Pharmacokinetics and Drug Interactions
1. Introduction
2. Overview of the Published Articles
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haukland, E.C.; Mevik, K.; von Plessen, C.; Nieder, C.; Vonen, B. Contribution of adverse events to death of hospitalised patients. BMJ Open Qual. 2019, 8, e000377. [Google Scholar] [CrossRef]
- Haerdtlein, A.; Debold, E.; Rottenkolber, M.; Boehmer, A.M.; Pudritz, Y.M.; Shahid, F.; Gensichen, J.; Dreischulte, T. Which adverse events and which drugs are implicated in drug-related hospital admissions? A systematic review and meta-analysis. J. Clin. Med. 2023, 12, 1320. [Google Scholar] [CrossRef]
- Komagamine, J. Prevalence of urgent hospitalizations caused by adverse drug reactions: A cross-sectional study. Sci. Rep. 2024, 14, 6058. [Google Scholar] [CrossRef]
- Lin, K.; Wang, R.; Li, T.; Zuo, Y.; Yang, S.; Dong, D.; Zhu, Y. Drug transporters and metabolizing enzymes in antimicrobial drug pharmacokinetics: Mechanisms, drug–drug interactions, and clinical implications. Biomolecules 2025, 15, 864. [Google Scholar] [CrossRef]
- Mizuno, N.; Niwa, T.; Yotsumoto, Y.; Sugiyama, Y. Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev. 2003, 55, 425–461. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.K.; Song, I.S. Pharmacokinetic drug–drug interactions and herb–drug interactions. Pharmaceutics 2021, 13, 610. [Google Scholar] [CrossRef]
- Doogue, M.P.; Polasek, T.M. The ABCD of clinical pharmacokinetics. Ther. Adv. Drug Saf. 2013, 4, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Garcia, A.; Bermejo, M.; Moss, A.; Casabo, V.G. Pharmacokinetics in drug discovery. J. Pharm. Sci. 2008, 97, 654–690. [Google Scholar] [CrossRef] [PubMed]
- Volpe, D.A. Transporter assays as useful in vitro tools in drug discovery and development. Expert. Opin. Drug Discov. 2016, 11, 91–103. [Google Scholar] [CrossRef]
- Singh, A.; Zhao, K. Herb-drug interactions of commonly used chinese medicinal herbs. Int. Rev. Neurobiol. 2017, 135, 197–232. [Google Scholar] [CrossRef]
- Ji, S.B.; Park, S.Y.; Bae, S.; Seo, H.J.; Kim, S.E.; Lee, G.M.; Wu, Z.; Liu, K.H. Comprehensive investigation of stereoselective food drug interaction potential of resveratrol on nine P450 and six UGT isoforms in human liver microsomes. Pharmaceutics 2021, 13, 1419. [Google Scholar] [CrossRef]
- Seo, H.J.; Ji, S.B.; Kim, S.E.; Lee, G.M.; Park, S.Y.; Wu, Z.; Jang, D.S.; Liu, K.H. Inhibitory effects of schisandra lignans on Cytochrome P450s and Uridine 5′-Diphospho-Glucuronosyl Transferases in human liver microsomes. Pharmaceutics 2021, 13, 371. [Google Scholar] [CrossRef]
- Park, E.J.; Park, K.; Durai, P.; Kim, K.Y.; Park, S.Y.; Kwon, J.; Lee, H.J.; Pan, C.H.; Liu, K.H. Potent and selective inhibition of CYP1A2 enzyme by obtusifolin and its chemopreventive effects. Pharmaceutics 2022, 14, 2683. [Google Scholar] [CrossRef]
- Kang, Y.J.; Lee, C.H.; Park, S.J.; Lee, H.S.; Choi, M.K.; Song, I.S. Involvement of organic anion transporters in the pharmacokinetics and drug interaction of rosmarinic acid. Pharmaceutics 2021, 13, 83. [Google Scholar] [CrossRef]
- Qian, C.Q.; Zhao, K.J.; Chen, Y.; Liu, L.; Liu, X.D. Simultaneously predict pharmacokinetic interaction of rifampicin with oral versus intravenous substrates of cytochrome P450 3A/P-glycoprotein to healthy human using a semi-physiologically based pharmacokinetic model involving both enzyme and transporter turnover. Eur. J. Pharm. Sci. 2019, 134, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Balla, A.; Jeong, Y.S.; Kim, H.J.; Lee, Y.J.; Chung, S.J.; Chae, Y.J.; Maeng, H.J. Effects of 1α,25-dihydroxyvitamin D3 on the pharmacokinetics of procainamide and its metabolite N-acetylprocainamide, organic cation transporter substrates, in rats with PBPK modeling approach. Pharmaceutics 2021, 13, 1133. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Z.; Li, P.; Kong, W.; Liu, X.; Liu, L. A whole-body physiologically based pharmacokinetic model characterizing interplay of OCTs and MATEs in intestine, liver and kidney to predict drug-drug interactions of metformin with perpetrators. Pharmaceutics 2021, 13, 698. [Google Scholar] [CrossRef]
- Oh, J.H.; Kim, D.; Lee, H.; Kim, G.; Park, T.; Kim, M.C.; Lee, Y.J. Negligible effect of quercetin in the pharmacokinetics of sulfasalazine in rats and beagles: Metabolic inactivation of the interaction potential of quercetin with BCRP. Pharmaceutics 2021, 13, 1989. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, H.S.; Jung, Y.S.; Choi, H.G.; Kim, S.H. Pharmacokinetic drug interaction between tofacitinib and voriconazole in rats. Pharmaceutics 2021, 13, 740. [Google Scholar] [CrossRef] [PubMed]
- Won, J.M.; Choi, H.G.; Park, S.Y.; Kim, J.H.; Kim, S.H. Effects of hyperlipidemia on the pharmacokinetics of tofacitinib, a JAK 1/3 inhibitor, in rats. Pharmaceutics 2023, 15, 2195. [Google Scholar] [CrossRef]
- Park, Y.D.; Chae, Y.J.; Maeng, H.J. Investigation of N-Acetyltransferase 2-mediated drug interactions of amifampridine: In vitro and in vivo evidence of drug interactions with acetaminophen. Pharmaceutics 2023, 15, 1471. [Google Scholar] [CrossRef] [PubMed]
- Tiryannik, I.; Heikkinen, A.T.; Gardner, I.; Onasanwo, A.; Jamei, M.; Polasek, T.M.; Rostami-Hodjegan, A. Static versus dynamic model predictions of competitive inhibitory metabolic drug-drug interactions via Cytochromes P450: One step forward and two steps backwards. Clin. Pharmacokinet. 2025, 64, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vera, L.; Yin, X.; Almoslem, M.; Romahn, K.; Cicali, B.; Lukacova, V.; Cristofoletti, R.; Schmidt, S. Comprehensive physiologically based pharmacokinetic model to assess drug-drug interactions of phenytoin. Pharmaceutics 2023, 145, 2486. [Google Scholar] [CrossRef]
- Malhotra, B.; Dickins, M.; Alvey, C.; Jumadilova, Z.; Li, X.; Duczynski, G.; Gandelman, K. Effects of the moderate CYP3A4 inhibitor, fluconazole, on the pharmacokinetics of fesoterodine in healthy subjects. Br. J. Clin. Pharmacol. 2011, 72, 263–269. [Google Scholar] [CrossRef]
- Miedziaszczyk, M.; Idasiak-Piechocka, I. Safety analysis of co-administering tacrolimus and omeprazole in renal transplant recipients—A review. Biomed. Pharmacother. 2023, 166, 115149. [Google Scholar] [CrossRef]
- Tapaninen, T.; Backman, J.T.; Kurkinen, K.J.; Neuvonen, P.J.; Niemi, M. Itraconazole, a P-glycoprotein and CYP3A4 inhibitor, markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren. J. Clin. Pharmacol. 2011, 51, 359–367. [Google Scholar] [CrossRef]
- Gerner, B.; Scherf-Clavel, O. Physiologically based pharmacokinetic modelling of cabozantinib to simulate enterohepatic recirculation, drug-drug interaction with rifampin and liver impairment. Pharmaceutics 2021, 13, 778. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.S.; Kim, M.S.; Lee, N.; Lee, A.; Chae, Y.J.; Chung, S.J.; Lee, K.R. Development of physiologically based pharmacokinetic model for orally administered fexuprazan in humans. Pharmaceutics 2021, 13, 813. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, N.; Lee, A.; Chae, Y.J.; Chung, S.J.; Lee, K.R. Model-based prediction of acid suppression and proposal of a new dosing regimen of fexuprazan in humans. Pharmaceuticals 2022, 15, 709. [Google Scholar] [CrossRef]
- He, X.-M.; Zhou, Y.; Xu, M.-Z.; Li, Y.; Li, H.-Q.; Li, W.-Y. Effects of long-term smoking on the activity and MRNA expression of CYP isozymes in rats. J. Thorac. Dis. 2015, 7, 1725. [Google Scholar]
- Fonseca, C.D.F.; Zendulka, O.; Juřica, J. Cannabinoids and the endocannabinoid system in the regulation of cytochrome P450 metabolic activity-a review. Front. Pharmacol. 2025, 16, 1599012. [Google Scholar] [CrossRef]
- Murtadha, M.; Raslan, M.A.; Fahmy, S.F.; Sabri, N.A. Changes in the pharmacokinetics and pharmacodynamics of sildenafil in cigarette and cannabis smokers. Pharmaceutics 2021, 13, 876. [Google Scholar] [CrossRef]
- Bromek, E.; Haduch, A.; Rysz, M.; Jastrzębska, J.; Pukło, R.; Wójcikowska, O.; Danek, P.J.; Daniel, W.A. The Selective NMDA receptor GluN2B subunit antagonist CP-101,606 with antidepressant properties modulates Cytochrome P450 expression in the liver. Pharmaceutics 2021, 13, 1643. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Chen, Y.J.; Wang, L.Y.; Hsieh, C.H. Effect of synchronous versus sequential regimens on the pharmacokinetics and biodistribution of regorafenib with irradiation. Pharmaceutics 2021, 13, 386. [Google Scholar] [CrossRef] [PubMed]
- Koch, N.; Jennotte, O.; Lechanteur, A.; Deville, M.; Charlier, C.; Cardot, J.M.; Chiap, P.; Evrard, B. An intravenous pharmacokinetic study of cannabidiol solutions in piglets through the application of a validated ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry method for the simultaneous quantification of CBD and its carboxylated metabolite in plasma. Pharmaceutics 2024, 16, 140. [Google Scholar] [CrossRef]
- Galeotti, L.; Ceccherini, F.; Fucile, C.; Marini, V.; Di Paolo, A.; Maximova, N.; Mattioli, F. Evaluation of pharmacokinetics and pharmacodynamics of deferasirox in pediatric patients. Pharmaceutics 2021, 13, 1238. [Google Scholar] [CrossRef]
- Tran, Q.T.; Baek, I.H.; Han, N.Y.; Yun, H.Y.; Chae, J.W. The effect of CYP2D6 phenotypes on the pharmacokinetics of propafenone: A systematic review and meta-analysis. Pharmaceutics 2022, 14, 1446. [Google Scholar] [CrossRef]
- Deodhar, M.; Turgeon, J.; Michaud, V. Contribution of CYP2D6 functional activity to oxycodone efficacy in pain management: Genetic polymorphisms, phenoconversion, and tissue-selective metabolism. Pharmaceutics 2021, 13, 1466. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Park, B.I.; Kim, D.H.; Lee, S.; Lee, S.H.; Shim, W.S.; Seo, Y.K.; Kang, K.; Lee, K.T.; Yim, S.V.; et al. Ginsenoside absorption rate and extent enhancement of black ginseng (CJ EnerG) over red ginseng in healthy adults. Pharmaceutics 2021, 13, 487. [Google Scholar] [CrossRef]
- Jeon, S.Y.; Lee, J.; Jeon, J.H.; Kim, J.; Baek, Y.J.; Choi, H.K.; Sung, S.; Kim, J.W.; Lim, S.H.; Song, I.S. Effect of a probiotic mixture on the biotransformation and bioavailability of deglycosylated ginsenosides. J. Func. Foods 2025, 133, 107015. [Google Scholar] [CrossRef]
- Jeon, J.H.; Lee, J.; Park, J.H.; Lee, C.H.; Choi, M.K.; Song, I.S. Effect of lactic acid bacteria on the pharmacokinetics and metabolism of ginsenosides in mice. Pharmaceutics 2021, 13, 1496. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.H.; Park, J.H.; Jeon, S.Y.; Pang, M.; Choi, M.K.; Song, I.S. Concomitant administration of red ginseng extract with lactic acid bacteria increases the plasma concentration of deglycosylated ginsenosides in healthy human subjects. Biomolecules 2022, 12, 1896. [Google Scholar] [CrossRef]
- Hladun, O.; Papaseit, E.; Martín, S.; Barriocanal, A.M.; Poyatos, L.; Farré, M.; Pérez-Mañá, C. Interaction of energy drinks with prescription medication and drugs of abuse. Pharmaceutics 2021, 13, 1532. [Google Scholar] [CrossRef]
- Jahromi, B.; Pirvulescu, I.; Candido, K.D.; Knezevic, N.N. Herbal medicine for pain management: Efficacy and drug interactions. Pharmaceutics 2021, 13, 251. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Park, C.E.; Lee, S.; Baek, Y.J.; Kim, Y.G.; Song, I.S.; Choi, M.K. Effects of red ginseng extract on the pharmacokinetics of nifedipine. Mass Spectro. Lett. 2024, 15, 186–194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Choi, M.-K.; Song, I.-S. Pharmacokinetics and Drug Interactions. Pharmaceutics 2026, 18, 67. https://doi.org/10.3390/pharmaceutics18010067
Choi M-K, Song I-S. Pharmacokinetics and Drug Interactions. Pharmaceutics. 2026; 18(1):67. https://doi.org/10.3390/pharmaceutics18010067
Chicago/Turabian StyleChoi, Min-Koo, and Im-Sook Song. 2026. "Pharmacokinetics and Drug Interactions" Pharmaceutics 18, no. 1: 67. https://doi.org/10.3390/pharmaceutics18010067
APA StyleChoi, M.-K., & Song, I.-S. (2026). Pharmacokinetics and Drug Interactions. Pharmaceutics, 18(1), 67. https://doi.org/10.3390/pharmaceutics18010067

