Green Synthesis of Bioactive Silver Nanoparticles from Fagopyrum esculentum Hulls
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Microorganisms
2.3. Cell Lines
2.4. Preparation and Chemical Characterization of Buckwheat Hull Extracts
2.4.1. Preparation of Buckwheat Hull Extracts
2.4.2. Qualitative Analysis of Buckwheat Hull Extracts
2.4.3. Quantitative Analysis of Buckwheat Hull Extracts
2.5. Optimization of AgNP Synthesis
2.6. Characterization of AgNPs
2.7. Antioxidant Activity
2.7.1. DPPH Radical Scavenging Assay
2.7.2. ABTS Radical Cation Scavenging Assay
2.8. Cytotoxic Activity
2.8.1. Cell Cultures
2.8.2. Cell Viability
2.8.3. Cell Morphology
2.9. Antibacterial Activity
3. Results
3.1. Chemical Characterization of Buckwheat Hull Extracts
3.2. Optimization of AgNP Synthesis
3.2.1. AgNO3 Concentration
3.2.2. Plant Extract to AgNO3 Ratio
3.2.3. pH
3.2.4. Temperature
3.2.5. Reaction Time
3.3. Characterization of AgNPs
3.3.1. ATR-FTIR Spectroscopy
3.3.2. DLS Analysis
3.3.3. SEM-EDX Analysis
3.3.4. TEM Analysis
3.4. Antioxidant Activity
3.4.1. DPPH Radical Scavenging Activity
3.4.2. ABTS Radical Cation Scavenging Activity
3.5. Cytotoxic Activity
3.6. Antibacterial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Priya, A.S.; Afzal, O.; Khalid, M.; Faruque Ahmad, M.; Upadhyay, A.; Kumar, S.; Garg, A.; Ramzan, M.; Hussain, A.; Altamimi, M.A.; et al. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. Int. J. Pharm. 2023, 643, 123223. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Shin, H.S. Facile green biosynthesis of silver nanoparticles using Pisum sativum L. outer peel aqueous extract and its antidiabetic, cytotoxicity, antioxidant, and antibacterial activity. Int. J. Nanomed. 2019, 14, 6679–6690. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Sharma, S.; Rai, R. Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Adv. Mater. Lett. 2012, 3, 376–380. [Google Scholar] [CrossRef]
- Devanesan, S.; AlSalhi, M.S.; Balaji, R.V.; Ranjitsingh, A.J.A.; Ahamed, A.; Alfuraydi, A.A.; AlQahtani, F.Y.; Aleanizy, F.S.; Othman, A.H. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract. Nanoscale Res. Lett. 2018, 13, 315. [Google Scholar] [CrossRef]
- Alkhulaifi, M.M.; Alshehri, J.H.; Alwehaibi, M.A.; Awad, M.A.; Al-Enazi, N.M.; Aldosari, N.S.; Hatamleh, A.A.; Abdel- Raouf, N. Green synthesis of silver nanoparticles using Citrus limon peels and evaluation of their antibacterial and cytotoxic properties. Saudi J. Biol. Sci. 2020, 27, 3434–3441. [Google Scholar] [CrossRef]
- Arsène, M.M.J.; Podoprigora, I.V.; Davares, A.K.L.; Razan, M.; Das, M.S.; Senyagin, A.N. Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles. Vet. World 2021, 14, 1330–1341. [Google Scholar] [CrossRef]
- Saha, P.; Mahiuddin, M.; Islam, A.B.M.N.; Ochiai, B. Biogenic synthesis and catalytic efficacy of silver nanoparticles based on peel extracts of Citrus macroptera fruit. ACS Omega 2021, 6, 18260–18268. [Google Scholar] [CrossRef]
- Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2010, 368, 58–63. [Google Scholar] [CrossRef]
- Dang, H.; Fawcett, D.; Poinern, G.E.J. Biogenic synthesis of silver nanoparticles from waste banana plant stems and their antibacterial activity against Escherichia coli and Staphylococcus epidermis. Int. J. Res. Med. Sci. 2017, 5, 3769. [Google Scholar] [CrossRef]
- Phongtongpasuk, S.; Poadang, S.; Yongvanich, N. Environmental-friendly method for synthesis of silver nanoparticles from Dragon fruit peel extract and their antibacterial activities. Energy Procedia 2016, 89, 239–247. [Google Scholar] [CrossRef]
- Tasiu, M.; Abdulmumin, Y.; Abdulmumin, T.M.; Murtala, M.; Shehu, A.; Abubakar, A.L.; Zainab, S.; Mustapha, R.K.; Binta, S.S. Antimicrobial evaluation of biologically synthesized silver nanoparticles using aqueous peel extracts of guava (Psidium guavaja) and pumpkin (Cucurbita pepo). Asian J. Biotechnol. Genet. Eng. 2022, 5, 80–89. [Google Scholar]
- Xing, Y.; Liao, X.; Liu, X.; Li, W.; Huang, R.; Tang, J.; Xu, Q.; Li, X.; Yu, J. Characterization and antimicrobial activity of silver nanoparticles synthesized with the peel extract of mango. Materials 2021, 14, 5878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fan, S.; Duncan, G.J.; Morris, A.; Henderson, D.; Morrice, P.; Russell, W.R.; Duncan, S.H.; Neacsu, M. Buckwheat (Fagopyrum esculentum) hulls are a rich source of fermentable dietary fibre and bioactive phytochemicals. Int. J. Mol. Sci. 2023, 24, 16310. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lv, Q.; Liu, A.; Wang, J.; Sun, X.; Deng, J.; Chen, Q.; Wu, Q. Comparative metabolomics study of tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum Moench) buckwheat seeds. Food Chem. 2022, 371, 131125. [Google Scholar] [CrossRef]
- Phirange, A.S.; Sabharwal, S.G. Green synthesis of silver nanoparticles using Fagopyrum esculentum starch: Antifungal, antibacterial activity and its cytotoxicity. Ind. J. Biotechnol. 2019, 18, 52–63. [Google Scholar]
- Karpuz, Ö.; Baltacı, C.; Gül, A.; Gülen, J.; Bozbeyoğlu, P.; Aydoğan, N. Green synthesis of iron and silver nanoparticles from aqueous extract of buckwheat husk waste: Antibacterial, cytotoxic, and dye decolorization properties. Biomass Conv. Bioref. 2024. [Google Scholar] [CrossRef]
- Macovei, I.; Luca, S.V.; Skalicka-Woźniak, K.; Sacarescu, L.; Pascariu, P.; Ghilan, A.; Doroftei, F.; Ursu, E.L.; Rimbu, C.M.; Horhogea, C.E.; et al. Phyto-functionalized silver nanoparticles derived from conifer bark extracts and evaluation of their antimicrobial and cytogenotoxic effects. Molecules 2022, 27, 217. [Google Scholar] [CrossRef]
- Macovei, I.; Luca, S.V.; Skalicka-Woźniak, K.; Horhogea, C.E.; Rimbu, C.M.; Sacarescu, L.; Vochita, G.; Gherghel, D.; Ivanescu, B.L.; Panainte, A.D.; et al. Silver nanoparticles synthesized from Abies alba and Pinus sylvestris bark extracts: Characterization, antioxidant, cytotoxic, and antibacterial effects. Antioxidants 2023, 12, 797. [Google Scholar] [CrossRef]
- Karthika, V.; Arumugam, A.; Gopinath, K.; Kaleeswarran, P.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Gauzuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J. Photochem. Photobiol. B 2017, 167, 189–199. [Google Scholar] [CrossRef]
- Luca, S.V.; Miron, A.; Aprotosoaie, A.C.; Mihai, C.T.; Vochita, G.; Gherghel, D.; Ciocarlan, N.; Skalicka-Woźniak, K. HPLC-DAD-ESI-Q-TOF-MS/MS profiling of Verbascum ovalifolium Donn Ex Sims and evaluation of its antioxidant and cytogenotoxic activities. Phytochem. Anal. 2019, 30, 34–45. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, A.J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Corciovă, A.; Mircea, C.; Fifere, A.; Turin-Moleavin, I.A.; Roşca, I.; Macovei, I.; Ivănescu, B.; Vlase, A.M.; Hăncianu, M.; Burlec, A.F. Biogenic synthesis of silver nanoparticles mediated by Aronia melanocarpa and their biological evaluation. Life 2024, 14, 1211. [Google Scholar] [CrossRef]
- Vikas, S.; Manjit, S.; Krishan, S. Biogenic synthesis, optimisation and antibacterial efficacy of extracellular silver nanoparticles using novel fungal isolate Aspergillus fumigatus MA. IET Nanobiotechnol. 2016, 10, 215–221. [Google Scholar] [CrossRef]
- Jiamboonsri, P.; Wanwong, S. Photoassisted synthesis of silver nanoparticles using riceberry rice extract and their antibacterial application. J. Nanomater. 2021, 2021, 5598924. [Google Scholar] [CrossRef]
- Kharat, S.N.; Mendhulkar, V.D. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mat. Sci. Eng. C 2016, 62, 719–724. [Google Scholar] [CrossRef]
- Alahmad, A.; Feldhoff, A.; Bigall, N.C.; Rusch, P.; Scheper, T.; Walter, J.G. Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities. Nanomaterials 2021, 11, 487. [Google Scholar] [CrossRef]
- Vunjak-Novakovic, G.; Freshney, I. Culture of Cells for Tissue Engineering; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.V.; Herst, P.M.; Tan, A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Annu. Rev. 2005, 11, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Stockert, J.C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R.W.; Villanueva, Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Aelenei, P.; Rimbu, C.M.; Horhogea, C.E.; Lobiuc, A.; Neagu, A.N.; Dunca, S.I.; Motrescu, I.; Dimitriu, G.; Aprotosoaie, A.C.; Miron, A. Prenylated phenolics as promising candidates for combination antibacterial therapy: Morusin and kuwanon G. Saudi Pharm. J. 2020, 28, 1172–1181. [Google Scholar] [CrossRef]
- Vega-Jiménez, A.L.; Vázquez-Olmos, A.R.; Acosta-Gío, E.; Álvarez-Pérez, M.A. In vitro antimicrobial activity evaluation of metal oxide nanoparticles. In Nanoemulsions–Properties, Fabrications, and Applications; Koh, K.S., Wong, V.L., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Massadeh, M.I.; Al-Masri, M.; Abu-Qatouseh, L.F. Antibacterial activity of Peganum harmala extracts and their green silver nanoparticles against acne associated bacteria. Farmacia 2022, 70, 954–963. [Google Scholar] [CrossRef]
- KNApSAcK: A Comprehensive Species-Metabolite Relationship Database. Available online: https://www.knapsackfamily.com/KNApSAcK/ (accessed on 12 February 2025).
- Bujor, A.; Miron, A.; Luca, S.V.; Skalicka-Wozniak, K.; Silion, M.; Trifan, A.; Girard, C.; Demougeot, C.; Totoson, P. Vasorelaxant effects of Crataegus pentagyna: Links with arginase inhibition and phenolic profile. J. Ethnopharmacol. 2020, 252, 112559. [Google Scholar] [CrossRef] [PubMed]
- Al-Yousef, H.M.; Hassan, W.H.B.; Abdelaziz, S.; Amina, M.; Adel, R.; El-Sayed, M.A. UPLC-ESI-MS/MS profile and antioxidant, cytotoxic, antidiabetic, and antiobesity activities of the aqueous extracts of three different Hibiscus species. J. Chem. 2020, 2020, 6749176. [Google Scholar] [CrossRef]
- Bujor, A.; Miron, A.; Luca, S.V.; Skalicka-Wozniak, K.; Silion, M.; Ancuceanu, R.; Dinu, M.; Girard, C.; Demougeot, C.; Totoson, P. Metabolite profiling, arginase inhibition and vasorelaxant activity of Cornus mas, Sorbus aucuparia and Viburnum opulus fruit extracts. Food Chem. Toxicol. 2019, 133, 110764. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Y.; Liu, Q.; Bao, J.; Liu, Q. Identification and quantification of polyphenols in hull, bran and endosperm of common buckwheat (Fagopyrum esculentum) seeds. J. Funct. Foods 2017, 38, 363–369. [Google Scholar] [CrossRef]
- Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.; Kumar, B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef]
- Yang, W.; Su, Y.; Dong, G.; Qian, G.; Shi, Y.; Mi, Y.; Zhang, Y.; Xue, J.; Du, W.; Shi, T.; et al. Liquid chromatography–mass spectrometry-based metabolomics analysis of flavonoids and anthraquinones in Fagopyrum tataricum L. Gaertn. (tartary buckwheat) seeds to trace morphological variations. Food Chem. 2020, 331, 127354. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Silva, M.; Becerra, J.; Schmeda-Hirschmann, G. Direct characterisation of phenolic antioxidants in infusions from four Mapuche medicinal plants by liquid chromatography with diode array detection (HPLC-DAD) and electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS). Food Chem. 2012, 131, 318–327. [Google Scholar] [CrossRef]
- Jain, N.; Jain, P.; Rajput, D.; Patil, U.K. Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst. Lett. 2021, 9, 5. [Google Scholar] [CrossRef]
- Kumari, R.; Saini, A.K.; Kumar, A.; Saini, R.V. Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. J. Biol. Inorg. Chem. 2020, 25, 23–37. [Google Scholar] [CrossRef]
- Rizwana, H.; Khan, M.; Aldehaish, H.A.; Adil, S.F.; Shaik, M.R.; Assal, M.E.; Hatshan, M.R.; Siddiqui, M.R.H. Green biosynthesis of silver nanoparticles using Vaccinium oxycoccos (cranberry) extract and evaluation of their biomedical potential. Crystals 2023, 13, 294. [Google Scholar] [CrossRef]
- Kora, A.J.; Arunachalam, J. Green fabrication of silver nanoparticles by Gum tragacanth (Astragalus gummifer): A dual functional reductant and stabilizer. J. Nanomater. 2012, 2012, 869765. [Google Scholar] [CrossRef]
- Adib, A.M.; Jamaludin, F.; Kiong, L.S.; Hashim, N.; Abdullah, Z. Two-dimensional correlation infrared spectroscopy applied to analyzing and identifying the extracts of Baeckea frutescens medicinal materials. J. Pharm. Biomed. Anal. 2014, 96, 104–110. [Google Scholar] [CrossRef]
- Harshiny, M.; Matheswaran, M.; Arthanareeswaran, G.; Kumaran, S.; Rajasree, S. Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol. Environ. Saf. 2015, 121, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Katas, H.; Lim, C.S.; Nor Azlan, A.Y.H.; Buang, F.; Mh Busra, M.F. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm. J. 2019, 27, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Lomelí-Rosales, D.A.; Zamudio-Ojeda, A.; Reyes-Maldonado, O.K.; López-Reyes, M.E.; Basulto-Padilla, G.C.; Lopez-Naranjo, E.J.; Zuñiga-Mayo, V.M.; Velázquez-Juárez, G. Green synthesis of gold and silver nanoparticles using leaf extract of Capsicum chinense plant. Molecules 2022, 27, 1692. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential-what they are and what they are not? J. Contr. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, J.; Mehmood, A.; Khalid, A.R.; Khan, M.A.R.; Ahmad, K.S.; Amjad, M.S.; Bashir, U.; Raffi, M.; Proćków, J. Green-fabricated silver nanoparticles from Quercus incana leaf extract to control the early blight of tomatoes caused by Alternaria solani. BMC Plant Biol. 2024, 24, 302. [Google Scholar] [CrossRef]
- Shankar, T.; Karthiga, P.; Swarnalatha, K.; Rajkumar, K. Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Res.-Eff. Technol. 2017, 3, 303–308. [Google Scholar] [CrossRef]
- Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Saravanan, M.; Ubaid, M.F.; Ali, M.; Shinwari, Z.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomed 2016, 12, 3157–3177. [Google Scholar] [CrossRef]
- Borase, H.P.; Salunke, B.K.; Salunkhe, R.B.; Patil, C.D.; Hallsworth, J.E.; Kim, B.S.; Patil, S.V. Plant extract: A promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl. Biochem. Biotechnol. 2014, 173, 1–29. [Google Scholar] [CrossRef]
- Heinemann, M.G.; Rosa, C.H.; Rosa, G.R.; Dias, D. Biogenic synthesis of gold and silver nanoparticles used in environmental applications: A review. Trend Environ. Anal. Chem. 2021, 30, e00129. [Google Scholar] [CrossRef]
- Haridas, E.S.H.; Varma, M.K.R.; Chandra, G.K. Bioactive silver nanoparticles derived from Carica papaya floral extract and its dual-functioning biomedical application. Sci. Rep. 2025, 15, 9001. [Google Scholar] [CrossRef]
- Sati, A.; Ranade, T.N.; Mali, S.N.; Ahmad Yasin, H.K.; Pratap, A. Silver nanoparticles (AgNPs): Comprehensive insights into bio/synthesis, key influencing factors, multifaceted applications, and toxicity—A 2024 update. ACS Omega 2025, 10, 7549–7582. [Google Scholar] [CrossRef] [PubMed]
- Mashwani, Z.R.; Khan, T.; Khan, M.A.; Nadhman, A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: Current status and future prospects. Appl. Microbiol. Biotechnol. 2015, 99, 9923–9934. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Zhu, T.; Wang, W.; Guo, D.; Li, Y.; Chen, T.; Zhang, X. Green synthesis of narrow-size silver nanoparticles using Ginkgo biloba leaves: Condition optimization, characterization, and antibacterial and cytotoxic activities. Int. J. Mol. Sci. 2024, 25, 1913. [Google Scholar] [CrossRef] [PubMed]
- Tanase, C.; Berta, L.; Mare, A.; Man, A.; Talmaciu, A.I.; Roșca, I.; Mircia, E.; Volf, I.; Popa, V.I. Biosynthesis of silver nanoparticles using aqueous bark extract of Picea abies L. and their antibacterial activity. Eur. J. Wood Wood Prod. 2020, 78, 281–291. [Google Scholar] [CrossRef]
- Majeed, M.; Hakeem, K.R.; Rehman, R.U. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks. Chemosphere 2022, 288, 132527. [Google Scholar] [CrossRef]
- Handayani, W.; Ningrum, A.S.; Imawan, C. The role of pH in synthesis silver nanoparticles using Pometia pinnata (matoa) leaves extract as bioreductor. In Proceedings of the Journal of Physics: Conference Series; Institute of Physics Publishing: Bristol, UK, 2020; Volume 1428. [Google Scholar]
- Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P.T. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 93, 95–99. [Google Scholar] [CrossRef]
- Verma, A.; Mehata, M.S. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 2016, 9, 109–115. [Google Scholar] [CrossRef]
- Seifipour, R.; Nozari, M.; Pishkar, L. Green synthesis of silver nanoparticles using Tragopogon collinus leaf extract and study of their antibacterial effects. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2926–2936. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X.; Zhang, Y.; Xue, X.; Fu, Y. Biosynthesis of silver nanoparticles at room temperature using aqueous aloe leaf extract and antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 2013, 423, 63–68. [Google Scholar] [CrossRef]
- Alharbi, N.S.; Alsubhi, N.S.; Felimban, A.I. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J. Radiat. Res. Appl. Sci. 2022, 15, 109–124. [Google Scholar] [CrossRef]
- Dhaka, A.; Chand Mali, S.; Sharma, S.; Trivedi, R. A review on biological synthesis of silver nanoparticles and their potential applications. Results Chem. 2023, 6, 101108. [Google Scholar] [CrossRef]
- Zykova, M.V.; Volikov, A.B.; Buyko, E.E.; Bratishko, K.A.; Ivanov, V.V.; Konstantinov, A.I.; Logvinova, L.A.; Mihalyov, D.A.; Sobolev, N.A.; Zhirkova, A.M.; et al. Enhanced antioxidant activity and reduced cytotoxicity of silver nanoparticles stabilized by different humic materials. Polymers 2023, 15, 3386. [Google Scholar] [CrossRef]
- Sreelekha, E.; George, B.; Shyam, A.; Sajina, N.; Mathew, B. A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. J. Bionanosci. 2021, 11, 489–496. [Google Scholar] [CrossRef]
- Mashilo, C.M.; Sibuyi, N.R.S.; Botha, S.; Meyer, M.; Razwinani, M.; Motaung, K.S.; Madiehe, A.M. Antioxidant and antimicrobial activities of green-synthesized silver nanoparticles using a cocktail aqueous extract of Capparis sepiaria root and Tabernaemontana elegans bark. ChemistrySelect 2025, 10, e202404781. [Google Scholar] [CrossRef]
- Fullstone, G.; Wood, J.; Holcombe, M.; Battaglia, G. Modelling the transport of nanoparticles under blood flow using an agent-based approach. Sci. Rep. 2015, 5, 10649. [Google Scholar] [CrossRef]
- Miethling-Graff, R.; Rumpker, R.; Richter, M.; Verano-Braga, T.; Kjeldsen, F.; Brewer, J.; Hoyland, J.; Rubahn, H.G.; Erdmann, H. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol. Vitr. 2014, 28, 1280–1289. [Google Scholar] [CrossRef]
- Kim, S.H.; Cui, C.B.; Kang, I.J.; Sun, Y.K.; Ham, S.S. Cytotoxic effect of buckwheat (Fagopyrum esculentum Moench) hull against cancer cells. J. Med. Food 2007, 10, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.G.; Peng, Q.L.; Ggurunathan, S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: Combination therapy for effective cancer treatment. Int. J. Nanomed. 2017, 12, 6487–6502. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, E.; Zauszkiewicz-Pawlak, A.; Wojcik, M.; Inkielewicz-Stepniak, I. Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget 2017, 9, 4675–4697. [Google Scholar] [CrossRef] [PubMed]
- Sen Gupta, A. Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: Insights from computations, experiments, and nature. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 255–270. [Google Scholar] [CrossRef]
- Barbalinardo, M.; Caicci, F.; Cavallini, M.; Gentili, D. Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast. Small 2018, 14, e1801219. [Google Scholar] [CrossRef]
- Böhme, I.; Bosserhoff, A.K. Acidic tumor microenvironment in human melanoma. Pigment. Cell Melanoma Res. 2016, 29, 508–523. [Google Scholar] [CrossRef]
- Van Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-based smart drug delivery systems for skin application and demonstration of stimuli-responsiveness. Polymers 2021, 13, 1285. [Google Scholar] [CrossRef]
- Awashra, M.; Młynarz, P. The toxicity of nanoparticles and their interaction with cells: An in vitro metabolomic perspective. Nanoscale Adv. 2023, 5, 2674–2723. [Google Scholar] [CrossRef]
- Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol. Biol. Med. 2016, 12, 789–799. [Google Scholar] [CrossRef]
- Woo, K.J.; Hye, C.K.; Ki, W.K.; Shin, S.; So, H.K.; Yong, H.P. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 2008, 74, 2171–2178. [Google Scholar] [CrossRef]
- Cabarkapa, I.S.; Sedej, I.J.; Sakac, M.B.; Saric, L.C.; Plavsic, S.V. Antimicrobial activity of buckwheat (Fagopyrum esculentum Moench) hulls extract. Food Feed Res. 2008, 4, 159–164. [Google Scholar]
- Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra Maillard, A.P.V.; Dalmasso, P.R.; López de Mishima, B.A.; Hollmann, A. Interaction of green silver nanoparticles with model membranes: Possible role in the antibacterial activity. Colloids Surf. B Biointerfaces 2018, 171, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Yacamán, M.J.; Ascencio, J.A.; Liu, H.B.; Gardea-Torresdey, J. Structure shape and stability of nanometric sized particles. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2001, 19, 1091–1103. [Google Scholar] [CrossRef]
- El-Zahry, M.R.; Mahmoud, A.; Refaat, I.H.; Mohamed, H.A.; Bohlmann, H.; Lendl, B. Antibacterial effect of various shapes of silver nanoparticles monitored by SERS. Talanta 2015, 138, 183–189. [Google Scholar] [CrossRef]
- Alshareef, A.; Laird, K.; Cross, R.B.M. Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium. Appl. Surf. Sci. 2017, 424, 310–315. [Google Scholar] [CrossRef]
- Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Rehman, A.U.; Khan, A.; Ullah, S.; Yuan, Q. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microb. Pathog. 2017, 102, 133–142. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- ATCC. Available online: https://www.atcc.org/products/43300-mini-pack (accessed on 10 March 2025).
- Long Do, B.; Ha Bui, T.; Gia-Thien Ho, T.; Linh Duong, N.; Minh Nguyen, V.; Dang-Bao, T.; Nguyen, T.; Hong Phuong, P. Green synthesis of nano-silver and its antibacterial activity against methicillin-resistant Staphylococcus aureus. J. Saudi Chem. Soc. 2023, 27, 101722. [Google Scholar] [CrossRef]
- Moodley, J.S.; Krishna, S.B.N.; Pillay, K.; Sershen; Govender, P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 015011. [Google Scholar] [CrossRef]
- Kuete, V. Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Med. 2010, 76, 1479–1491. [Google Scholar] [CrossRef]
- Macleod, D.T.; Cogen, A.L.; Gallo, R.L. Skin Microbiology. In Encyclopedia of Microbiology; Academic Press: Cambridge, MA, USA, 2009; pp. 734–747. [Google Scholar]
- Tyavambiza, C.; Elbagory, A.M.; Madiehe, A.M.; Meyer, M.; Meyer, S. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract. Nanomaterials 2021, 11, 1343. [Google Scholar] [CrossRef]
- Arshad, H.; Sami, M.A.; Sadaf, S.; Hassan, U. Salvadora persica mediated synthesis of silver nanoparticles and their antimicrobial efficacy. Sci. Rep. 2021, 11, 5996. [Google Scholar] [CrossRef]
- Chandrasekharan, S.; Chinnasamy, G.; Bhatnagar, S. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Sci. Rep. 2022, 12, 156. [Google Scholar] [CrossRef]
No. | TR [min] | [M-H]− [m/z] | MF | MS/MS Fragments [m/z] | Proposed Identity | Extract | Ref. |
---|---|---|---|---|---|---|---|
1 | 1.6 | 341.1090 | C12H22O11 | 179.0551; 119.0312 | sucrose | hydroethanolic aqueous | [34] |
2 | 1.8 | 191.0549 | C7H12O6 | 173.0429; 127.0354 | quinic acid | hydroethanolic aqueous | [35] |
3 | 2.3 | 117.0205 | C4H6O4 | 99.0092 | succinic acid | hydroethanolic | [36] |
4 | 2.5 | 191.0193 | C6H8O7 | 129.02 | citric acid | hydroethanolic aqueous | [35] |
5 | 3.9 | 169.0145 | C7H6O5 | 125.0339; 109.0726 | gallic acid | hydroethanolic aqueous | [34] |
6 | 5.3 | 167.0343 | C8H8O4 | 149.0342; 123.1439 | vanillic acid | hydroethanolic aqueous | [37] |
7 | 7.5 | 153.0184 | C7H6O4 | 109.0221; 91.0179 | dihydroxybenzoic acid | hydroethanolic aqueous | [34] |
8 | 9.9 | 137.0240 | C7H6O3 | 108.0224 | hydroxybenzoic acid | hydroethanolic aqueous | [35,37] |
9 | 21.3 | 447.0907 | C21H20O11 | 357.0609; 327.0502; 299.0541 | luteolin-C-hexoside | hydroethanolic aqueous | [38,39] |
10 | 22.8 | 609.1476 | C27H30O16 | 343.0453; 300.0278; 271.0244; 178.9985; 151.0026 | quercetin-O- hexoside- deoxyhexoside | hydroethanolic | [38,40] |
11 | 23.6 | 463.0877 | C21H20O12 | 301.0338; 271.0237; 243.0698; 178.9982; 151.0043 | quercetin-O- hexoside | hydroethanolic | [41] |
12 | 25.6 | 329.0659 | C17H14O7 | 314.0415; 299.0193; 286.0462; 271.0232 | trihydroxy-dimethoxy-flavone I | hydroethanolic | [34,41] |
13 | 26.9 | 447.0939 | C21H20O11 | 285.0399; 133.0295 | luteolin-O-hexoside | hydroethanolic aqueous | [34] |
14 | 30.8 | 301.0362 | C15H10O7 | 178.9973; 151.0023 | quercetin | hydroethanolic | [38,42] |
15 | 30.9 | 285.0377 | C15H10O6 | 171.0364; 151.0028; 133.0299 | luteolin | hydroethanolic | [40,41] |
16 | 31.3 | 345.0605 | C17H14O8 | 330.0387; 315.0125; 287.0175; 259.0313 | tetrahydroxy-dimethoxy-flavone I | hydroethanolic | [34] |
17 | 31.7 | 315.0516 | C16H12O7 | 300.0282; 271.0246; 255.0288; 243.0322 | tetrahydroxy-methoxy-flavone II | hydroethanolic | [34] |
18 | 35.3 | 329.0657 | C17H14O7 | 314.0413; 299.0193; 271.0234; 199.1317 | trihydroxy-dimethoxy-flavone II | hydroethanolic | [34,41] |
Sample | EC50 (μg/mL) | IC50 (μg/mL) * | ||
---|---|---|---|---|
Antioxidant Activity | Cytotoxicity (MTT Assay) | |||
DPPH Assay | ABTS Assay | A-375 Cells | Vero Cells | |
AgNPs derived from the hydroethanolic buckwheat hull extract | 455.8 ± 0.2 | 376.10 ± 2.48 | 2.48 ± 1.21 | 2.77± 0.21 |
AgNPs derived from the aqueous buckwheat hull extract | 132.6 ± 0.3 | 77.40 ± 3.52 | 4.72 ± 0.61 | 7.90 ±0.39 |
Sample | MIC (μg/mL) | ||||
---|---|---|---|---|---|
S. aureus ATCC 25923 | S. aureus ATCC 43300 (MRSA) | S. epidermidis ATCC 12228 | E. coli ATCC 25922 | P. aeruginosa ATCC 9027 | |
AgNPs derived from the hydroethanolic buckwheat hull extract | 75.00 | 37.50 | 4.68 | 75.00 | NA |
AgNPs derived from the aqueous buckwheat hull extract | 75.00 | 75.00 | 18.75 | 75.00 | 75.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macovei, I.; Luca, S.V.; Skalicka-Woźniak, K.; Sacarescu, L.; Rimbu, C.M.; Vochita, G.; Aprotosoaie, A.C.; Corciova, A.; Miron, A. Green Synthesis of Bioactive Silver Nanoparticles from Fagopyrum esculentum Hulls. Pharmaceutics 2025, 17, 1124. https://doi.org/10.3390/pharmaceutics17091124
Macovei I, Luca SV, Skalicka-Woźniak K, Sacarescu L, Rimbu CM, Vochita G, Aprotosoaie AC, Corciova A, Miron A. Green Synthesis of Bioactive Silver Nanoparticles from Fagopyrum esculentum Hulls. Pharmaceutics. 2025; 17(9):1124. https://doi.org/10.3390/pharmaceutics17091124
Chicago/Turabian StyleMacovei, Irina, Simon Vlad Luca, Krystyna Skalicka-Woźniak, Liviu Sacarescu, Cristina Mihaela Rimbu, Gabriela Vochita, Ana Clara Aprotosoaie, Andreia Corciova, and Anca Miron. 2025. "Green Synthesis of Bioactive Silver Nanoparticles from Fagopyrum esculentum Hulls" Pharmaceutics 17, no. 9: 1124. https://doi.org/10.3390/pharmaceutics17091124
APA StyleMacovei, I., Luca, S. V., Skalicka-Woźniak, K., Sacarescu, L., Rimbu, C. M., Vochita, G., Aprotosoaie, A. C., Corciova, A., & Miron, A. (2025). Green Synthesis of Bioactive Silver Nanoparticles from Fagopyrum esculentum Hulls. Pharmaceutics, 17(9), 1124. https://doi.org/10.3390/pharmaceutics17091124