Nanodelivery of Bioactive Natural Products: A Targeted Therapeutic Breakthrough for Atherosclerosis
Abstract
1. Introduction
2. Application of BNPs of NDDS in AS Therapy
2.1. Phenols and Their Derivatives
2.1.1. Curcumin (Cur)
2.1.2. Quercetin (QT)
2.1.3. Baicalin (BC)
2.1.4. Resveratrol (RSV)
2.2. Terpenes and Their Derivatives
2.2.1. Celastrol (Cel)
2.2.2. Paclitaxel (PTX)
2.2.3. 1,8-Cineol (CIN)
2.2.4. Tanshinone IIA (TanIIA)
2.3. Alkaloid
2.3.1. Colchicine (COL)
2.3.2. Berberine (BBR)
2.4. Miscellaneous
2.4.1. Geniposide (GP) and Emodin (EM)
2.4.2. Artemisinin (ART) and Proanthocyanidins (Pc)
2.4.3. Vitamin C (VC)
2.4.4. Astaxanthin (ASX)
3. Natural Compounds with Potential for Treating AS
3.1. Antioxidant and Anti-Inflammatory Compounds
3.1.1. Salidroside (SAL)
3.1.2. Luteolin (LUT)
3.2. Compounds That Regulate Cell Transformation and Proliferation
3.2.1. Icariin (ICA)
3.2.2. Evodiamine (EVO)
3.3. Compounds That Regulate Lipid Metabolism
3.3.1. Leoligin (LEO)
3.3.2. Oridonin (ORI)
4. Challenges
4.1. Nanoparticle Toxicity Concerns
4.2. Regulatory Hurdles
4.3. Stability Limitations
4.4. Preclinical-to-Clinical Gaps
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Huang, A.L.; Kyaw, T.S.; Bobik, A.; Peter, K. Atherosclerotic Plaque Rupture: Identifying the Straw That Breaks the Camel’s Back. Arter. Thromb. Vasc. Biol. 2016, 36, e63–e72. [Google Scholar] [CrossRef]
- Keeter, W.C.; Ma, S.; Stahr, N.; Moriarty, A.K.; Galkina, E.V. Atherosclerosis and multi-organ-associated pathologies. Semin. Immunopathol. 2022, 44, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, I.; Suffredini, J.; Virani, S.S.; Ballantyne, C.M.; Michos, E.D.; Misra, A.; Saeed, A.; Jia, X. Early-onset atherosclerotic cardiovascular disease. Eur. J. Prev. Cardiol. 2025, 32, 100–112. [Google Scholar] [CrossRef]
- Rocca, B.; Bigagli, E.; Cerbai, E. Ticagrelor and Statins: Dangerous Liaisons? Cardiovasc. Drugs Ther. 2024, 38, 1103–1109. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Qian, H.; Tao, W.; Zhang, Y.; Hu, C.; Mao, W.; Guo, Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front. Immunol. 2022, 13, 945129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xiong, R.; Hu, Q.; Zhang, Q.; Wang, S.; Chen, Y. Review on anti-tumour lipid nano drug delivery systems of traditional Chinese medicine. J. Drug Target. 2025, 33, 704–716. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 1830, 3670–3695. [Google Scholar] [CrossRef]
- Xie, Y.; Shen, X.; Xu, F.; Liang, X. Research progress of nano-delivery systems for the active ingredients from traditional Chinese medicine. Phytochem. Anal. 2024. ahead of print. [Google Scholar] [CrossRef]
- Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; et al. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med. 2019, 14, 48. [Google Scholar] [CrossRef]
- Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother. 2021, 134, 111119. [Google Scholar] [CrossRef] [PubMed]
- Coban, D.; Milenkovic, D.; Chanet, A.; Khallou-Laschet, J.; Sabbe, L.; Palagani, A.; Vanden Berghe, W.; Mazur, A.; Morand, C. Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration. Mol. Nutr. Food Res. 2012, 56, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Vollono, L.; Falconi, M.; Gaziano, R.; Iacovelli, F.; Dika, E.; Terracciano, C.; Bianchi, L.; Campione, E. Potential of Curcumin in Skin Disorders. Nutrients 2019, 11, 2169. [Google Scholar] [CrossRef]
- Hou, X.; Lin, H.; Zhou, X.; Cheng, Z.; Li, Y.; Liu, X.; Zhao, F.; Zhu, Y.; Zhang, P.; Chen, D. Novel dual ROS-sensitive and CD44 receptor targeting nanomicelles based on oligomeric hyaluronic acid for the efficient therapy of atherosclerosis. Carbohydr. Polym. 2020, 232, 115787. [Google Scholar] [CrossRef]
- Sun, W.; Xu, Y.; Yao, Y.; Yue, J.; Wu, Z.; Li, H.; Shen, G.; Liao, Y.; Wang, H.; Zhou, W. Self-oxygenation mesoporous MnO2 nanoparticles with ultra-high drug loading capacity for targeted arteriosclerosis therapy. J. Nanobiotechnol. 2022, 20, 88. [Google Scholar] [CrossRef]
- Mou, N.; Duan, X.; Qu, K.; Chen, Q.; He, Z.; Cao, Y.; Zhang, K.; Qin, X.; Zhu, L.; Han, Z.; et al. Macrophage Membrane Spontaneously Encapsulated Cyclodextrin-Based Nanomedicines for Improving Lipid Metabolism and Inflammation in Atherosclerosis. ACS Appl. Mater. Interfaces 2024, 16, 49660–49672. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, K.; Wang, C.; Ma, C.; Gong, L.; Zhou, H.; Xue, X.; Peng, C.; Li, Y. Protective effects of dietary quercetin on cerebral ischemic injury: Pharmacology, pharmacokinetics and bioavailability-enhancing nanoformulations. Food Funct. 2023, 14, 4470–4489. [Google Scholar] [CrossRef]
- Deepika; Maurya, P.K. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef]
- Su, Y.; Zhou, Q.; Xu, H.; Huang, M.; Li, S.; He, J.; Cheng, K.-W.; Wang, M. Enhancing the bioavailability of quercetin via the construction of carboxymethylated curdlan/quercetin nanocomplex. Food Hydrocoll. 2024, 149, 109502. [Google Scholar] [CrossRef]
- Cao, H.; Jia, Q.; Yan, L.; Chen, C.; Xing, S.; Shen, D. Quercetin Suppresses the Progression of Atherosclerosis by Regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 Macrophage Foam Cells. Int. J. Mol. Sci. 2019, 20, 6093. [Google Scholar] [CrossRef]
- Gao, C.; Liu, C.; Chen, Q.; Wang, Y.; Kwong, C.H.T.; Wang, Q.; Xie, B.; Lee, S.M.Y.; Wang, R. Cyclodextrin-mediated conjugation of macrophage and liposomes for treatment of atherosclerosis. J. Control. Release 2022, 349, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.C.; Shen, D.D.; Ren, M.; Liu, X.Q.; Wang, Z.R.; Liu, Y.; Zhang, Q.N.; Zhao, L.J.; Zhao, L.J.; Ma, J.L.; et al. Baicalin, a natural LSD1 inhibitor. Bioorg. Chem. 2016, 69, 129–131. [Google Scholar] [CrossRef]
- Wang, L.; Huang, S.; Liang, X.; Zhou, J.; Han, Y.; He, J.; Xu, D. Immuno-modulatory role of baicalin in atherosclerosis prevention and treatment: Current scenario and future directions. Front. Immunol. 2024, 15, 1377470. [Google Scholar] [CrossRef]
- Huang, T.; Liu, Y.; Zhang, C. Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 159–168. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, L.; Li, Y.; Ma, H.; Li, C.; Yan, K.; Tian, J.; Li, C. pH-sensitive nano-drug delivery systems dual-target endothelial cells and macrophages for enhanced treatment of atherosclerosis. Drug Deliv. Transl. Res. 2025, 15, 2924–2940. [Google Scholar] [CrossRef]
- Zhou, D.D.; Luo, M.; Huang, S.Y.; Saimaiti, A.; Shang, A.; Gan, R.Y.; Li, H.B. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid. Med. Cell. Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef] [PubMed]
- Parsamanesh, N.; Asghari, A.; Sardari, S.; Tasbandi, A.; Jamialahmadi, T.; Xu, S.; Sahebkar, A. Resveratrol and endothelial function: A literature review. Pharmacol. Res. 2021, 170, 105725. [Google Scholar] [CrossRef]
- Buttari, B.; Profumo, E.; Segoni, L.; D’Arcangelo, D.; Rossi, S.; Facchiano, F.; Saso, L.; Businaro, R.; Iuliano, L.; Riganò, R. Resveratrol counteracts inflammation in human M1 and M2 macrophages upon challenge with 7-oxo-cholesterol: Potential therapeutic implications in atherosclerosis. Oxid. Med. Cell. Longev. 2014, 2014, 257543. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, J.; Li, Y.; Dai, Y.; Zhu, H.; Jiang, H.; Han, Y.; Chu, X.; Sun, Y.; Ju, W.; et al. Celastrol inhibits platelet function and thrombus formation. Biochem. Biophys. Res. Commun. 2024, 693, 149366. [Google Scholar] [CrossRef]
- Gu, J.; Shi, Y.N.; Zhu, N.; Li, H.F.; Zhang, C.J.; Qin, L. Celastrol functions as an emerging manager of lipid metabolism: Mechanism and therapeutic potential. Biomed. Pharmacother. 2023, 164, 114981. [Google Scholar] [CrossRef]
- Chang, T.S.; Wang, T.Y.; Chiang, C.M.; Lin, Y.J.; Chen, H.L.; Wu, Y.W.; Ting, H.J.; Wu, J.Y. Biotransformation of celastrol to a novel, well-soluble, low-toxic and anti-oxidative celastrol-29-O-β-glucoside by Bacillus glycosyltransferases. J. Biosci. Bioeng. 2021, 131, 176–182. [Google Scholar] [CrossRef]
- Allen, S.D.; Liu, Y.G.; Kim, T.; Bobbala, S.; Yi, S.; Zhang, X.; Choi, J.; Scott, E.A. Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomater. Sci. 2019, 7, 657–668. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 2019, 24, 40. [Google Scholar] [CrossRef] [PubMed]
- Cline, E.N.; Li, M.H.; Choi, S.K.; Herbstman, J.F.; Kaul, N.; Meyhöfer, E.; Skiniotis, G.; Baker, J.R.; Larson, R.G.; Walter, N.G. Paclitaxel-conjugated PAMAM dendrimers adversely affect microtubule structure through two independent modes of action. Biomacromolecules 2013, 14, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.G.; Covolan, C.C.; Coradi, S.T.; Barboza, R.; Maranhão, R.C. Use of a cholesterol-rich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J. Pharm. Pharmacol. 2002, 54, 765–772. [Google Scholar] [CrossRef]
- Aline, D.L.; Hua, N.; Raul, C.M.; James, A.H. Evaluation of atherosclerotic lesions in cholesterol-fed mice during treatment with paclitaxel in lipid nanoparticles: A magnetic resonance imaging study. J. Biomed. Res. 2017, 31, 116–121. [Google Scholar] [CrossRef]
- Liu, Z.; Gan, S.; Fu, L.; Xu, Y.; Wang, S.; Zhang, G.; Pan, D.; Tao, L.; Shen, X. 1,8-Cineole ameliorates diabetic retinopathy by inhibiting retinal pigment epithelium ferroptosis via PPAR-γ/TXNIP pathways. Biomed. Pharmacother. 2023, 164, 114978. [Google Scholar] [CrossRef] [PubMed]
- Seol, G.H.; Kim, K.Y. Eucalyptol and Its Role in Chronic Diseases. Adv. Exp. Med. Biol. 2016, 929, 389–398. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Xu, J.; Zhang, J.; Xu, S.; Zhang, Q.; Huang, J.; Peng, J.; Xu, H.; Du, Q.; et al. Fabrication of a Polysaccharide-Protein/Protein Complex Stabilized Oral Nanoemulsion to Facilitate the Therapeutic Effects of 1,8-Cineole on Atherosclerosis. ACS Nano 2023, 17, 9090–9109. [Google Scholar] [CrossRef]
- Jiang, F.; Wu, G.; Yang, H.; Zhang, Y.; Shen, X.; Tao, L. Diethylaminoethyl-dextran and monocyte cell membrane coated 1,8-cineole delivery system for intracellular delivery and synergistic treatment of atherosclerosis. Int. J. Biol. Macromol. 2023, 253, 127365. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.W.; Gao, X.M.; Wang, H.; Zhu, Y.; Zhang, J.; Hu, L.M.; Su, Y.F.; Kang, L.Y.; Zhang, B.L. The anti-inflammatory activities of Tanshinone IIA, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS. J. Steroid Biochem. Mol. Biol. 2009, 113, 275–280. [Google Scholar] [CrossRef]
- Fu, J.; Huang, H.; Liu, J.; Pi, R.; Chen, J.; Liu, P. Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur. J. Pharmacol. 2007, 568, 213–221. [Google Scholar] [CrossRef]
- Yang, C.; Mu, Y.; Li, S.; Zhang, Y.; Liu, X.; Li, J. Tanshinone IIA: A Chinese herbal ingredient for the treatment of atherosclerosis. Front. Pharmacol. 2023, 14, 1321880. [Google Scholar] [CrossRef]
- Gao, J.; Li, Z.; Li, J.; Song, P.; Yang, J.; Xiao, W.; Li, N.; Xu, R. Peptide-Based HDL as an Effective Delivery System for Lipophilic Drugs to Restrain Atherosclerosis Development. Int. J. Nanomed. 2022, 17, 3877–3892. [Google Scholar] [CrossRef]
- Meyer-Lindemann, U.; Mauersberger, C.; Schmidt, A.C.; Moggio, A.; Hinterdobler, J.; Li, X.; Khangholi, D.; Hettwer, J.; Gräßer, C.; Dutsch, A.; et al. Colchicine Impacts Leukocyte Trafficking in Atherosclerosis and Reduces Vascular Inflammation. Front. Immunol. 2022, 13, 898690. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Ben-Chetrit, E.; Ridker, P.M. Low-dose colchicine for atherosclerosis: Long-term safety. Eur. Heart J. 2024, 45, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, T.; Xiong, X.; Yang, Q.; Su, Z.; Zheng, M.; Chen, Q. Colchicine delivered by a novel nanoparticle platform alleviates atherosclerosis by targeted inhibition of NF-κB/NLRP3 pathways in inflammatory endothelial cells. J. Nanobiotechnol. 2023, 21, 460. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhang, H.; Ye, J. Traditional chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune Disord. Drug Targets 2008, 8, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, M.; Liang, B.; Shirwany, N.; Zhu, Y.; Zou, M.H. Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: The role of uncoupling protein 2. PLoS ONE 2011, 6, e25436. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, L.; Dong, X.; Yang, J.; Zheng, L.; Li, L.; Liu, X.; Jin, M.; Zhang, P. Targeted delivery of berberine using bionic nanomaterials for Atherosclerosis therapy. Biomed. Pharmacother. 2024, 178, 117135. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, B.; Shi, M.; Ye, T.; Li, H. NLRP3 Inflammasome Activation Is Involved in Geniposide-Induced Hepatotoxicity. Mediat. Inflamm. 2025, 2025, 4112856. [Google Scholar] [CrossRef]
- Xu, Y.L.; Liu, X.Y.; Cheng, S.B.; He, P.K.; Hong, M.K.; Chen, Y.Y.; Zhou, F.H.; Jia, Y.H. Geniposide Enhances Macrophage Autophagy through Downregulation of TREM2 in Atherosclerosis. Am. J. Chin. Med. 2020, 48, 1821–1840. [Google Scholar] [CrossRef]
- He, P.; Wang, H.; Cheng, S.; Hu, F.; Zhang, L.; Chen, W.; Xu, Y.; Zhang, Y.; Gu, Y.; Li, Z.; et al. Geniposide ameliorates atherosclerosis by regulating macrophage polarization via perivascular adipocyte-derived CXCL14. J. Ethnopharmacol. 2023, 314, 116532. [Google Scholar] [CrossRef]
- Nowak-Perlak, M.; Bromke, M.A.; Ziółkowski, P.; Woźniak, M. The Comparison of the Efficiency of Emodin and Aloe-Emodin in Photodynamic Therapy. Int. J. Mol. Sci. 2022, 23, 6276. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, L.J.; Huang, T.; Ying, J.Q.; Li, J. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin. J. Nat. Med. 2020, 18, 425–435. [Google Scholar] [CrossRef]
- Ye, B.; Cai, X.; Liang, X.; Chen, Y.; Dai, S.; Huang, Z.; Huang, W.; Zhang, L.; Wang, Z.; Xing, J.; et al. Emodin Suppresses NLRP3/GSDMD-induced Inflammation via the TLR4/MyD88/NF-κB Signaling Pathway in Atherosclerosis. Cardiovasc. Drugs Ther. 2024. ahead of print. [Google Scholar] [CrossRef]
- Song, H.; Zhang, J.; Lou, N.; Jiang, X.; Cui, Y.; Liu, J.; Hu, F.; Jiao, J.; Pan, C.; Liu, J.; et al. Emodin nanocapsules inhibit acute pancreatitis by regulating lipid metabolic reprogramming in macrophage polarization. Phytomedicine 2024, 130, 155763. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, H.; Liu, H.; Liu, D.; Liu, J.; Zhang, Y.; Qin, Z.; Xu, Y.; Peng, Y.; Ruan, L.; et al. Synergistic dual cell therapy for atherosclerosis regression: ROS-responsive Bio-liposomes co-loaded with Geniposide and Emodin. J. Nanobiotechnol. 2024, 22, 129. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Chen, X.; Zheng, L.; Peng, Y.; Lin, M.; Liang, K.; Liu, X.; Xu, Z.; Yang, Y.; Wei, B.; et al. Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles alleviates atherosclerosis by suppressing macrophage ferroptosis via the NRF2/SLC7A11/GPX4 pathway. Arch. Biochem. Biophys. 2025, 765, 110316. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Zhang, L.; Tang, K. New insights into artemisinin regulation. Plant Signal. Behav. 2017, 12, e1366398. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E.; Cyranoski, D. Anti-parasite drugs sweep Nobel prize in medicine 2015. Nature 2015, 526, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Dolivo, D.; Weathers, P.; Dominko, T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm. Sin. B 2021, 11, 322–339. [Google Scholar] [CrossRef]
- Du, H.; Zhao, Q.; Zang, H.; Chang, C.; Li, X. Artemisinin attenuates the development of atherosclerotic lesions by the regulation of vascular smooth muscle cell phenotype switching. Life Sci. 2019, 237, 116943. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, H.; Liu, X.; Fu, X.; Li, X.; Cao, Q. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-κB/NLRP3 inflammasomes pathway. J. Drug Target. 2020, 28, 70–79. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, C.; Lu, J.; Sun, Y.; Cui, Y. Research progress of proanthocyanidins and anthocyanidins. Phytother. Res. 2023, 37, 2552–2577. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham Ul, H.; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- Hort, M.A.; Straliotto, M.R.; Duz, M.S.; Netto, P.M.; Souza, C.B.; Schulz, T.; Horst, H.; Pizzolatti, M.G.; de Bem, A.F.; Ribeiro-do-Valle, R.M. Cardioprotective effects of a proanthocyanidin-rich fraction from Croton celtidifolius Baill: Focus on atherosclerosis. Food Chem. Toxicol. 2012, 50, 3769–3775. [Google Scholar] [CrossRef]
- Zhou, H.; You, P.; Liu, H.; Fan, J.; Tong, C.; Yang, A.; Jiang, Y.; Liu, B. Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux. J. Control. Release 2022, 341, 828–843. [Google Scholar] [CrossRef]
- Bedhiafi, T.; Inchakalody, V.P.; Fernandes, Q.; Mestiri, S.; Billa, N.; Uddin, S.; Merhi, M.; Dermime, S. The potential role of vitamin C in empowering cancer immunotherapy. Biomed. Pharmacother. 2022, 146, 112553. [Google Scholar] [CrossRef]
- Carr, A.C.; Frei, B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr. 1999, 69, 1086–1107. [Google Scholar] [CrossRef]
- Skovsted, G.F.; Skat-Rørdam, J.; Frøkiær, A.P.; Jensen, H.E.; Tveden-Nyborg, P.; Lykkesfeldt, J. Vitamin C Deficiency Exacerbates Dysfunction of Atherosclerotic Coronary Arteries in Guinea Pigs Fed a High-Fat Diet. Antioxidants 2022, 11, 2226. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; He, Z.; Xiao, X.; Wei, X.; Song, X.; Zhang, S. Natural Antioxidant-Based Nanodrug for Atherosclerosis Treatment. Small 2023, 19, e2303459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, W.; Wu, Z.; Chen, Y. Diversity of extracellular vesicle sources in atherosclerosis: Role and therapeutic application. Angiogenesis 2025, 28, 34. [Google Scholar] [CrossRef]
- Si, P.; Zhu, C. Biological and neurological activities of astaxanthin (Review). Mol. Med. Rep. 2022, 26, 300. [Google Scholar] [CrossRef]
- Pereira, C.P.M.; Souza, A.C.R.; Vasconcelos, A.R.; Prado, P.S.; Name, J.J. Antioxidant and anti-inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int. J. Mol. Med. 2021, 47, 37–48. [Google Scholar] [CrossRef]
- Qiu, P.; Xu, Y. The construction of multifunctional nanoparticles system for dual-modal imaging and arteriosclerosis targeted therapy. Am. J. Transl. Res. 2021, 13, 4026–4039. [Google Scholar] [PubMed]
- de Castro Leao, M.; Raffin Pohlmann, A.; de Cristo Soares Alves, A.; Helena Poliselli Farsky, S.; Klimuk Uchiyama, M.; Araki, K.; Sandri, S.; Staniscuaski Guterres, S.; Alves Castro, I. Docosahexaenoic acid nanoencapsulated with anti-PECAM-1 as co-therapy for atherosclerosis regression. Eur. J. Pharm. Biopharm. 2021, 159, 99–107. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, S.; Wang, S. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages. J. Agric. Food Chem. 2013, 61, 9200–9209. [Google Scholar] [CrossRef]
- Yang, R.; Lin, F.; Wang, W.; Dai, G.; Ke, X.; Wu, G. Investigating the therapeutic effects and mechanisms of Carthamus tinctorius L.-derived nanovesicles in atherosclerosis treatment. Cell Commun. Signal. 2024, 22, 178. [Google Scholar] [CrossRef]
- Shaito, A.; Thuan, D.T.B.; Phu, H.T.; Nguyen, T.H.D.; Hasan, H.; Halabi, S.; Abdelhady, S.; Nasrallah, G.K.; Eid, A.H.; Pintus, G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front. Pharmacol. 2020, 11, 422. [Google Scholar] [CrossRef]
- Waltenberger, B.; Mocan, A.; Smejkal, K.; Heiss, E.H.; Atanasov, A.G. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016, 21, 807. [Google Scholar] [CrossRef]
- Hesari, M.; Mohammadi, P.; Khademi, F.; Shackebaei, D.; Momtaz, S.; Moasefi, N.; Farzaei, M.H.; Abdollahi, M. Current Advances in the Use of Nanophytomedicine Therapies for Human Cardiovascular Diseases. Int. J. Nanomed. 2021, 16, 3293–3315. [Google Scholar] [CrossRef]
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.J.; Xu, R.; Wang, X.P.; Zhao, X.Y.; Fang, Y.; Chen, Y.P.; Ma, S.; Di, X.H.; Wu, W.; et al. Nogo-B mediates endothelial oxidative stress and inflammation to promote coronary atherosclerosis in pressure-overloaded mouse hearts. Redox Biol. 2023, 68, 102944. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Ye, B.; Lin, L.; Cai, X.; Huang, W.; Huang, Z. Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes. Biomed. Pharmacother. 2016, 82, 167–172. [Google Scholar] [CrossRef]
- Segovia, J.; Sabbah, A.; Mgbemena, V.; Tsai, S.Y.; Chang, T.H.; Berton, M.T.; Morris, I.R.; Allen, I.C.; Ting, J.P.; Bose, S. TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS ONE 2012, 7, e29695. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, A.; Asad, M.; Shoukat, F.; Khan, A.U. A Spotlight on the Underlying Activation Mechanisms of the NLRP3 Inflammasome and its Role in Atherosclerosis: A Review. Inflammation 2020, 43, 2011–2020. [Google Scholar] [CrossRef]
- Fan, Y.; Mao, R.; Yang, J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 2013, 4, 176–185. [Google Scholar] [CrossRef]
- Canto, C.; Gerhart-Hines, Z.; Feige, J.N.; Lagouge, M.; Noriega, L.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458, 1056–1060. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, J.; Zhang, Z.; Shi, H.; Sun, W.; Yi, Q. The role of AMPK in macrophage metabolism, function and polarisation. J. Transl. Med. 2023, 21, 892. [Google Scholar] [CrossRef]
- Yang, L.; Cong, H.L.; Wang, S.F.; Liu, T. AMP-activated protein kinase mediates the effects of lipoprotein-associated phospholipase A2 on endothelial dysfunction in atherosclerosis. Exp. Ther. Med. 2017, 13, 1622–1629. [Google Scholar] [CrossRef]
- Hu, R.; Wang, M.Q.; Ni, S.H.; Wang, M.; Liu, L.Y.; You, H.Y.; Wu, X.H.; Wang, Y.J.; Lu, L.; Wei, L.B. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur. J. Pharmacol. 2020, 867, 172797. [Google Scholar] [CrossRef]
- Xing, S.S.; Yang, J.; Li, W.J.; Li, J.; Chen, L.; Yang, Y.T.; Lei, X.; Li, J.; Wang, K.; Liu, X. Salidroside Decreases Atherosclerosis Plaque Formation via Inhibiting Endothelial Cell Pyroptosis. Inflammation 2020, 43, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xu, L.; Su, C.; Wang, C.; Wang, Z.; Wang, Y.; Lu, X.; Sun, H. Luteolin Protects against Vascular Calcification by Modulating SIRT1/CXCR4 Signaling Pathway and Promoting Autophagy. AAPS J. 2024, 26, 111. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Zheng, L.; Yang, B.; Wang, X.; Ying, Y. Luteolin Attenuates Atherosclerosis Via Modulating Signal Transducer And Activator Of Transcription 3-Mediated Inflammatory Response. Drug Des. Devel Ther. 2019, 13, 3899–3911. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Huang, X.; Yao, G.; Ma, W.; Shen, J.; Chang, Y.; Ouyang, H.; He, J. Pharmacokinetic Study of Thirteen Ingredients after the Oral Administration of Flos Chrysanthemi Extract in Rats by UPLC-MS/MS. Biomed. Res. Int. 2020, 2020, 8420409. [Google Scholar] [CrossRef]
- Huang, P.; Wang, F.; Zhang, Y.; Zhang, Y.; Qin, M.; Ji, J.; Wei, D.; Ren, L. Icariin alleviates atherosclerosis by regulating the miR-205-5p/ERBB4/AKT signaling pathway. Int. Immunopharmacol. 2023, 114, 109611. [Google Scholar] [CrossRef]
- Liu, S.; Xu, D.S.; Li, M.; Zhang, Y.; Li, Q.; Li, T.T.; Ren, L.Q. Icariin attenuates endothelial-mesenchymal transition via H19/miR-148b-3p/ELF5 in ox-LDL-stimulated HUVECs. Mol. Ther. Nucleic Acids 2021, 23, 464–475. [Google Scholar] [CrossRef]
- Zha, Y.; Yang, Y.; Zhou, Y.; Ye, B.; Li, H.; Liang, J. Dietary Evodiamine Inhibits Atherosclerosis-Associated Changes in Vascular Smooth Muscle Cells. Int. J. Mol. Sci. 2023, 24, 6653. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Chen, S.; Liu, M.; Liang, T.; Liu, C. Evodiamine Attenuates PDGF-BB-Induced Migration of Rat Vascular Smooth Muscle Cells through Activating PPARγ. Int. J. Mol. Sci. 2015, 16, 28180–28193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ren, K.; Ren, S.; Lv, S.; Pan, Y.; Wang, D.; Morikawa, T.; Liu, X. UPLC-Q-Exactive-MS analysis for hepatotoxicity components of Evodiae Fructus based on spectrum-toxicity relationship. J. Chromatogr. B 2021, 1176, 122772. [Google Scholar] [CrossRef]
- Duwensee, K.; Schwaiger, S.; Tancevski, I.; Eller, K.; van Eck, M.; Markt, P.; Linder, T.; Stanzl, U.; Ritsch, A.; Patsch, J.R.; et al. Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer protein. Atherosclerosis 2011, 219, 109–115. [Google Scholar] [CrossRef]
- Wang, L.; Ladurner, A.; Latkolik, S.; Schwaiger, S.; Linder, T.; Hosek, J.; Palme, V.; Schilcher, N.; Polansky, O.; Heiss, E.H.; et al. Leoligin, the Major Lignan from Edelweiss (Leontopodium nivale subsp. alpinum), Promotes Cholesterol Efflux from THP-1 Macrophages. J. Nat. Prod. 2016, 79, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, U.; Schwaiger, S.; Zeller, I.; Messner, B.; Stigler, R.; Wiedemann, D.; Mayr, T.; Seger, C.; Schachner, T.; Dirsch, V.M.; et al. Leoligin, the major lignan from Edelweiss, inhibits intimal hyperplasia of venous bypass grafts. Cardiovasc. Res. 2009, 82, 542–549. [Google Scholar] [CrossRef]
- Zhang, M.; Hou, L.; Tang, W.; Lei, W.; Lin, H.; Wang, Y.; Long, H.; Lin, S.; Chen, Z.; Wang, G.; et al. Oridonin attenuates atherosclerosis by inhibiting foam macrophage formation and inflammation through FABP4/PPARgamma signalling. J. Cell. Mol. Med. 2023, 27, 4155–4170. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Ding, J.; Liu, Y.; Liu, H.; Zheng, L.; Zhao, H.; Sun, Z.; Li, K.; Cai, J.; et al. Oridonin attenuates the progression of atherosclerosis by inhibiting NLRP3 and activating Nrf2 in apolipoprotein E-deficient mice. Inflammopharmacology 2023, 31, 1993–2005. [Google Scholar] [CrossRef]
- Xu, W.; Sun, J.; Zhang, T.T.; Ma, B.; Cui, S.M.; Chen, D.W.; He, Z.G. Pharmacokinetic behaviors and oral bioavailability of oridonin in rat plasma. Acta Pharmacol. Sin. 2006, 27, 1642–1646. [Google Scholar] [CrossRef]
- Tao, H.; Wu, X.; Cao, J.; Peng, Y.; Wang, A.; Pei, J.; Xiao, J.; Wang, S.; Wang, Y. Rhodiola species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med. Res. Rev. 2019, 39, 1779–1850. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, X.; Lv, S.; Sun, M.; Guo, H.; Zhai, Y.; Wang, Z.; Dai, P.; Zheng, L.; Ye, M.; et al. Salidroside attenuates oxidized low-density lipoprotein-induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. Int. J. Mol. Med. 2019, 43, 2279–2290. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, L.; Long, J.; Xie, Q.; Zheng, Y.; Liu, K.; Li, X. Salidroside: A review of its recent advances in synthetic pathways and pharmacological properties. Chem. Biol. Interact. 2021, 339, 109268. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Yao, H.T.; Hsieh, S.H.; Lu, T.J.; Yeh, T.K. Quantitative determination of salidroside in rat plasma by on-line solid-phase extraction integrated with high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J. Chromatogr. B 2007, 857, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Liu, L.; Wen, T.; Liu, Y.; Wang, D.; He, Y.; Liang, Y.; Liu, X.; Xie, L.; Wang, G.; et al. Development and validation of a liquid chromatographic/electrospray ionization mass spectrometric method for the determination of salidroside in rat plasma: Application to the pharmacokinetics study. J. Chromatogr. B 2008, 861, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.; Liang, B.; Jiang, C.; Ni, H.; Wang, L. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed. Pharmacother. 2019, 109, 1586–1592. [Google Scholar] [CrossRef]
- Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; et al. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother. 2019, 112, 108612. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Chen, P.Y.; Schwartz, M.A.; Simons, M. Endothelial-to-Mesenchymal Transition, Vascular Inflammation, and Atherosclerosis. Front. Cardiovasc. Med. 2020, 7, 53. [Google Scholar] [CrossRef]
- Chen, P.Y.; Qin, L.; Baeyens, N.; Li, G.; Afolabi, T.; Budatha, M.; Tellides, G.; Schwartz, M.A.; Simons, M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Investig. 2015, 125, 4514–4528. [Google Scholar] [CrossRef]
- Lu, Y.; Thavarajah, T.; Gu, W.; Cai, J.; Xu, Q. Impact of miRNA in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2018, 38, e159–e170. [Google Scholar] [CrossRef]
- Zheng, Y.; Lu, L.; Yan, Z.; Jiang, S.; Yang, S.; Zhang, Y.; Xu, K.; He, C.; Tao, X.; Zhang, Q. mPEG-icariin nanoparticles for treating myocardial ischaemia. Artif. Cells Nanomed. Biotechnol. 2019, 47, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Zhang, J. Evodiamine and Its Role in Chronic Diseases. Adv. Exp. Med. Biol. 2016, 929, 315–328. [Google Scholar] [CrossRef]
- Li, C.; Chi, C.; Li, W.; Li, Z.; Wang, X.; Wang, M.; Zhang, L.; Lu, J.; Liu, R. An integrated approach for identifying the efficacy and potential mechanisms of TCM against atherosclerosis-Wu-Zhu-Yu decoction as a case study. J. Ethnopharmacol. 2022, 296, 115436. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Eftekhari, P.; Schachner, D.; Ignatova, I.D.; Palme, V.; Schilcher, N.; Ladurner, A.; Heiss, E.H.; Stangl, H.; Dirsch, V.M.; et al. Novel interactomics approach identifies ABCA1 as direct target of evodiamine, which increases macrophage cholesterol efflux. Sci. Rep. 2018, 8, 11061. [Google Scholar] [CrossRef]
- Hu, J.; Chen, D.; Jiang, R.; Tan, Q.; Zhu, B.; Zhang, J. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine-phospholipid nanocomplex. Int. J. Nanomed. 2014, 9, 4411–4420. [Google Scholar] [CrossRef]
- Boren, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, G.J.; Yin, K.; Xia, X.D.; Gong, D.; Zhao, Z.W.; Chen, L.Y.; Zheng, X.L.; Tang, X.E.; Tang, C.K. Apolipoprotein A-1 Binding Protein Inhibits Inflammatory Signaling Pathways by Binding to Apolipoprotein A-1 in THP-1 Macrophages. Circ. J. 2018, 82, 1396–1404. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.; Sun, Y.; Yan, H.; Han, W.; Wang, X.; Wang, K.; Wei, B.; Xu, X. Beneficial effects of Oridonin on myocardial ischemia/reperfusion injury: Insight gained by metabolomic approaches. Eur. J. Pharmacol. 2019, 861, 172587. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.H.; Liu, Y.; Feng, N.P.; Zhang, Y.T. RGD-modified poly(D,L-lactic acid) nanoparticles enhance tumor targeting of oridonin. Int. J. Nanomed. 2012, 7, 211–219. [Google Scholar] [CrossRef]
Natural Drug Monomer | Drug Molecular Formula | Structure Diagram | NDDS | Animal Model | Target | Drug Release | Signaling Pathway | Role of NDDS in Drug Efficacy | Experimental Outcome | References |
---|---|---|---|---|---|---|---|---|---|---|
Cur | C21H20O6 | HASF@Cur | Male rat | Macrophage CD44 receptor | ROS-responsive controlled release | NF-κB | Localize Cur release; enhance Cur bioavailability | Reduced AS plaque area | [15] | |
Cur-MnO2/HA | ApoE−/− mice | M1 macrophages | pH and GSH concentration-controlled release | HIF-1α | Extend Cur circulation half-life by 6-fold; enhance bioavailability | Alleviate oxidative stress Suppress inflammation | [16] | |||
BC | C21H18O11 | BC@CS/cRGD NPs | ApoE−/− mice | Macrophages | Rapid release in acidic conditions | TLRs/NF-κB p65 | Rapid drug release and enhance drug accumulation | Protects endothelial cells | [26] | |
RSV | C14H12O3 | MM@NPs | ApoE−/− mice | Activated endothelial cells; inflammatory macrophages | pH-responsive controlled release | Efficient RSV encapsulation; targeted delivery; mitigates toxic side effects | Antioxidant, anti-inflammatory and formation-inhibiting effects | [17] | ||
Cel | C29H38O4 | Cel-loaded PEG-b-PP micelles | Ldlr−/− mice (C57Bl/6) | 8.0 ± 0.5% release within 48 h | NF-κB | Reduce cytotoxicity | Anti-inflammatory | [33] | ||
CIN | C10H18O | CIN@DEX5k-BSA/PTM/VB12 | Macrophages | Good stability in stimulated gastrointestinal environment | PPAR-γ NF-κB | Improve CIN stability; increase oral bioavailability | Anti-inflammatory | [40] | ||
MM-CIN-BDS | C57BL/6 mice | AS plaque site | PPAR-γ NF-κB | Improve CIN stability | Anti-inflammatory; improves blood lipid levels | [41] | ||||
TanIIA | C19H18O3 | pHDL—TanIIA | ApoE−/− mice | AS plaque site | Good stability under physiological conditions within 12 h | Improve TanIIA water solubility | Anti-inflammatory; regulates dyslipidemia | [45] | ||
COL | C22H25NO6 | VHPK-PLGA@COL | ApoE−/− mice | VCAM-1 inflammatory endothelial cells | ~70.73% release at 37 °C; ~7.55% at 4 °C | NF-κB/NLRP3 | Sustain drug release | Anti-inflammatory | [48] | |
BBR | C20H18NO4 | BBR NPs@Man/M2 | ApoE−/− mice | Inflammatory sites | ~92.35% BBR release in 20% FBS within 60 h | Sustain drug release; enhance BBR bioavailability | Anti-inflammatory; promotes vascular endothelial repair | [51] | ||
GP and EM | C17H24O10 C15H10O5 | TK-MLP@ (GP + EM) NPs | ApoE−/− mice | AS plaque site | ~86.5% GP release and ~64.2% EM release in 1 mM H2O2 within 72 h | RONS/NF-κB/NLRP3 | Prolong circulation half-life Triggers controlled drug release | Protect endothelial cells; promotes cholesterol efflux Reduces lipid accumulation | [59] | |
ART and Pc | C15H22O5 C30H26O13 | HA-M@PB@ (PC + ART) NPs | ApoE−/− mice | Inflammatory macrophages | ~86.5% GP release and ~64.2% EM release in 1 mM H2O2 within 72 h | RONS/NF-κB/NLRP3 AMPK/mTOR | Large drug accumulation in AS plaque | Suppress lipid influx; promote cholesterol efflux | [69] | |
VC | C6H8O6 | VC@cLAVs | SD rat ApoE−/− mice | Foam cells | VC-LA mutual regeneration cycle | Prolong blood half-life; enhance antioxidant capacity | Scavenge ROS; inhibit cellular ox-LDL uptake | [73] | ||
ASX | C40H52O4 | ASX-PLGA NPs | ApoE−/− mice | Foam cells | 58.7% release after 8 h | MAPK pathway | Improve ASX solubility; achieve local sustained release | Inhibit ferroptosis; alleviates cellular oxidative stress | [60] |
Classification | NDDS | Natural Drug Monomer | Materials | Preparation Methods | Particle Size | Zeta Potential | Encapsulation Efficiency (EE%) | Drug Loading (DL%) | Pharmacokinetic Properties | References |
---|---|---|---|---|---|---|---|---|---|---|
Polymer-based nanoparticles | Cel-loaded PEG-b-PP micelles (Cel-MC) | Cel | PEG PPS | Film hydration method | 16.4 nm | Highest close to 100% | 0.22% | Prolongs in vivo half-life | [33] | |
VHPK-PLGA@COL | Col | PLGA VHPK PEG | Double emulsion method (W/O/W) | 187.50 ± 1.71 nm | −33.56 ± 1.82 mV | 93.32 ± 1.14% | Prolongs in vivo circulation time Stable plasma concentration within 48 h | [48] | ||
Polymer-based nanoparticles | ASX-PLGA NPs | ASX | PLGA | Emulsification solvent evaporation | 109.13 ± 0.81 nm | −27.44 ± 1.52 mV | 57.00% | 0.07% | Prolongs in vivo circulation time Stable plasma concentration within 48 h | [60] |
Cell membrane-coated nanoparticles | MM@NPs | RSV | CLIKKPF β-CD MM | Macrophage membrane spontaneously encapsulates drugs | ~231.97 nm | −27.44 ± 1.52 mV | 12.80% | Prolongs in vivo half-life (3.1 h–6.3 h) Fluorescence signal intensity in target tissues increased by 2.7 times | [17] | |
MM-CIN-BDS | CIN | PLGA Polyvinyl alcohol DEAE THP-1 | Co-extrusion method | 192.14 ± 3.39 nm | 28.46 ± 0.42 mV | 73.90 ± 1.51% | Increases distribution in plaque areas Reduces distribution in heart and kidneys | [41] | ||
BBR NPs@Man/M2 | BBR | PLGA Cell membrane of M2 macrophages Man | Nanoprecipitation method Membrane fusion technology | 230 nm | −26.1 ± 0.6 mV | 73.90 ± 1.51% | Prolongs in vivo circulation time Enriched in the chest of AS mice after 6 h | [51] | ||
TK-MLP@ (GP + EM) NPs | GP and EM | The macrophage membrane (Møm) Nano-liposomes TK | Film hydration method Membrane fusion technology | 184.6 nm | −46.93mV | GP 87.4% EM 62.5% | Circulation half-life t1/2 prolonged by about 77.8% Fluorescence intensity in target tissues increased to 1.91 times | [59] | ||
HA-M@PB@ (PC + ART) NPs | ART and Pc | Møm Red blood cell membranes HA | Membrane fusion technology | 150.3 ± 2.5 nm | −7.21 ± 0.18 mV | PC: 74.21% | Prolongs in vivo circulation time by about 67.2% Reduces immune clearance | [69] | ||
Biomolecular material nanoparticles | HASF@Cur | Cur | oHA TKL Fc | Self-assembly method | 150.8 nm | −35.04 mV | 51.41% | 0.05% | Prolongs circulation half-life Increases accumulation in AS plaque areas | [15] |
BC@CS/cRGD NPs | BC | NH2NH2·H2O CS cRGD | Combining BC with CS and modifying with cRGD peptide | 214.8 ± 13.4 nm | −18.7 ± 2.67 mV | 81.22% | Specific accumulation in AS plaque areas | [26] | ||
CIN@DEX5k-BSA/PTM/VB12 | CIN | DEX-BSA PTM VB12 | Microfluidization combined with ultraviolet irradiation | 100 nm | ≈0 mV | Prolongs residence time in the small intestine Increases enrichment in AS plaque areas | [40] | |||
pHDL—TanIIA | TanIIA | DMPC Solutions of mimetic peptides | Microfluidic technology | 15.5 ± 2.76 nm | ≈0 mV | 93.19 ± 1.14% | 9.09% ± 0.01% | Prolongs in vivo circulation time Increases plaque area enrichment (28.3 times) | [45] | |
VC@cLAVs | VC | VC LA 1,4,7-Triazanonane | Self-assembled vesicles | 200 nm | About 10 mv | 0.60% | Long in vivo half-life High in vivo exposure (AUC: 2823.9 μg·h·L−1) | [73] | ||
Inorganic nanoparticles | Cur-MnO2/HA | Cur | HA MnCl2 NaOH | Ultrasonication Centrifugation Co-incubation drug loading | ~230 nm | −20 mV to −30 mV, approximately −23 mV | 0.54% | Significantly prolongs Cur half-life by 6 times Increases accumulation in lesion areas by 3.5 times | [16] |
Targeting Strategy | Nanoparticle Name | Targeting Strategy | Target | Reference |
---|---|---|---|---|
Structural Modification | HASF@Cur Micelles | oHA modification | CD44 receptors | [15] |
Cur-MnO2/HA System | HA modification | CD44 receptors | [16] | |
SDP-VCAM-1/Cur Particles | Conjugation of VCAM-1-targeting peptides | VCAM-1 | [77] | |
MP-QT-NPs | Host–guest interactions between β-CD and ADA | Macrophages | [22] | |
BC@CS/cRGD NPs | cRGD peptide modification | αvβ3 receptors | [26] | |
LDE | Remove ApoB100 | LDLR/LRP | [37] | |
CIN@DEX5k-BSA/PTM/VB12 | VB12 binding to intrinsic factor (IF) | VB12 receptors | [40] | |
VHPK-PLGA@COL | VHPK peptide modification | VCAM-1 | [48] | |
MCMN-DHA-a1 | Surface-modified anti-PECAM-1 | Inflammatory endothelial cells | [78] | |
Biomimetic Targeting | MM@NPs | Macrophage membrane coating | VCAM-1 | [17] |
pHDL-TanIIA and pHDL-Cur | Utilization of the inherent targeting ability of HDL | ABCA1 ABCG1 SR-B1 | [45] | |
MM-CIN-BDS | Monocyte membrane encapsulation | VCAM-1 ICAM-1 L-selectin | [41] | |
Passive Targeting | NLCE/CSNLCE | EPR effects Chitosan coating | Macrophages | [79] |
PEG-b-PPS | EPR effects Spherical shape Amphiphilic structure | Macrophages Dendritic cells | [33] | |
VC@cLAVs | Passive targeting | Atherosclerotic plaques | [73] | |
CDNVs | Extracellular vesicle characteristics | Endothelial cells Inflammation-related cells | [80] | |
Composite Targeting | BBR NPs@Man/M2 | The “homing” effect of M2-type macrophage membranes Mannose-targeting peptides | Macrophages Endothelial Cells | [51] |
TK-MLP@ (GP + EM) NPs | TK-modification ROS-responsive surface linkers | Macrophages Endothelial Cells | [59] | |
HA-M@PB@ (PC + ART) NPs | RBCm and Møm camouflage HA modification | CD44 receptors | [69] |
Category | Drug | Molecular Formula | Structure | Limitations | Cellular Model | Animal Model | Effects | Mechanisms and Signaling Pathways | References |
---|---|---|---|---|---|---|---|---|---|
Antioxidant and Anti-inflammatory | Salidroside (SAL) | C14H20O7 | Poor targeting ability; bioavailability affected by formulation | ox-LDL-induced HUVEC injury model | Reverse ox-LDL-induced cell damage Increase antioxidant enzyme activity Improve mitochondrial dysfunction | Activate AMPK/SIRT1 pathway | [94] | ||
LPS and ATP-induced HUVECs model | ApoE−/− mice | Reduce the area of aortic plaque Inhibit pyroptosis | Inhibit NLRP3-associated pyroptosis Suppress caspase-1 activation and IL-1β release | [95] | |||||
Luteolin (LUT) | C15H10O6 | Pharmacokinetic limitations | H2O2-induced A7r5 cell model | HFD and vitamin D3-induced SD rat vascular calcification model | Improve vascular calcification Inhibit oxidative stress | Activate SIRT1 Inhibit oxidative stress Promote autophagy to alleviate vascular calcification | [96] | ||
ox-LDL-induced mouse primary macrophages | ApoE−/− mice | Reduce plaque area Inhibit pro-inflammatory factors | Suppress STAT3 phosphorylation | [97,98] | |||||
Inhibiting Cell Migration/Proliferation | Icariin (ICA) | C33H40O15 | Low bioavailability | HAVSMCs | ApoE−/− mice | Inhibit plaque formation Suppress HAVSMC proliferation/migration | Upregulate miR-205-5p to target ERBB4 Inhibit ERBB4/AKT signaling pathway | [99] | |
ox-LDL-induced HUVECs | Inhibit ox-LDL-induced EndMT | Suppress miR-148b-3p Upregulate ELF5 Inhibit EndMT | [100] | ||||||
Evodiamine (EVO) | C19H17N3O | Extensive first-pass effect; hepatotoxicity | MOVAS cells | LDLR−/− mouse | Reduce the area of aortic plaque Inhibit VSMC proliferation/migration Suppress inflammation and oxidative stress | Inhibit PI3K/Akt signaling pathway Reduce inflammation and oxidative stress Suppress VSMC proliferation | [101] | ||
PDGF-BB-induced rat VSMC model | Inhibit PDGF-BB-induced VSMC migration | Activate PPARγ expression Suppress the expression of migration-related proteins in VSMCs | [102,103] | ||||||
Regulating Lipid Metabolism | Leoligin (LEO) | C27H34O7 | Potential endothelial damage | Human and rabbit plasma samples | CETP transgenic mice | Increase CETP activity | Bind CETP to enhance its activity Promote cholesterol transformation | [104] | |
THP-1 macrophage model | Increase apoA1-mediated cholesterol efflux Upregulate ABCA1/ABCG1 without affecting SR-B1 | Enhance ABCA1/ABCG1 transcription Elevate mRNA levels Promote cholesterol efflux | [105,106] | ||||||
Oridonin (ORI) | C20H28O6 | Low oral bioavailability | Raw 264.7 macrophages | ApoE−/− mice | Reduce the area of aortic plaque Inhibit inflammation | Regulate LXRα-induced ABCA1 expression Promote PPARγ expression Inhibit NF-κB translocation | [107] | ||
Mouse peritoneal macrophages | ApoE−/− mice | Reduce the area of aortic plaque Stabilize plaques Decrease lipid deposition in macrophages Suppress inflammation | Inhibit NLRP3 activation; upregulate ABCA1/ABCG1 Reduces CD36 | [108,109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, P.; Gu, R.; Zhao, K.; Gao, Y.; Tang, B.; Shi, M.; Li, Z. Nanodelivery of Bioactive Natural Products: A Targeted Therapeutic Breakthrough for Atherosclerosis. Pharmaceutics 2025, 17, 1102. https://doi.org/10.3390/pharmaceutics17091102
Liu C, Wang P, Gu R, Zhao K, Gao Y, Tang B, Shi M, Li Z. Nanodelivery of Bioactive Natural Products: A Targeted Therapeutic Breakthrough for Atherosclerosis. Pharmaceutics. 2025; 17(9):1102. https://doi.org/10.3390/pharmaceutics17091102
Chicago/Turabian StyleLiu, Chen, Peichen Wang, Renjun Gu, Keyan Zhao, Yang Gao, Bihua Tang, Mingfei Shi, and Ziyun Li. 2025. "Nanodelivery of Bioactive Natural Products: A Targeted Therapeutic Breakthrough for Atherosclerosis" Pharmaceutics 17, no. 9: 1102. https://doi.org/10.3390/pharmaceutics17091102
APA StyleLiu, C., Wang, P., Gu, R., Zhao, K., Gao, Y., Tang, B., Shi, M., & Li, Z. (2025). Nanodelivery of Bioactive Natural Products: A Targeted Therapeutic Breakthrough for Atherosclerosis. Pharmaceutics, 17(9), 1102. https://doi.org/10.3390/pharmaceutics17091102