, no. 1: 81. https://doi.org/10.3390/pharmaceutics18010081
APA StyleSukhram, S. D., Sanchez, M., Anidugbe, A., Kupa, B., Edwards, V. P., Zia, M., & Yilmaz, G. (2026). Ketamine in Diabetes Care: Metabolic Insights and Clinical Applications. Pharmaceutics, 18(1), 81. https://doi.org/10.3390/pharmaceutics18010081

