Bioavailability Enhancement of Curcumin by PEG-Based Gastroretentive System: Development and In Vitro Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Self-Emulsifying Systems
2.3. Dynamic Light Scattering (DLS) Measurements for Droplet Size Distribution
2.4. Apparent Viscosity Measurement of the Molten SEDDS Containing Curcumin
2.5. Melt Foaming
2.6. PXRD Study
2.7. Differential Scanning Calorimetry
2.8. In Vitro Drug Dissolution
2.9. Microtomography and Size Distribution of Foam Bubbles
2.10. Cell Culturing and Cytotoxicity Assays
2.11. Cellular Transportation Test
3. Results
3.1. Droplet Sizes of Self-Emulsifying Systems
3.2. Apparent Viscosity of Molten Curcumin-Loaded SEDDSs
3.3. Effect of Dissolution Retardants on the Droplet Size
3.4. Effect of Stearylamine Content
3.4.1. Droplet Size Distribution
3.4.2. Drug Dissolution
3.5. Structural Characterization of S14 SM10% Using PXRD
3.6. Results of Foaming Process
3.7. Microtomographic Assessment of Solid Foam Structure
3.8. Differential Scanning Calorimetry
3.9. Results of Cytotoxicity Assays
3.10. Cellular Transportation Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durán-Lobato, M.; Niu, Z.; Alonso, M.J. Oral Delivery of Biologics for Precision Medicine. Adv. Mater. 2020, 32, 1901935. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Ruiz-Picazo, A.; Lozoya-Agullo, I.; González-Álvarez, I.; Bermejo, M.; González-Álvarez, M. Effect of Excipients on Oral Absorption Process According to the Different Gastrointestinal Segments. Expert Opin. Drug Deliv. 2021, 18, 1005–1024. [Google Scholar] [CrossRef]
- Mishra, V.; Gupta, U.; Jain, N.K. Biowaiver: An Alternative to in Vivo Pharmacokinetic Bioequivalence Studies. Pharmazie 2010, 65, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Kalepu, S.; Nekkanti, V. Insoluble Drug Delivery Strategies: Review of Recent Advances and Business Prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Vesicular Drug Delivery Systems for Oral Absorption Enhancement. Chin. Chem. Lett. 2024, 35, 109129. [CrossRef]
- DrugBank Curcumin: Uses, Interactions, Mechanism of Action. Available online: https://go.drugbank.com/drugs/DB11672 (accessed on 30 May 2025).
- Wahlang, B.; Pawar, Y.B.; Bansal, A.K. Identification of Permeability-Related Hurdles in Oral Delivery of Curcumin Using the Caco-2 Cell Model. Eur. J. Pharm. Biopharm. 2011, 77, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.W.; Fu, M.; Gao, S.H.; Liu, J.L. Curcumin and Diabetes: A Systematic Review. Evid.-Based Complement. Altern. Med. 2013, 2013, 636053. [Google Scholar] [CrossRef]
- Li, H.; Sureda, A.; Devkota, H.P.; Pittalà, V.; Barreca, D.; Silva, A.S.; Tewari, D.; Xu, S.; Nabavi, S.M. Curcumin, the Golden Spice in Treating Cardiovascular Diseases. Biotechnol. Adv. 2020, 38, 107343. [Google Scholar] [CrossRef]
- Cheraghipour, K.; Ezatpour, B.; Masoori, L.; Marzban, A.; Sepahvand, A.; Rouzbahani, A.K.; Moridnia, A.; Khanizadeh, S.; Mahmoudvand, H. Anti-Candida Activity of Curcumin: A Systematic Review. Curr. Drug Discov. Technol. 2021, 18, 379–390. [Google Scholar] [CrossRef]
- Cas, M.D.; Ghidoni, R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients 2019, 11, 2147. [Google Scholar] [CrossRef]
- Santos, A.C.; Costa, D.; Ferreira, L.; Guerra, C.; Pereira-Silva, M.; Pereira, I.; Peixoto, D.; Ferreira, N.R.; Veiga, F. Cyclodextrin-Based Delivery Systems for in Vivo-Tested Anticancer Therapies. Drug Deliv. Transl. Res. 2021, 11, 49–71. [Google Scholar] [CrossRef] [PubMed]
- Kotagale, N.R.; Charde, P.B.; Helonde, A.; Gupta, K.R.; Umekar, M.J.; Raut, N.S. Studies on Bioavailability Enhancement of Curcumin. Int. J. Pharm. Pharm. Sci. 2019, 12, 20–25. [Google Scholar] [CrossRef]
- Agrawal, N.; Jaiswal, M. Bioavailability Enhancement of Curcumin via Esterification Processes: A Review. Eur. J. Med. Chem. Rep. 2022, 6, 100081. [Google Scholar] [CrossRef]
- Cui, J.; Yu, B.; Zhao, Y.; Zhu, W.; Li, H.; Lou, H.; Zhai, G. Enhancement of Oral Absorption of Curcumin by Self-Microemulsifying Drug Delivery Systems. Int. J. Pharm. 2009, 371, 148–155. [Google Scholar] [CrossRef]
- Friedl, J.D.; Jörgensen, A.M.; Le-Vinh, B.; Braun, D.E.; Tribus, M.; Bernkop-Schnürch, A. Solidification of Self-Emulsifying Drug Delivery Systems (SEDDS): Impact on Storage Stability of a Therapeutic Protein. J. Colloid Interface Sci. 2021, 584, 684–697. [Google Scholar] [CrossRef]
- Maji, I.; Mahajan, S.; Sriram, A.; Medtiya, P.; Vasave, R.; Khatri, D.K.; Kumar, R.; Singh, S.B.; Madan, J.; Singh, P.K. Solid Self Emulsifying Drug Delivery System: Superior Mode for Oral Delivery of Hydrophobic Cargos. J. Control. Release 2021, 337, 646–660. [Google Scholar] [CrossRef] [PubMed]
- Thakare, P.; Mogal, V.; Borase, P.; Dusane, J.; Kshirsagar, S. A Review on Self-Emulsified Drug Delivery System Self-Emulsifying. Pharm. Biol. Eval. 2016, 3, 140–153. [Google Scholar]
- Uttreja, P.; Karnik, I.; Adel Ali Youssef, A.; Narala, N.; Elkanayati, R.M.; Baisa, S.; Alshammari, N.D.; Banda, S.; Vemula, S.K.; Repka, M.A. Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid—A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends. Pharmaceutics 2025, 17, 63. [Google Scholar] [CrossRef]
- Ujhelyi, Z.; Vecsernyés, M.; Fehér, P.; Kósa, D.; Arany, P.; Nemes, D.; Sinka, D.; Vasvári, G.; Fenyvesi, F.; Váradi, J.; et al. Physico-Chemical Characterization of Self-Emulsifying Drug Delivery Systems. Drug Discov. Today Technol. 2018, 27, 81–86. [Google Scholar] [CrossRef]
- Pouton, C.W. Lipid Formulations for Oral Administration of Drugs: Non-Emulsifying, Self-Emulsifying and ‘Self-Microemulsifying’ Drug Delivery Systems. Eur. J. Pharm. Sci. 2000, 11, S93–S98. [Google Scholar] [CrossRef]
- Brinkmann, J.; Exner, L.; Luebbert, C.; Sadowski, G. In-Silico Screening of Lipid-Based Drug Delivery Systems. Pharm. Res. 2020, 37, 249. [Google Scholar] [CrossRef]
- Xiao, L.; Yi, T.; Liu, Y.; Zhou, H. The In Vitro Lipolysis of Lipid-Based Drug Delivery Systems: A Newly Identified Relationship between Drug Release and Liquid Crystalline Phase. BioMed Res. Int. 2016, 2016, 2364317. [Google Scholar] [CrossRef]
- Paulus, F.; Bauer-Brandl, A.; Stappaerts, J.; Holm, R. Exploring Supersaturated Type IV Lipid-Based Formulations: Impact of Supersaturation, Digestion and Precipitation wInhibition on Cinnarizine Absorption. Int. J. Pharm. 2025, 678, 125725. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, Properties and Applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
- Suhail, N.; Alzahrani, A.K.; Basha, W.J.; Kizilbash, N.; Zaidi, A.; Ambreen, J.; Khachfe, H.M. Microemulsions: Unique Properties, Pharmacological Applications, and Targeted Drug Delivery. Front. Nanotechnol. 2021, 3, 754889. [Google Scholar] [CrossRef]
- Baloch, J.; Sohail, M.F.; Sarwar, H.S.; Kiani, M.H.; Khan, G.M.; Jahan, S.; Rafay, M.; Chaudhry, M.T.; Yasinzai, M.; Shahnaz, G. Self-Nanoemulsifying Drug Delivery System (Snedds) for Improved Oral Bioavailability of Chlorpromazine: In Vitro and in Vivo Evaluation. Medicina 2019, 55, 210. [Google Scholar] [CrossRef] [PubMed]
- Sanghavi, R.S.; Agrawal, O.; Usman, M.R.M. Gastroretentive Drug Delivery System: An Overview. Res. J. Pharm. Technol. 2022, 15, 1343–1347. [Google Scholar] [CrossRef]
- Vrettos, N.-N.; Roberts, C.J.; Zhu, Z. Gastroretentive Technologies in Tandem with Controlled-Release Strategies: A Potent Answer to Oral Drug Bioavailability and Patient Compliance Implications. Pharmaceutics 2021, 13, 1591. [Google Scholar] [CrossRef]
- Rajora, A.; Nagpal, K. A Critical Review on Floating Tablets as a Tool for Achieving Better Gastric Retention. CRT 2022, 39, 65–103. [Google Scholar] [CrossRef]
- Gupta, A.; Shetty, S.; Mutalik, S.; Chandrashekar, H.R.; Krishnadas, N.; Mathew, E.M.; Jha, A.; Mishra, B.; Rajpurohit, S.; Ravi, G.; et al. Treatment of H. Pylori Infection and Gastric Ulcer: Need for Novel Pharmaceutical Formulation. Heliyon 2023, 9, e20406. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-L.; Chen, L.-C.; Cheng, W.-T.; Cheng, W.-J.; Ho, H.-O.; Sheu, M.-T. Preparation and Characterization of a Novel Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) for Enhanced Oral Bioavailability of Nilotinib. Pharmaceutics 2020, 12, 137. [Google Scholar] [CrossRef]
- Grosso, R.; de-Paz, M.-V. Scope and Limitations of Current Antibiotic Therapies against Helicobacter Pylori: Reviewing Amoxicillin Gastroretentive Formulations. Pharmaceutics 2022, 14, 1340. [Google Scholar] [CrossRef]
- Soni, H.; Pate, V.A. Gastro Retentive Drug Delivery System. Int. J. Pharm. Sci. Rev. Res. 2015, 31, 81–85. [Google Scholar]
- Blynskaya, E.V.; Tishkov, S.V.; Vinogradov, V.P.; Alekseev, K.V.; Marakhova, A.I.; Vetcher, A.A. Polymeric Excipients in the Technology of Floating Drug Delivery Systems. Pharmaceutics 2022, 14, 2779. [Google Scholar] [CrossRef]
- Almutairi, M.; Srinivasan, P.; Zhang, P.; Austin, F.; Butreddy, A.; Alharbi, M.; Bandari, S.; Ashour, E.A.; Repka, M.A. Hot-Melt Extrusion Coupled with Pressurized Carbon Dioxide for Enhanced Processability of Pharmaceutical Polymers and Drug Delivery Applications—An Integrated Review. Int. J. Pharm. 2022, 629, 122291. [Google Scholar] [CrossRef] [PubMed]
- Vasvári, G.; Haimhoffer, Á.; Horváth, L.; Budai, I.; Trencsényi, G.; Béresová, M.; Dobó-Nagy, C.; Váradi, J.; Bácskay, I.; Ujhelyi, Z.; et al. Development and Characterisation of Gastroretentive Solid Dosage Form Based on Melt Foaming. AAPS PharmSciTech 2019, 20, 290. [Google Scholar] [CrossRef]
- Farag, M.M.; Abd El Malak, N.S.; Yehia, S.A. Controlled Buccal Patches of Zaleplon Using Melt Granulation Technique: An Approach to Overcome Early Morning Awakening. J. Drug Deliv. Sci. Technol. 2018, 43, 439–445. [Google Scholar] [CrossRef]
- Içten, E.; Purohit, H.S.; Wallace, C.; Giridhar, A.; Taylor, L.S.; Nagy, Z.K.; Reklaitis, G.V. Dropwise Additive Manufacturing of Pharmaceutical Products for Amorphous and Self Emulsifying Drug Delivery Systems. Int. J. Pharm. 2017, 524, 424–432. [Google Scholar] [CrossRef]
- Raman Kallakunta, V.; Dudhipala, N.; Nyavanandi, D.; Sarabu, S.; Yadav Janga, K.; Ajjarapu, S.; Bandari, S.; Repka, M.A. Formulation and Processing of Solid Self-Emulsifying Drug Delivery Systems (HME S-SEDDS): A Single-Step Manufacturing Process via Hot-Melt Extrusion Technology through Response Surface Methodology. Int. J. Pharm. 2023, 641, 123055. [Google Scholar] [CrossRef] [PubMed]
- Haimhoffer, Á.; Vasvári, G.; Trencsényi, G.; Béresová, M.; Budai, I.; Czomba, Z.; Rusznyák, Á.; Váradi, J.; Bácskay, I.; Ujhelyi, Z.; et al. Process Optimization for the Continuous Production of a Gastroretentive Dosage Form Based on Melt Foaming. AAPS PharmSciTech 2021, 22, 187. [Google Scholar] [CrossRef]
- Tran, T.; Rades, T.; Müllertz, A. Formulation of Self-Nanoemulsifying Drug Delivery Systems Containing Monoacyl Phosphatidylcholine and Kolliphor® RH40 Using Experimental Design. Asian J. Pharm. Sci. 2018, 13, 536–545. [Google Scholar] [CrossRef]
- Barea, S.A.; Mattos, C.B.; Cruz, A.C.C.; Chaves, V.C.; Pereira, R.N.; Simões, C.M.O.; Kratz, J.M.; Koester, L.S. Solid Dispersions Enhance Solubility, Dissolution, and Permeability of Thalidomide. Drug Dev. Ind. Pharm. 2017, 43, 511–518. [Google Scholar] [CrossRef]
- Upadhyay, P.; Pandit, J.K.; Wahi, A.K. Studies on Biological Macromolecules Lipid-Gelucire Based Gastroretentive Multiparticulate. Int. J. Biol. Macromol. 2014, 67, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Youhanna, S.; Lauschke, V.M. The Past, Present and Future of Intestinal In Vitro Cell Systems for Drug Absorption Studies. J. Pharm. Sci. 2021, 110, 50–65. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhang, J.; Li, A. Cytotoxicity and Intestinal Permeability of Phycotoxins Assessed by the Human Caco-2 Cell Model. Ecotoxicol. Environ. Saf. 2023, 249, 114447. [Google Scholar] [CrossRef]
- Skrzydlewski, P.; Twarużek, M.; Grajewski, J. Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins 2022, 14, 244. [Google Scholar] [CrossRef]
- de Bruijn, V.M.P.; te Kronnie, W.; Rietjens, I.M.C.M.; Bouwmeester, H. Intestinal in Vitro Transport Assay Combined with Physiologically Based Kinetic Modeling as a Tool to Predict Bile Acid Levels In Vivo. ALTEX-Altern. Anim. Exp. 2024, 41, 20–36. [Google Scholar] [CrossRef]
- Paarakh, M.P.; Jose, P.A.; Setty, C.M.; Peterchristoper, G.V. Release Kinetics—Concepts and Applications. Int. J. Pharm. Res. Technol. 2019, 8, 12–20. [Google Scholar] [CrossRef]
- Haimhoffer, Á.; Vasvári, G.; Budai, I.; Béresová, M.; Deák, Á.; Németh, N.; Váradi, J.; Sinka, D.; Bácskay, I.; Vecsernyés, M.; et al. In Vitro and In Vivo Studies of a Verapamil-Containing Gastroretentive Solid Foam Capsule. Pharmaceutics 2022, 14, 350. [Google Scholar] [CrossRef]
- Mashaqbeh, H.; Obaidat, R.; Al-shar’i, N.A. Evaluation of EDTA Dianhydride Versus Diphenyl Carbonate Nanosponges for Curcumin. AAPS PharmSciTech 2022, 23, 229. [Google Scholar] [CrossRef]
- Xie, H.; Ma, L.; Li, Y.; Fu, J.; Li, Z.; Yu, X.; Gao, Q. Preparation and Characterizations of Curcumin Protection and Delivery System Using Linear Dextrin. Compounds 2022, 2, 353–366. [Google Scholar] [CrossRef]
- Otun, S.; Meehan, E.; Qi, S.; Craig, D. The Use of Quasi-Isothermal Modulated Temperature Differential Scanning Calorimetry for the Characterization of Slow Crystallization Processes in Lipid-Based Solid Self-Emulsifying Systems. Pharm. Res. 2014, 32, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Ansu, A.; Laiker, U. Development of Eutectic Phase Change Materials for Solar Thermal Energy Storage. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1127, 012009. [Google Scholar] [CrossRef]
- Kiani, A.; Acocella, M.; Guerra, G. Solid-State Reaction of Alkylamines with CO2 in Ambient Air. ChemSusChem 2024, 17, e202400264. [Google Scholar] [CrossRef]
- Bacanli, M.; Anlar, H.G.; Başaran, A.A.; Başaran, N. Assessment of Cytotoxicity Profiles of Different Phytochemicals: Comparison of Neutral Red and MTT Assays in Different Cells in Different Time Periods. Turk. J. Pharm. Sci. 2017, 14, 95–107. [Google Scholar] [CrossRef]
- Gomez Perez, M.; Fourcade, L.; Mateescu, M.A.; Paquin, J. Neutral Red versus MTT Assay of Cell Viability in the Presence of Copper Compounds. Anal. Biochem. 2017, 535, 43–46. [Google Scholar] [CrossRef]
- Alam, M.A.; Ali, R.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Solid Dispersions: A Strategy for Poorly Aqueous Soluble Drugs and Technology Updates. Expert Opin. Drug Deliv. 2012, 9, 1419–1440. [Google Scholar] [CrossRef]
- Gangurde, A.B.; Kundaikar, H.S.; Javeer, S.D.; Jaiswar, D.R.; Degani, M.S.; Amin, P.D. Enhanced Solubility and Dissolution of Curcumin by a Hydrophilic Polymer Solid Dispersion and Its Molecular Modeling Studies. J. Drug Deliv. Sci. Technol. 2015, 29, 226–237. [Google Scholar] [CrossRef]
- Saka, O.M.; Aygüler, C.İ.; Özdemir, N.S.; Sürücü, B.; Çakırlı, E.; Nemutlu, E.; Demirbolat, G.M. An Experimental Design Approach for Producing Curcumin-Loaded Solid Lipid Nanoparticles. Pharmaceuticals 2025, 18, 470. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.; Elmarzugi, N.; El Enshasy, H. Preparation and Evaluation of Olive Oil Nanoemulsion Using Sucrose Monoester. Int. J. Pharm. Pharm. Sci. 2013, 5, 434–440. [Google Scholar]
- Zheng, K.; Zhao, J.; Wang, Q.; Zhao, Y.; Yang, H.; Yang, X.; He, L. Design and Evaluation of Ginkgolides Gastric Floating Controlled Release Tablets Based on Solid Supersaturated Self-Nanoemulsifying. AAPS PharmSciTech 2023, 25, 7. [Google Scholar] [CrossRef] [PubMed]
- Shehata, T.M.; Abdallah, M.H.; Ibrahim, M.M. Proniosomal Oral Tablets for Controlled Delivery and Enhanced Pharmacokinetic Properties of Acemetacin. AAPS PharmSciTech 2015, 16, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elbary, A.; Tadros, M.I.; Alaa-Eldin, A.A. Sucrose Stearate-Enriched Lipid Matrix Tablets of Etodolac: Modulation of Drug Release, Diffusional Modeling and Structure Elucidation Studies. AAPS PharmSciTech 2013, 14, 656–668. [Google Scholar] [CrossRef]
- Devi, R. Comparison of Release Retardant Effect of Some Novel Lipids by Formulating Sustained Release Tablet of BCS Class 1 Drug. Indian J. Pharm. Educ. Res. 2020, 54, s241–s250. [Google Scholar] [CrossRef]
- Morakul, B.; Teeranachaideekul, V.; Limwikrant, W.; Junyaprasert, V.B. Dissolution and Antioxidant Potential of Apigenin Self Nanoemulsifying Drug Delivery System (SNEDDS) for Oral Delivery. Sci. Rep. 2024, 14, 8851. [Google Scholar] [CrossRef]
- Guideline on Quality of Oral Modified Release Products. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-oral-modified-release-products_en.pdf (accessed on 7 August 2025).
- Laracuente, M.-L.; Yu, M.H.; McHugh, K.J. Zero-Order Drug Delivery: State of the Art and Future Prospects. J. Control. Release 2020, 327, 834–856. [Google Scholar] [CrossRef]
- da Fonseca Antunes, A.B.; De Geest, B.G.; Vervaet, C.; Remon, J.P. Gelucire 44/14 Based Immediate Release Formulations for Poorly Water-Soluble Drugs. Drug Dev. Ind. Pharm. 2013, 39, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Kim, J.-S.; Hwang, S.-J. Enhancement of Wettability and Dissolution Properties of Cilostazol Using the Supercritical Antisolvent Process: Effect of Various Additives. Chem. Pharm. Bull. 2010, 58, 230–233. [Google Scholar] [CrossRef]
- Hu, L.; Shi, Y.; Li, J.H.; Gao, N.; Ji, J.; Niu, F.; Chen, Q.; Yang, X.; Wang, S. Enhancement of Oral Bioavailability of Curcumin by a Novel Solid Dispersion System. AAPS PharmSciTech 2015, 16, 1327–1334. [Google Scholar] [CrossRef]
- Sharma, V.; Pathak, K. Effect of Hydrogen Bond Formation/Replacement on Solubility Characteristics, Gastric Permeation and Pharmacokinetics of Curcumin by Application of Powder Solution Technology. Acta Pharm. Sin. B 2016, 6, 600–613. [Google Scholar] [CrossRef]
- Valenti, S.; Barrio, M.; Negrier, P.; Romanini, M.; Macovez, R.; Tamarit, J.-L. Comparative Physical Study of Three Pharmaceutically Active Benzodiazepine Derivatives: Crystalline versus Amorphous State and Crystallization Tendency. Mol. Pharm. 2021, 18, 1819–1832. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Najum us Saqib, Q.; Waheed, A. Cytotoxic Activity of Extracts and Crude Saponins from Zanthoxylum Armatum DC. against Human Breast (MCF-7, MDA-MB-468) and Colorectal (Caco-2) Cancer Cell Lines. BMC Complement. Altern. Med. 2017, 17, 368. [Google Scholar] [CrossRef] [PubMed]
- Wiater, A.; Paduch, R.; Trojnar, S.; Choma, A.; Pleszczyńska, M.; Adamczyk, P.; Pięt, M.; Próchniak, K.; Szczodrak, J.; Strawa, J.; et al. The Effect of Water-Soluble Polysaccharide from Jackfruit (Artocarpus heterophyllus Lam.) on Human Colon Carcinoma Cells Cultured In Vitro. Plants 2020, 9, 103. [Google Scholar] [CrossRef] [PubMed]
Sample | Gelucire 44/14 | Gelucire 48/16 | Kolliphor RH40 | PEG 4000 | PEG 6000 | CUR |
---|---|---|---|---|---|---|
S1 | 4375 | 0 | 4375 | 1500 | 0 | 375 |
S2 | 4375 | 0 | 4375 | 0 | 1500 | 375 |
S3 | 3875 | 0 | 3875 | 2500 | 0 | 375 |
S4 | 3875 | 0 | 3875 | 0 | 2500 | 375 |
S5 | 0 | 4375 | 4375 | 1500 | 0 | 375 |
S6 | 0 | 4375 | 4375 | 0 | 1500 | 375 |
S7 | 0 | 3875 | 3875 | 2500 | 0 | 375 |
S8 | 0 | 3875 | 3875 | 0 | 2500 | 375 |
S9 | 3375 | 0 | 3375 | 3500 | 0 | 375 |
S10 | 3375 | 0 | 3375 | 0 | 3500 | 375 |
S11 | 0 | 3375 | 3375 | 3500 | 0 | 375 |
S12 | 0 | 3375 | 3375 | 0 | 3500 | 375 |
S13 | 2875 | 0 | 2875 | 4500 | 0 | 375 |
S14 | 2875 | 0 | 2875 | 0 | 4500 | 375 |
S15 | 0 | 2875 | 2875 | 4500 | 0 | 375 |
S16 | 0 | 2875 | 2875 | 0 | 4500 | 375 |
S17 | 2375 | 0 | 2375 | 5500 | 0 | 375 |
S18 | 2375 | 0 | 2375 | 0 | 5500 | 375 |
S19 | 0 | 2375 | 2375 | 5500 | 0 | 375 |
S20 | 0 | 2375 | 2375 | 0 | 5500 | 375 |
Sample | z Average 1 | z SD 1 | PDI Average 2 | PDI SD 2 |
---|---|---|---|---|
S1 | 880.3 | 112.5 | 0.823 | 0.086 |
S2 | 948.2 | 158 | 0.846 | 0.091 |
S3 | 1369 | 1292 | 0.828 | 0.149 |
S4 | 851.2 | 87.5 | 0.929 | 0.09 |
S5 | 26.31 | 22.61 | 0.154 | 0.034 |
S6 | 13.17 | 0.032 | 0.070 | 0.020 |
S7 | 13.08 | 0.037 | 0.053 | 0.006 |
S8 | 13.7 | 0.034 | 0.161 | 0.004 |
S9 | 504.7 | 43.64 | 0.584 | 0.016 |
S10 | 285.6 | 28.82 | 0.545 | 0.082 |
S11 | 24.61 | 19.28 | 0.162 | 0.031 |
S12 | 67.31 | 39.81 | 0.216 | 0.042 |
S13 | 103.7 | 81.97 | 0.290 | 0.035 |
S14 | 31.96 | 25.1 | 0.300 | 0.120 |
S15 | 15.85 | 0.19 | 0.259 | 0.036 |
S16 | 45.01 | 26.07 | 0.296 | 0.077 |
S17 | 20.02 | 8.156 | 0.185 | 0.052 |
S18 | 14.62 | 0.12 | 0.140 | 0.023 |
S19 | 35.2 | 13.84 | 0.290 | 0.097 |
S20 | 34.2 | 17.95 | 0.329 | 0.099 |
Sample | z Average 1 | z SD 1 | PDI Average 2 | PDI SD 2 |
---|---|---|---|---|
5% SA | ||||
S5 | 3285 | 177.5 | 0.983 | 0.06 |
S6 | 3128 | 663.8 | 1.000 | 0 |
S7 | 2298 | 280.3 | 1.000 | 0 |
S8 | 3369 | 1668 | 0.992 | 0.014 |
S11 | 4857 | 1439 | 1.000 | 0 |
S14 | 7047 | 3873 | 0.744 | 0.296 |
S15 | 4065 | 1426 | 0.998 | 0.02 |
S17 | 6178 | 515.2 | 0.953 | 0.082 |
S18 | 5908 | 1153 | 0.782 | 0.193 |
5% GS | ||||
S5 | 1038 | 73.38 | 0.796 | 0.039 |
S6 | 1063 | 290.8 | 0.983 | 0.120 |
S7 | 1801 | 331.9 | 0.886 | 0.103 |
S8 | 1797 | 547.4 | 0.822 | 0.168 |
S11 | 1304 | 293.9 | 0.819 | 0.114 |
S14 | 3195 | 292.1 | 1.000 | 0 |
S15 | 2618 | 1134 | 0.913 | 0.151 |
S17 | 3407 | 1673 | 0.908 | 0.158 |
S18 | 3772 | 3035 | 0.944 | 0.097 |
5% SM | ||||
S5 | 1706 | 741.9 | 0.687 | 0.116 |
S6 | 855.2 | 50.22 | 0.784 | 0.066 |
S7 | 909.8 | 219.6 | 0.824 | 0.117 |
S8 | 1074 | 200.9 | 0.817 | 0.023 |
S11 | 1185 | 66 | 0.701 | 0.256 |
S14 | 2687 | 521.8 | 1.000 | 0 |
S15 | 1203 | 254.8 | 0.732 | 0.070 |
S17 | 2290 | 973.4 | 0.949 | 0.088 |
S18 | 3663 | 1264 | 0.891 | 0.789 |
Sample | z Average 1 | z SD 1 | PDI Average 2 | PDI SD 2 |
---|---|---|---|---|
5% SM | ||||
S5 | 1197 | 108.1 | 0.893 | 0.116 |
S6 | 855.2 | 50.22 | 0.784 | 0.066 |
S7 | 909.8 | 219.6 | 0.824 | 0.117 |
S8 | 1074 | 200.9 | 0.817 | 0.023 |
S11 | 1185 | 66 | 0.701 | 0.256 |
S14 | 2687 | 521.8 | 1.000 | 0 |
S15 | 1203 | 254.8 | 0.732 | 0.070 |
S17 | 2290 | 973.4 | 0.949 | 0.088 |
S18 | 3663 | 1264 | 0.891 | 0.789 |
10% SM | ||||
S5 | 3709 | 310.2 | 0.453 | 0.358 |
S6 | 2539 | 108.9 | 0.995 | 0.008 |
S7 | 6384 | 919.9 | 1 | 0 |
S8 | 2391 | 101.4 | 0.875 | 0.031 |
S11 | 4823 | 631.0 | 1 | 0 |
S14 | 2122 | 172.0 | 0.883 | 0.283 |
S15 | 666.6 | 155.2 | 0.633 | 0.094 |
S17 | 3209 | 433.4 | 1 | 0 |
S18 | 5908 | 1153 | 0.782 | 0.193 |
S14 SM10% | S15 SM10% | |
---|---|---|
Zero-order | 0.9806 | 0.9649 |
First-order | 0.9898 | 0.9893 |
Korsmeyer-Peppas | 0.8745 | 0.9017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csendes, O.; Vasvári, G.; Haimhoffer, Á.; Horváth, L.; Béresová, M.; Bényei, A.; Bácskay, I.; Fehér, P.; Ujhelyi, Z.; Nemes, D. Bioavailability Enhancement of Curcumin by PEG-Based Gastroretentive System: Development and In Vitro Evaluation. Pharmaceutics 2025, 17, 1166. https://doi.org/10.3390/pharmaceutics17091166
Csendes O, Vasvári G, Haimhoffer Á, Horváth L, Béresová M, Bényei A, Bácskay I, Fehér P, Ujhelyi Z, Nemes D. Bioavailability Enhancement of Curcumin by PEG-Based Gastroretentive System: Development and In Vitro Evaluation. Pharmaceutics. 2025; 17(9):1166. https://doi.org/10.3390/pharmaceutics17091166
Chicago/Turabian StyleCsendes, Orsolya, Gábor Vasvári, Ádám Haimhoffer, László Horváth, Monika Béresová, Attila Bényei, Ildikó Bácskay, Pálma Fehér, Zoltán Ujhelyi, and Dániel Nemes. 2025. "Bioavailability Enhancement of Curcumin by PEG-Based Gastroretentive System: Development and In Vitro Evaluation" Pharmaceutics 17, no. 9: 1166. https://doi.org/10.3390/pharmaceutics17091166
APA StyleCsendes, O., Vasvári, G., Haimhoffer, Á., Horváth, L., Béresová, M., Bényei, A., Bácskay, I., Fehér, P., Ujhelyi, Z., & Nemes, D. (2025). Bioavailability Enhancement of Curcumin by PEG-Based Gastroretentive System: Development and In Vitro Evaluation. Pharmaceutics, 17(9), 1166. https://doi.org/10.3390/pharmaceutics17091166