Hydrogels in Peri-Implant Regeneration: Strategies for Modulating Tissue Healing
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
- Studies addressing the use of hydrogels applied to peri-implant bone repair, whether in vitro or in vivo models, or clinical trials;
- Publications in English, Portuguese, or Spanish are available in full text in the PubMed, Web of Science, and EBSCO databases;
- Articles published with a period restriction, covering the years 2010–2025, up to the time of the search.
2.2. Exclusion Criteria
- Studies that deal with the use of hydrogels in tissues other than bone (e.g., cartilage, skin);
- Articles focusing exclusively on hydrogels applied to the cure of peri-implantitis or treatment of critical defects in non-peri-implant regions;
- Articles focusing exclusively on hydrogels applied to aesthetic dentistry, with no relation to peri-implant bone regeneration;
- Works with duplicate information, poorly supported reviews, or a lack of data relevant to the topic.
3. Results
3.1. Fundamental Concepts in Bone Regeneration and the Role of Hydrogels
3.2. Classification of Hydrogels Used in Bone Repair
Origin | Hydrogel Composition | Implant Placement | Preparation | Reference |
---|---|---|---|---|
Natural | HPMC/Si-HPMC | Mandible | HPMC: manual mixing Si-HPMC: constant mixing followed by dialysis; reticulation achieved in Situ via acid buffer | [19] |
Synthetic | Hyaluronic acid (AuxiGel™) + ZOL | Femur and proximal tibia | Commercial gel with ZOL | [27] |
PEG + BMP-2 | Mandible (alveolar ridge) | Michael addition | [22] | |
Hyaluronic acid + PEG-SH4 + rhBMP-2 | Mandible | Michael addition reaction | [28] | |
PEG + SEMA3A | Femoral condyle | Michael addition | [2] | |
Hybrid | GMPA(GMP + OHA) | Mandible | Schiff base reaction | [24] |
PEG + SBS + BMP-2 SBS + PEG | Mandible | Michael addition to form PEG, followed by manual mixing to add SBS | [25] | |
PEG + RGD + HA/TCP | Maxilla (alveolar ridge) | Michael addition | [16] | |
Poly(phosphazene) (IGSR) + BMP-2 | Mandible | Manual mixing | [29] | |
Termira AuxiGel™ (cross linked HA + PVA) + hydroxyapatite nanoparticles(nHA) + ZOL | Mandible | Commercial gel with ZOL Manual mixing; direct in situ injection | [15] | |
Sodium titanate hydrogel | Mandible | Alkaline treatment | [26] | |
Poloxamer 407 + β-TCP | Distal femur | Manual mixing | [30] | |
GelMA/SilMA | Epithelial sealing in the peri-implant region | Photo-cross-linking (UV) | [8] | |
HA-pNIPAM + BMP2 + ZOL | Proximal tibia | Thermal | [3] |
Author and Year | Performed Tests | Gelation Mechanism | Degradation Mechanism | Porosity | Mechanical Strength | Gelation Time |
---|---|---|---|---|---|---|
Struillou et al. (2013) [19] | In vivo (dogs) | Not described | Not described | Not specified | Not specified | Not specified |
Kettenberger et al. (2017) [27] | In vitro + In vivo (rats) | Hydrogel scaffold preloaded (gelation process not detailed) | Passive erosion / sustained release | Not specified | Not specified | Not specified |
Jung et al. (2015) [22] | In vivo (dogs) | Crosslinking of PEG-hydrogel | Hydrolytic degradation | Low (unstable alone) | Low | Not specified |
Pan et al. (2015) [28] | In vitro + In vivo (rats) | Spontaneous in situ gelation | Biodegradable natural polymer (not detailed) | High (sponge-like) | Elastic, adaptable | ~1–5 min |
Deng et al. (2023) [2] | In vitro + In vivo (rats) | “Click chemistry” in situ gelation | Enzymatic and hydrolytic (implied) | Not specified | Not specified | Fast |
Qin et al. (2024) [24] | In vivo (rats) | Conductive hydrogel responsive to electrical microenvironment | Bioabsorbable (general description) | Not specified | Not specified | Not specified |
Cha et al. (2018) [25] | In vivo (dogs) | Not described | Not described | Not described | Not described | Not specified |
Thoma et al. (2017) [16] | In vivo (dogs) | In situ gelation of PEG (±RGD) | Hydrolytic degradation of PEG | Described only as porous | Sufficient for clinical use | Not specified |
Seo et al. (2018) [29] | In vivo (dogs) | In situ polymerization | Diffusion and hydrolysis | Described only as porous | Maintains vertical support | Fast |
Kettenberger et al. (2015) [15] | In vitro | Not described | Enzymatic degradation | Not specified | Not described | Fast |
Kang et al. (2024) [26] | In vitro | Injectable peptide-functionalized hydrogel (mechanism not described) | Enzymatic degradation | Not described | Not described | Fast |
Lee et al. (2014) [30] | In vivo (rabbits) | In situ gelation | Not described | Porosity of 68.5% | Not specified | Not specified |
Li et al. (2022) [8] | In vivo (mice) | Photopolymerization | Biodegradable (not detailed) | Not described | Not described | Finished 60 s under 365 nm UV at 100 mW/cm2 |
Siverino et al. (2024) [3] | In vivo (rats) | Genipin-mediated chemical crosslinking | Slow degradation (not specified) | Porosity of ~68% | Maintains vertical support | Not described |
3.3. Essential Properties of Hydrogels for Bone Regeneration
3.4. Structural and Functional Properties of Hydrogels in Peri-Implant Tissue Engineering
3.5. Hydrogels and Their Immunomodulatory and Pro-Angiogenic Properties
3.6. Hydrogels as Biomolecule Delivery Systems
3.7. Applications in Experimental and Clinical Models
3.8. Current Challenges and Future Perspectives
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Min, S.; Tian, Y. Injectable and Cell-Laden Hydrogel in the Contained Bone Defect Animal Model: A Systematic Review. Tissue Eng. Regen. Med. 2023, 20, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Cohen, D.J.; Sabalewski, E.L.; Menard, L.A.; Zou, Y.; Boyan, B.D. Semaphorin 3A Delivered by a Rapidly Polymerizing Click Hydrogel Overcomes Impaired Implant Osseointegration in a Rat Type 2 Diabetes Model. Acta Biomater. 2023, 157, 236–251. [Google Scholar] [CrossRef]
- Siverino, C.; Tirkkonen-Rajasalo, L.; Freitag, L.; Camenisch, K.; Richards, R.G.; Sprecher, C.M. Restoring Implant Fixation Strength in Osteoporotic Bone with a Hydrogel Locally Delivering Zoledronic Acid and Bone Morphogenetic Protein 2. Bone 2024, 180, 117011. [Google Scholar] [CrossRef]
- Lu, K.; Wang, D.; Zou, G.; Wu, Y.; Li, F.; Song, Q.; Sun, Y. A Multifunctional Composite Hydrogel That Sequentially Modulates the Process of Bone Healing and Guides the Repair of Bone Defects. Biomed. Mater. 2024, 19, 035010. [Google Scholar] [CrossRef]
- Marcantonio, C.; Nícoli, L.G.; Malzoni, C.M.d.A.; Susin, C.; Junior, E.M.; Zandim-Barcelos, D.L. Prevalence and Risk Indicators of Peri-implantitis after 8 to 10 years of Function. Rev. Odontol. UNESP 2021, 50, e20210015. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Wang, C.; Jiang, Z.; Lai, K.; Wang, Y.; Yang, G. Porous Composite Hydrogels with Improved MSC Survival for Robust Epithelial Sealing around Implants and M2 Macrophage Polarization. Acta Biomater. 2022, 157, 108–123. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Liu, C.; Li, M.; Zhang, X.; Peng, L.; Liu, L.; Liao, J.; Yang, J. Recent Research on Hybrid Hydrogels for Infection Treatment and Bone Repair. Gels 2022, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Li, W.; Peng, L.; Li, R.; Wang, Z.; Zhou, Y.; Gou, L.; Zhu, X.; Xie, Q.; Zhang, X.; et al. Multifunctional DNA-Based Hydrogel Promotes Diabetic Alveolar Bone Defect Reconstruction. Small 2024, 20, e2305594. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Z.; Ding, L.; Zhang, P.; Liu, C.; Chen, D.; Zhao, F.; Wang, G.; Chen, X. Self-Adhesive Hydrogel Biomimetic Periosteum to Promote Critical-Size Bone Defect Repair via Synergistic Osteogenesis and Angiogenesis. ACS Appl. Mater. Interfaces 2022, 14, 36395–36410. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, S.; Xue, H.; Wang, S.; Quan, X.; Zhang, D.; Liu, X.; Tang, H. Injectable Organic-Inorganic Hybrid Hydrogels for Bone Defect Repair. Front. Bioeng. Biotechnol. 2025, 13, 1563546. [Google Scholar] [CrossRef]
- Pitarresi, G.; Palumbo, F.S.; Fiorica, C.; Bongiovì, F.; Martorana, A.; Federico, S.; Chinnici, C.M.; Giammona, G. Composite Hydrogels of Alkyl Functionalized Gellan Gum Derivative and Hydroxyapatite/Tricalcium Phosphate Nanoparticles as Injectable Scaffolds for bone Regeneration. Macromol. Biosci. 2021, 22, 2100290. [Google Scholar] [CrossRef]
- Cohen, T.; Kossover, O.; Peled, E.; Bick, T.; Hasanov, L.; Chun, T.T.; Cool, S.; Lewinson, D.; Seliktar, D. A Combined Cell and Growth Factor Delivery for the Repair of a Critical Size Tibia Defect Using Biodegradable Hydrogel Implants. J. Tissue Eng. Regen. Med. 2022, 16, 380–395. [Google Scholar] [CrossRef]
- Kettenberger, U.; Latypova, A.; Terrier, A.; Pioletti, D.P. Time Course of Bone Screw Fixation Following a Local Delivery of Zoledronate in a Rat Femoral Model–A Micro-Finite Element Analysis. J. Mech. Behav. Biomed. Mater. 2015, 45, 22–31. [Google Scholar] [CrossRef]
- Thoma, D.S.; Jung, U.; Park, J.; Bienz, S.P.; Hüsler, J.; Jung, R.E. Bone Augmentation at Peri-Implant Dehiscence Defects Comparing a Synthetic Polyethylene Glycol Hydrogel Matrix vs. Standard Guided Bone Regeneration Techniques. Clin. Oral Implant. Res. 2017, 28, e76–e83. [Google Scholar] [CrossRef]
- Shan, B.; Wu, F. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. Adv. Mater. 2023, 36, e2210707. [Google Scholar] [CrossRef] [PubMed]
- Hasani-Sadrabadi, M.M.; Sarrion, P.; Pouraghaei, S.; Chau, Y.; Ansari, S.; Li, S.; Aghaloo, T.; Moshaverinia, A. An Engineered Cell-Laden Adhesive Hydrogel Promotes Craniofacial Bone Tissue Regeneration in Rats. Sci. Transl. Med. 2020, 12, eaay6853. [Google Scholar] [CrossRef] [PubMed]
- Struillou, X.; Rakic, M.; Badran, Z.; Macquigneau, L.; Colombeix, C.; Pilet, P.; Verner, C.; Gauthier, O.; Weiss, P.; Soueidan, A. The Association of Hydrogel and Biphasic Calcium Phosphate in the Treatment of Dehiscence-Type Peri-Implant Defects: An Experimental Study in dogs. J. Mater. Sci. Mater. Med. 2013, 24, 2749–2760. [Google Scholar] [CrossRef] [PubMed]
- Schmocker, A.; Khoushabi, A.; Schizas, C.; Bourban, P.-E.; Pioletti, D.P.; Moser, C. Photopolymerizable Hydrogels for Implants: Monte-Carlo Modeling and Experimental In Vitro Validation. J. Biomed. Opt. 2014, 19, 035004. [Google Scholar] [CrossRef]
- Du, J.; Zhang, H.; Liu, Y.; Wang, J.; Li, Y.; Zhang, X. A Multifunctional Self-Reinforced Injectable Hydrogel for Enhancing Repair of Infected Bone Defects by Simultaneously Targeting Macrophages, Bacteria, and Bone Marrow Stromal Cells. Acta Biomater. 2024, 189, 232–253. [Google Scholar] [CrossRef]
- Jung, U.; Lee, I.; Park, J.; Thoma, D.S.; Hämmerle, C.H.F.; Jung, R.E. The Efficacy of BMP-2 Preloaded on Bone Substitute or Hydrogel for Bone Regeneration at Peri-Implant Defects in Dogs. Clin. Oral Implant. Res. 2015, 26, 1456–1465. [Google Scholar] [CrossRef]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA. A Scale for the Quality Assessment of Narrative Review Articles. Res. Integr. Peer Rev. 2019, 26, 5. [Google Scholar] [CrossRef]
- Qin, W.; Li, L.; Niu, W.; Wang, W.; Wu, D.; Song, C.; Gao, C.; Mu, Z.; Tay, F.R.; Jiao, K.; et al. Effects of Electric Field-Modulated Conductive Hydrogel on Osseoperception and Osseointegration of Dental Implants. Adv. Funct. Mater. 2024, 34, 2400256. [Google Scholar] [CrossRef]
- Cha, J.; Jung, U.; Thoma, D.S.; Hämmerle, C.H.F.; Jung, R.E. Osteogenic Efficacy of BMP-2 Mixed with Hydrogel and Bone Substitute in Peri-Implant Dehiscence Defects in Dogs: 16 Weeks of Healing. Clin. Oral Implant. Res. 2018, 29, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.W.; Barboza, A.L.L.; Azpeitia, L.A.; Gervasi, C.A.; Blasetti, N.; Mayocchi, K.A.; Llorente, C.L. Surface Characterization and In Vitro Performance of Bioactive-Treated Titanium Dental Implants with Enhanced Osseointegration. Met. Mater. Trans. A 2024, 55, 4423–4444. [Google Scholar] [CrossRef]
- Kettenberger, U.; Luginbuehl, V.; Procter, P.; Pioletti, D.P. In Vitro and In Vivo Investigation of Bisphosphonate-Loaded Hydroxyapatite Particles for Peri-implant Bone Augmentation. J. Tissue Eng. Regen. Med. 2017, 11, 1974–1985. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Han, J.J.; Park, Y.-D.; Cho, T.H.; Hwang, S.J. Effect of Sustained Release of rhBMP-2 From Dried and Wet Hyaluronic Acid Hydrogel Carriers Compared with Direct Dip Coating of rhBMP-2 on Peri-Implant Osteogenesis of Dental Implants in Canine Mandibles. J. Cranio-Maxill. Surg. 2016, 44, 116–125. [Google Scholar] [CrossRef]
- Seo, B.; Chang, H.; Choi, H.; Koh, J.; Yun, K.; Lee, J.; Song, S. New Approach for Vertical Bone Regeneration Using In Situ Gelling and Sustained BMP-2 Releasing Poly(phosphazene) Hydrogel System on Peri-Implant Site with Critical Defect in a Canine Model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, C.S.; Shin, H.K.; Jeon, J.Y.; Choi, K.H.; Lee, J.Y. Generation of an rhBMP-2-Loaded Beta-Tricalcium Phosphate/Hydrogel Composite and Evaluation of Its Efficacy on Peri-Implant Bone Formation. Biomed. Mater. 2014, 9, 055002. [Google Scholar] [CrossRef]
- Oates, T.W.; Huynh-Ba, G.; Vargas, A.; Alexander, P.; Feine, J. A Critical Review of Diabetes, Glycemic Control, and Dental Implant Therapy. Clin. Oral Implant. Res. 2013, 24, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Sachelarie, L.; Scrobota, I.; Cioara, F.; Ghitea, T.C.; Stefanescu, C.L.; Todor, L.; Cicalau, G.I.P. The Influence of Osteoporosis and Diabetes on Dental Implant Stability: A Pilot Study. Medicina 2025, 61, 74. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, Z.; Pei, X.; Zhang, X.; Cheng, X.; Hu, S.; Gao, X.; Wang, J.; Chen, J.; Wan, Q. ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration. ACS Appl. Mater. Interfaces 2020, 12, 36978–36995. [Google Scholar] [CrossRef]
- Roberts, T.T.; Rosenbaum, A.J. Bone Grafts, Bone Substitutes and Orthobiologics: The Bridge between Basic Science and Clinical Advancements in Fracture Healing. Organogenesis 2012, 8, 114–124. [Google Scholar] [CrossRef]
- Chelu, M.; Moreno, J.M.C.; Musuc, A.M.; Popa, M. Natural Regenerative Hydrogels for Wound Healing. Gels 2024, 10, 547. [Google Scholar] [CrossRef]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef]
- Pablos, J.L.; Lozano, D.; Manzano, M.; Vallet-Regí, M. Regenerative medicine: Hydrogels and Mesoporous Silica Nanoparticles. Mater. Today Bio 2024, 29, 101342. [Google Scholar] [CrossRef]
- Rana, M.; Siegler, H.D.l.H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024, 10, 216. [Google Scholar] [CrossRef]
- Kitahara, T.; Tateiwa, D.; Hirai, H.; Ikuta, M.; Furuichi, T.; Bun, M.; Ukon, Y.; Kanie, Y.; Furuya, M.; Fujimori, T.; et al. rhBMP-2-Loaded Hydroxyapatite/Beta-Tricalcium Phosphate Microsphere/Hydrogel Composite Promotes Bone Regeneration in a Novel rat Femoral Nonunion Model. Front. Bioeng. Biotechnol. 2024, 12, 1461260. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, S.; Birgani, Z.T.; Habibovic, P. Biomaterial-Induced Pathway Modulation for Bone Regeneration. Biomaterials 2022, 283, 121431. [Google Scholar] [CrossRef]
- Armiento, A.R.; Hatt, L.P.; Rosenberg, G.S.; Thompson, K.; Stoddart, M.J. Functional Biomaterials for Bone Regeneration: A Lesson in Complex Biology. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef]
- Yuan, W.; Li, Z.; Xie, X.; Zhang, Z.-Y.; Bian, L. Bisphosphonate-Based Nanocomposite Hydrogels for Biomedical Applications. Bioact. Mater. 2020, 5, 819–831. [Google Scholar] [CrossRef]
- Manferdini, C.; Trucco, D.; Saleh, Y.; Gabusi, E.; Dolzani, P.; Lenzi, E.; Vannozzi, L.; Ricotti, L.; Lisignoli, G. RGD-Functionalized Hydrogel Supports the Chondrogenic Commitment of Adipose Mesenchymal Stromal Cells. Gels 2022, 8, 382. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; Qi, Y.; Zhao, Y.; Nie, G.; Wang, X.; Zheng, S. Self-Assembled Peptide Hydrogel Scaffolds with VEGF and BMP-2 Enhanced In Vitro Angiogenesis and Osteogenesis. Oral. Dis. 2022, 28, 723–733. [Google Scholar] [CrossRef]
- Yan, X.; Huang, H.; Bakry, A.M.; Wu, W.; Liu, X.; Liu, F. Advances in Enhancing the Mechanical Properties of Biopolymer Hydrogels via Multi-Strategic Approaches. Int. J. Biol. Macromol. 2024, 272, 132583. [Google Scholar] [CrossRef]
- Sepe, F.; Valentino, A.; Marcolongo, L.; Petillo, O.; Conte, R.; Margarucci, S.; Peluso, G.; Calarco, A. Marine-Derived Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Compounds. Int. J. Mol. Sci. 2025, 26, 764. [Google Scholar] [CrossRef]
- Xue, B.; Xu, Z.; Li, L.; Guo, K.; Mi, J.; Wu, H.; Li, Y.; Xie, C.; Jin, J.; Xu, J.; et al. Hydrogels with Programmed Spatiotemporal Mechanical Cues for Stem Cell-assisted Bone Regeneration. Nat. Commun. 2025, 16, 1–18. [Google Scholar] [CrossRef]
- Montarele, L.F.; Pitol, D.L.; Pereira, B.F.; Feldman, S.; Fazan, V.P.S.; Issa, J.P.M. Histological and Immunohistochemical Analysis of the Effects of Topical Melatonin Treatment Associated with Collagen Sponge and rhBMP-2 Protein on Bone Remodeling. Biomolecules 2022, 12, 1738. [Google Scholar] [CrossRef]
- Paulini, M.; Ruggieri, I.N.C.; Ramallo, M.; Alonso, M.; Rodriguez-Cabello, J.C.; Esbrit, P.; Issa, J.P.M.; Feldman, S. Recombinant Proteins-Based Strategies in Bone Tissue Engineering. Biomolecules 2021, 12, 3. [Google Scholar] [CrossRef]
- Pomini, K.T.; Buchaim, D.V.; Bighetti, A.C.C.; Andreo, J.C.; Rosso, M.P.d.O.; Escudero, J.S.B.; Della Coletta, B.B.; Alcalde, M.P.; Duarte, M.A.H.; Pitol, D.L.; et al. Use of Photobiomodulation Combined with Fibrin Sealant and Bone Substitute Improving the Bone Repair of Critical Defects. Polymers 2022, 14, 4170. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Y.; Xu, S.; Li, M.; Lu, X.; Tian, G.; Ye, J.; Zhao, B.; Wei, P.; Wang, Y. Histatin 1-Modified SIS Hydrogels Enhance the Sealing of Peri-Implant Mucosa to Prevent Peri-Implantitis. iScience 2023, 26, 108212. [Google Scholar] [CrossRef]
- Orbach, D.G.; Roitman, I.; Kimhi, G.C.; Zilberman, M. Formulation-Property Effects in Novel Injectable and Resilient Natural Polymer-Based Hydrogels for Soft Tissue Regeneration. Polymers 2024, 16, 2879. [Google Scholar] [CrossRef]
- Ozawa, R.; Saita, M.; Sakaue, S.; Okada, R.; Sato, T.; Kawamata, R.; Sakurai, T.; Hamada, N.; Kimoto, K.; Nagasaki, Y. Redox Injectable Gel Protects Osteoblastic Function against Oxidative Stress and Suppresses Alveolar Bone Loss in a Rat Peri-Implantitis Model. Acta Biomater. 2020, 110, 82–94. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, Y.; Wang, L.; Zhao, Y.; Wang, R.; Li, K.; Zhang, S.; Zha, X.; Wang, W.; Zhao, X.; et al. All-Natural Immunomodulatory Bioadhesive Hydrogel Promotes Angiogenesis and Diabetic Wound Healing by Regulating Macrophage Heterogeneity. Adv. Sci. 2023, 10, 2206771. [Google Scholar] [CrossRef]
- Gharati, G.; Shirian, S.; Sharifi, S.; Mirzaei, E.; Bakhtirimoghadam, B.; Karimi, I.; Nazari, H. Comparison Capacity of Collagen Hydrogel and Collagen/Strontium Bioglass Nanocomposite Scaffolds With and Without mesenchymal Stem Cells in Regeneration of Critical Sized Bone Defect in a Rabbit Animal Model. Biol. Trace Element Res. 2021, 200, 3176–3186. [Google Scholar] [CrossRef]
- Bakhtiarimoghadam, B.; Shirian, S.; Mirzaei, E.; Sharifi, S.; Karimi, I.; Gharati, G.; Takallu, S.; Nazari, H. Comparison Capacity of Collagen Hydrogel, Mix-Powder and In Situ Hydroxyapatite/Collagen Hydrogelscaffolds with and without Mesenchymal Stem Cells and Platelet-Rich Plasma in Regeneration of Critical Sized Bone Defect in a Rabbit Animal Model. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2021, 109, 2199–2212. [Google Scholar] [CrossRef]
- Abdelrasoul, M.; El-Fattah, A.A.; Kotry, G.; Ramadan, O.; Essawy, M.; Kamaldin, J.; Kandil, S. Regeneration of Critical-Sized Grade II Furcation Using a Novel Injectable Melatonin-Loaded Scaffold. Oral Dis. 2023, 29, 3583–3598. [Google Scholar] [CrossRef]
- Abdul-Monem, M.M.; Kamoun, E.A.; Ahmed, D.M.; El-Fakharany, E.M.; Al-Abbassy, F.H.; Aly, H.M. Light-Cured Hyaluronic Acid Composite Hydrogels Using Riboflavin as a Photoinitiator for Bone Regeneration Applications. J. Taibah Univ. Med Sci. 2021, 16, 529–539. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, P.; Chen, Y.; Li, M.; Chen, C.; Lu, H. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects. Am. J. Sports Med. 2020, 48, 2808–2818. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frigério, P.B.; Duarte, N.D.; Koury, M.M.; Duarte, F.d.S.; Okamoto, R.; Buchaim, D.V.; Reis, C.H.B.; da Silva, W.S.; Bueno, L.M.M.; Raphael, M.C., Jr.; et al. Hydrogels in Peri-Implant Regeneration: Strategies for Modulating Tissue Healing. Pharmaceutics 2025, 17, 1105. https://doi.org/10.3390/pharmaceutics17091105
Frigério PB, Duarte ND, Koury MM, Duarte FdS, Okamoto R, Buchaim DV, Reis CHB, da Silva WS, Bueno LMM, Raphael MC Jr., et al. Hydrogels in Peri-Implant Regeneration: Strategies for Modulating Tissue Healing. Pharmaceutics. 2025; 17(9):1105. https://doi.org/10.3390/pharmaceutics17091105
Chicago/Turabian StyleFrigério, Paula Buzo, Nathália Dantas Duarte, Mateus Meister Koury, Felipe de Souza Duarte, Roberta Okamoto, Daniela Vieira Buchaim, Carlos Henrique Bertoni Reis, William Saranholi da Silva, Lívia Maluf Menegazzo Bueno, Marcio Cristino Raphael, Jr., and et al. 2025. "Hydrogels in Peri-Implant Regeneration: Strategies for Modulating Tissue Healing" Pharmaceutics 17, no. 9: 1105. https://doi.org/10.3390/pharmaceutics17091105
APA StyleFrigério, P. B., Duarte, N. D., Koury, M. M., Duarte, F. d. S., Okamoto, R., Buchaim, D. V., Reis, C. H. B., da Silva, W. S., Bueno, L. M. M., Raphael, M. C., Jr., Buchaim, R. L., & Issa, J. P. M. (2025). Hydrogels in Peri-Implant Regeneration: Strategies for Modulating Tissue Healing. Pharmaceutics, 17(9), 1105. https://doi.org/10.3390/pharmaceutics17091105