Polymeric Nanoparticles for Targeted Lung Cancer Treatment: Review and Perspectives
Abstract
1. Introduction
2. Targeted Therapies in Lung Cancer
Comparison Between Conventional and Novel Therapies Involved in the Management of Lung Cancer
3. Advanced Nanoparticle Platforms for Lung Cancer Theranostics and Targeted Therapy
3.1. Magnetic Nanoparticles
3.2. Solid Lipid Nanoparticles
3.3. Polymeric Reduced Green Metallic Nanoparticles
3.4. Quantum Dots
4. Application of Polymeric Nanoparticles in Lung Cancer Management
4.1. Chitosan-Based Nanoparticles
4.2. Sodium Alginate-Based Nanoparticles
4.3. Gelatin-Based Nanoparticles
4.4. Poly Lactic Acid-Based Nanoparticles
4.5. Poly Caprolactone-Based Nanoparticles
4.6. Poly(amidoamine)-Based Nanoparticles
4.7. Polymethacrylate-Based Nanoparticles
5. Clinical Trials Associated with Polymeric NPs-Based Drug Delivery for Lung Cancer
6. Challenges, Limitations, and Future Perspective
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. Global Surveillance of Trends in Cancer Survival 2000–14 (Concord-3): Analysis of Individual Records for 37,513,025 Patients Diagnosed with One of 18 Cancers from 322 Population-Based Registries in 71 Countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk Factors for Lung Cancer Worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef]
- Brinklov, S.; Kalko, E.K.V.; Surlykke, A. Intense Echolocation Calls from Two ‘Whispering’ Bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). J. Exp. Biol. 2009, 212, 11–20. [Google Scholar] [CrossRef]
- Bade, B.C.; Cruz, C.S.D. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Li, Y.; Wang, N.; Huang, Y.; He, S.; Bao, M.; Wen, C.; Wu, L. Circmybl1 Suppressed Acquired Resistance to Osimertinib in Non-Small-Cell Lung Cancer. Cancer Genet. 2024, 284–285, 34–42. [Google Scholar] [CrossRef]
- Wang, S.; Liu, G.; Yu, L.; Zhang, C.; Marcucci, F.; Jiang, Y. Fluorofenidone Enhances Cisplatin Efficacy in Non-Small Cell Lung Cancer: A Novel Approach to Inhibiting Cancer Progression. Transl. Lung Cancer Res. 2024, 13, 3175–3188. [Google Scholar] [CrossRef]
- Gao, F.; Yan, G.; Sun, L.; Xia, H.; Guo, Z.; Lin, H.; Du, G. The Real Mechanisms of Emodin Treating Lung Cancer Based on System Pharmacology. Eurasian J. Med. Oncol. 2023, 7, 10–23. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Liu, Y.; Lin, K.; Chen, J. Copy Number Gain of Met Gene with Low Level in a Metastatic Lung Adenocarcinoma Patient Represents Response to Salvage Treatment with Savolitinib and Osimertinib: A Case Report. Front. Oncol. 2025, 15, 1507677. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, C.; Chen, X.; Zhang, Y.; Li, Y.; Hu, X. Effects of Web-Based Acceptance and Commitment Therapy on Health-Related Outcomes among Patients with Lung Cancer: A Feasibility Randomized Controlled Trial. Psychooncology 2024, 33, e70045. [Google Scholar] [CrossRef]
- El-Megharbel, S.M.; Albogami, B.; Hassoubah, S.A.; Beyari, E.A.; Albaqami, N.M.; Alsolami, K.; Hamza, R.Z. Spectral Analysis of Novel Minocycline/Zn Complex with Promising Anticancer Activities against Large Lung Cancer Cells (H460), Antibacterial and Antioxidant Activities against Acrylamide-Induced Pulmonary Toxicity in Male Rats. Int. J. Pharmacol. 2024, 20, 1247–1270. [Google Scholar] [CrossRef]
- Samet, J.M.; Avila-Tang, E.; Boffetta, P.; Hannan, L.M.; Olivo-Marston, S.; Thun, M.J.; Rudin, C.M. Lung Cancer in Never Smokers: Clinical Epidemiology and Environmental Risk Factors. Clin. Cancer Res. 2009, 15, 5626–5645. [Google Scholar] [CrossRef]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The Biology and Management of Non-Small Cell Lung Cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef]
- McGarry, H.A. Mechanistic Links between Copd and Lung Cancer. Nat. Rev. Cancer 2013, 13, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Heymach, J.V. Co-Occurring Genomic Alterations In non-Small-Cell Lung Cancer Biology and Therapy. Nat. Rev. Cancer 2019, 19, 495–509. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretić, L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; et al. Comprehensive Genomic Profiles of Small Cell Lung Cancer. Nature 2015, 524, 47–53. [Google Scholar] [CrossRef]
- Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [Google Scholar] [CrossRef] [PubMed]
- New York State Department of Environmental Conservation. Guidelines for Conducting Bird and Bat Studies at Commercial Wind Energy Projects; Division of Fish Wildlife and Marine Resources, Ed.; New York State Department of Environmental Conservation: Albany, NY, USA, 2009.
- Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019, 79, 4557–4566. [Google Scholar] [CrossRef]
- Arandhara, A.; Bhuyan, P.; Das, B.K. Exploring Lung Cancer Microenvironment: Pathways and Nanoparticle-Based Therapies. Discov. Oncol. 2025, 16, 159. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Yong, T.; Gan, L.; Yang, X. Boosting Antitumor Efficacy of Nanoparticles by Modulating Tumor Mechanical Microenvironment. eBioMedicine 2024, 105, 105200. [Google Scholar] [CrossRef]
- Sabit, H.; Pawlik, T.M.; Radwan, F.; Abdel-Hakeem, M.; Abdel-Ghany, S.; Wadan, A.-H.S.; Elzawahri, M.; El-Hashash, A.; Arneth, B. Precision Nanomedicine: Navigating the Tumor Microenvironment for Enhanced Cancer Immunotherapy and Targeted Drug Delivery. Mol. Cancer 2025, 24, 160. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Zhong, M.; Wu, Z.; Wan, S.; Li, X.; Zhang, Y.; Lv, K. Nanozyme-Enhanced Tyramine Signal Amplification Probe for Preamplification-Free Myocarditis-Related Mirnas Detection. Chem. Eng. J. 2025, 503, 158093. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Y.; Xu, J.; Zheng, Y.; Zhou, W.; Wang, Y.; Luo, C. Precisely Tailoring Molecular Structure of Doxorubicin Prodrugs to Enable Stable Nanoassembly, Rapid Activation, Potent Antitumor Effect. Pharmaceutics 2024, 16, 1582. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Jiang, J.; Wei, P.; Sun, H. Triggered “on/Off” Luminescent Polypeptide Bowl-Shaped Nanoparticles for Selective Lighting of Tumor Cells. Small 2025, 21, e2411432. [Google Scholar] [CrossRef]
- Rani, V.; Venkatesan, J.; Prabhu, A. Liposomes—A Promising Strategy for Drug Delivery in Anticancer Applications. J. Drug Deliv. Sci. Technol. 2022, 76, 103739. [Google Scholar] [CrossRef]
- Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for Cancer-Targeted Drug Delivery. J. Drug Target. 2016, 24, 179–191. [Google Scholar] [CrossRef]
- Dong, Q.; Jiang, Z. Platinum–Iron Nanoparticles for Oxygen-Enhanced Sonodynamic Tumor Cell Suppression. Inorganics 2024, 12, 331. [Google Scholar] [CrossRef]
- Mi, P. Stimuli-Responsive Nanocarriers for Drug Delivery, Tumor Imaging, Therapy and Theranostics. Theranostics 2020, 10, 4557–4588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Song, J.; Liu, X.; Liu, S.; Yang, N.; Wang, L.; Liu, Y.; Zhao, Y.; Zhou, W.; et al. Tumor Cell-Targeting and Tumor Microenvironment-Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer. Int. J. Nanomed. 2024, 19, 5837–5858. [Google Scholar] [CrossRef]
- Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in Drug Delivery and Targeting: Drug-Dendrimer Interactions and Toxicity Issues. J. Pharm. Bioallied Sci. 2014, 6, 139–150. [Google Scholar] [CrossRef]
- Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous Silica Nanoparticles for Therapeutic/Diagnostic Applications. Biomed. Pharmacother. 2019, 109, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Aqil, F.; Gupta, R.C. Exosomes in Cancer Therapy. Cancers 2022, 14, 500. [Google Scholar] [CrossRef] [PubMed]
- Anselmo, A.C.; Prabhakarpandian, B.; Pant, K.; Mitragotri, S. Clinical and Commercial Translation of Advanced Polymeric Nanoparticle Systems: Opportunities and Material Challenges. Transl. Mater. Res. 2017, 4, 014001. [Google Scholar] [CrossRef]
- Gaspar, R.; Duncan, R. Polymeric Carriers: Preclinical Safety and the Regulatory Implications for Design and Development of Polymer Therapeutics. Adv. Drug Deliv. Rev. 2009, 61, 1220–1231. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, P.; Wang, D.; Li, Y.; Tan, J. New Strategies for Lung Cancer Diagnosis and Treatment: Applications and Advances in Nanotechnology. Biomark. Res. 2024, 12, 136. [Google Scholar] [CrossRef]
- García-Fernández, C.; Fornaguera, C.; Borrós, S. Nanomedicine in Non-Small Cell Lung Cancer: From Conventional Treatments to Immunotherapy. Cancers 2020, 12, 1609. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.H.; Wei, L.; Bertino, E.M.; Edd, T.; Villalona-Calero, M.A.; He, K.; Shields, P.G.; Carbone, D.P.; Otterson, G.A. Incidence, Risk Factors and Effect on Survival of Immune-Related Adverse Events in Patients with Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2018, 19, e893–e900. [Google Scholar] [CrossRef]
- Chen, D.; Liu, J.; Wu, J.; Suk, J.S. Enhancing Nanoparticle Penetration through Airway Mucus to Improve Drug Delivery Efficacy in the Lung. Expert Opin. Drug Deliv. 2021, 18, 595–606. [Google Scholar] [CrossRef]
- Sarma, K.; Akther, M.H.; Ahmad, I.; Afzal, O.; Altamimi, A.S.A.; Alossaimi, M.A.; Jaremko, M.; Emwas, A.-H.; Gautam, P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024, 29, 1076. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage Iii Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Ciuleanu, T.E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab Plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef]
- Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated Egfr-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab Versus Docetaxel in Patients with Previously Treated Non-Small-Cell Lung Cancer (Oak): A Phase 3, Open-Label, Multicentre Randomised Controlled Trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Gourd, Alectinib Shows Cns Efficacy in Alk-Positive Nsclc. Lancet Oncol. 2018, 19, e520. [CrossRef]
- Ando, K.; Manabe, R.; Kishino, Y.; Kusumoto, S.; Yamaoka, T.; Tanaka, A.; Ohmori, T.; Sagara, H. Comparative Efficacy of Alk Inhibitors for Treatment-Naïve Alk-Positive Advanced Non-Small Cell Lung Cancer with Central Nervous System Metastasis: A Network Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 2242. [Google Scholar] [CrossRef]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 2018, 142, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Mack, P.; Scagliotti, G.V.; Aggarwal, C.; Arcila, M.E.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al. Liquid Biopsy for Advanced Nsclc: A Consensus Statement from the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 2021, 16, 1647–1662. [Google Scholar] [CrossRef]
- Schilsky, R.L. Personalized Medicine in Oncology: The Future Is Now. Nat. Rev. Drug Discov. 2010, 9, 363–366. [Google Scholar] [CrossRef]
- Pascual, J.; Attard, G.; Bidard, F.C.; Curigliano, G.; De Mattos-Arruda, L.; Diehn, M.; Italiano, A.; Lindberg, J.; Merker, J.D.; Montagut, C.; et al. Esmo Recommendations on the Use of Circulating Tumour DNA Assays for Patients with Cancer: A Report from the Esmo Precision Medicine Working Group. Ann. Oncol. 2022, 33, 750–768. [Google Scholar] [CrossRef]
- Tsuboi, M.; Herbst, R.S.; John, T.; Kato, T.; Majem, M.; Grohé, C.; Wang, J.; Goldman, J.W.; Lu, S.; Su, W.C.; et al. Overall Survival with Osimertinib in Resected Egfr-Mutated Nsclc. N. Engl. J. Med. 2023, 389, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Remon, J.; Hellmann, M.D. First-Line Immunotherapy for Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 586–597. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, Egfr-Mutated Advanced Nsclc. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Kievit, F.M.; Zhang, M. Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery across Biological Barriers. Adv. Mater. 2011, 23, H217–H247. [Google Scholar] [CrossRef]
- Wahajuddin; Arora, S. Superparamagnetic Iron Oxide Nanoparticles: Magnetic Nanoplatforms as Drug Carriers. Int. J. Nanomed. 2012, 7, 3445–3471. [Google Scholar] [CrossRef]
- Manescu, V.; Antoniac, I.; Paltanea, G.; Nemoianu, I.V.; Mohan, A.G.; Antoniac, A.; Rau, J.V.; Laptoiu, S.A.; Mihai, P.; Gavrila, H.; et al. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int. J. Mol. Sci. 2024, 25, 10065. [Google Scholar] [CrossRef] [PubMed]
- Mykhaylyk, O.; Sanchez-Antequera, Y.; Vlaskou, D.; Cerda, M.B.; Bokharaei, M.; Hammerschmid, E.; Anton, M.; Plank, C. Magnetic Nanoparticle and Magnetic Field Assisted Sirna Delivery in Vitro. Methods Mol. Biol. 2015, 1218, 53–106. [Google Scholar]
- Wei, X.; Song, M.; Li, W.; Huang, J.; Yang, G.; Wang, Y. Multifunctional Nanoplatforms Co-Delivering Combinatorial Dual-Drug for Eliminating Cancer Multidrug Resistance. Theranostics 2021, 11, 6334–6354. [Google Scholar] [CrossRef]
- Li, X.; Younis, M.H.; Wei, W.; Cai, W. Pd-L1 - Targeted Magnetic Fluorescent Hybrid Nanoparticles: Illuminating the Path of Image-Guided Cancer Immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2240–2243. [Google Scholar] [CrossRef] [PubMed]
- Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M.; Delivery, I.V. Pharmacokinetics, Biodistribution and Toxicity of Iron Oxide Nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid Lipid Nanoparticles (Sln) for Controlled Drug Delivery—A Review of the State of the Art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Sivadasan, D.; Ramakrishnan, K.; Mahendran, J.; Ranganathan, H.; Karuppaiah, A.; Rahman, H. Solid Lipid Nanoparticles: Applications and Prospects in Cancer Treatment. Int. J. Mol. Sci. 2023, 24, 6199. [Google Scholar] [CrossRef]
- Song, Y.; Cai, H.; Yin, T.; Huo, M.; Ma, P.; Zhou, J.; Lai, W. Paclitaxel-Loaded Redox-Sensitive Nanoparticles Based on Hyaluronic Acid-Vitamin E Succinate Conjugates for Improved Lung Cancer Treatment. Int. J. Nanomed. 2018, 13, 1585–1600. [Google Scholar] [CrossRef]
- Chai, Z.; Ran, D.; Lu, L.; Zhan, C.; Ruan, H.; Hu, X.; Xie, C.; Jiang, K.; Li, J.; Zhou, J.; et al. Ligand-Modified Cell Membrane Enables the Targeted Delivery of Drug Nanocrystals to Glioma. ACS Nano 2019, 13, 5591–5601. [Google Scholar] [CrossRef]
- Subhan, M.A.; Filipczak, N.; Torchilin, V.P. Advances with Lipid-Based Nanosystems for Sirna Delivery to Breast Cancers. Pharmaceuticals 2023, 16, 970. [Google Scholar] [CrossRef]
- Al Khatib, A.O.; El-Tanani, M.; Al-Obaidi, H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2023, 15, 2777. [Google Scholar] [CrossRef] [PubMed]
- Pechyen, C.; Tangnorawich, B.; Toommee, S.; Marks, R.; Parcharoen, Y. Green Synthesis of Metal Nanoparticles, Characterization, and Biosensing Applications. Sens. Int. 2024, 5, 100287. [Google Scholar] [CrossRef]
- Tinajero-Díaz, E.; Salado-Leza, D.; Gonzalez, C.; Velázquez, M.M.; López, Z.; Bravo-Madrigal, J.; Knauth, P.; Flores-Hernández, F.Y.; Herrera-Rodríguez, S.E.; Navarro, R.E.; et al. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021, 13, 1719. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.M.; Elella, M.H.A.; Mohamed, R.R. Green Synthesis of Quaternized Chitosan/Silver Nanocomposites for Targeting Mycobacterium Tuberculosis and Lung Carcinoma Cells (a-549). Int. J. Biol. Macromol. 2020, 142, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Lin, F.H.; Tsai, K.C.; Wei, M.F.; Tsai, H.M.; Wong, J.M.; Shieh, M.J. Folic Acid-Conjugated Chitosan Nanoparticles Enhanced Protoporphyrin Ix Accumulation in Colorectal Cancer Cells. Bioconjug. Chem. 2010, 21, 679–689. [Google Scholar] [CrossRef]
- Huang, M.; Myers, C.R.; Wang, Y.; You, M. Mitochondria as a Novel Target for Cancer Chemoprevention: Emergence of Mitochondrial-Targeting Agents. Cancer Prev. Res. 2021, 14, 285–306. [Google Scholar] [CrossRef]
- Baghani, L.; Heris, N.N.; Khonsari, F.; Dinarvand, S.; Dinarvand, M.; Atyabi, F. Trimethyl-Chitosan Coated Gold Nanoparticles Enhance Delivery, Cellular Uptake and Gene Silencing Effect of Egfr-Sirna in Breast Cancer Cells. Front. Mol. Biosci. 2022, 9, 871541. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni-Dwivedi, N.; Patel, P.R.; Shravage, B.V.; Umrani, R.D.; Paknikar, K.M.; Jadhav, S.H. Hyperthermia and Doxorubicin Release by Fol-Lsmo Nanoparticles Induce Apoptosis and Autophagy in Breast Cancer Cells. Nanomedicine 2022, 17, 1929–1949. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Quantum Dots for Biosensing: Classification and Applications. Biosens. Bioelectron. 2025, 273, 117180. [Google Scholar] [CrossRef] [PubMed]
- Pareek, A.; Kumar, D.; Pareek, A.; Gupta, M.M. Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges. Cancers 2025, 17, 878. [Google Scholar] [CrossRef]
- Ren, L.; Wang, L.; Rehberg, M.; Stoeger, T.; Zhang, J.; Chen, S. Applications and Immunological Effects of Quantum Dots on Respiratory System. Front. Immunol. 2021, 12, 795232. [Google Scholar] [CrossRef]
- Emami, F.; Duwa, R.; Banstola, A.; Woo, S.M.; Kwon, T.K.; Yook, S. Dual Receptor Specific Nanoparticles Targeting Egfr and Pd-L1 for Enhanced Delivery of Docetaxel in Cancer Therapy. Biomed. Pharmacother. 2023, 165, 115023. [Google Scholar] [CrossRef]
- Yi, Y.; Zhao, H. Revolutionizing Tissue Clearing and 3-Dimensional Imaging: Transparent Embedding Solvent System for Uniform High-Resolution Imaging. BME Front. 2025, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Merlin, J.P.J.; Crous, A. Abrahamse, Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes. Int. J. Mol. Sci. 2024, 25, 10796. [Google Scholar] [CrossRef]
- Mohkam, M.; Sadraeian, M.; Lauto, A.; Gholami, A.; Nabavizadeh, S.H.; Esmaeilzadeh, H.; Alyasin, S. Exploring the Potential and Safety of Quantum Dots in Allergy Diagnostics. Microsyst. Nanoeng. 2023, 9, 145. [Google Scholar] [CrossRef]
- Getz, T.; Qin, J.; Medintz, I.L.; Delehanty, J.B.; Susumu, K.; Dawson, P.E.; Dawson, G. Quantum Dot-Mediated Delivery of Sirna to Inhibit Sphingomyelinase Activities in Brain-Derived Cells. J. Neurochem. 2016, 139, 872–885. [Google Scholar] [CrossRef]
- Woutersen, M.; Muller, A.; Pronk, M.E.J.; Cnubben, N.H.P.; Hakkert, B.C. Regulating Human Safety: How Dose Selection in Toxicity Studies Impacts Human Health Hazard Assessment and Subsequent Risk Management Options. Regul. Toxicol. Pharmacol. 2020, 114, 104660. [Google Scholar] [CrossRef]
- Jin, M.; Hou, Y.; Quan, X.; Chen, L.; Gao, Z.; Huang, W. Smart Polymeric Nanoparticles with Ph-Responsive and Peg-Detachable Properties (Ii): Co-Delivery of Paclitaxel and Vegf Sirna for Synergistic Breast Cancer Therapy in Mice. Int. J. Nanomed. 2021, 16, 5479–5494. [Google Scholar] [CrossRef]
- Tiwari, R.; Patil, A.; Verma, R.; Deva, V.; Rudrangi, S.R.S.; Bhise, M.R.; Vinukonda, A. Biofunctionalized Polymeric Nanoparticles for the Enhanced Delivery of Erlotinib in Cancer Therapy. J. Biomater. Sci. Polym. Ed. 2025, 36, 817–842. [Google Scholar] [CrossRef] [PubMed]
- Beach, M.A.; Nayanathara, U.; Gao, Y.; Zhang, C.; Xiong, Y.; Wang, Y.; Such, G.K. Polymeric Nanoparticles for Drug Delivery. Chem. Rev. 2024, 124, 5505–5616. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Jayanetti, M.; Mendis, A.; Ekanayake, G.; Liyanaarachchi, H.; Vigneswaran, S. Recent Advances in Chitosan-Based Applications—A Review. Materials 2023, 16, 2073. [Google Scholar] [CrossRef] [PubMed]
- Sharfi, L.; Nowroozi, M.R.; Smirnova, G.; Fedotova, A.; Babarykin, D.; Mirshafiey, A. The Safety Properties of Sodium Alginate and Its Derivatives. Br. J. Healthc. Med. Res. 2024, 11, 263–274. [Google Scholar]
- Mahar, R.; Chakraborty, A.; Nainwal, N.; Bahuguna, R.; Sajwan, M.; Jakhmola, V. Application of Plga as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech 2023, 24, 39. [Google Scholar] [CrossRef]
- Moharir, K.; Kale, V.; Ittadwar, A.; Paul, M.K. Polymeric Nanoparticle-Based Drug–Gene Delivery for Lung Cancer. In Handbook of Lung Targeted Drug Delivery Systems; CRC Press: Boca Raton, FL, USA, 2021; pp. 193–207. [Google Scholar]
- Kuen, C.Y.; Masarudin, M.J. Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment. Molecules 2022, 27, 473. [Google Scholar] [CrossRef]
- Yasamineh, S.; Gholizadeh, O.; Kalajahi, H.G.; Yasamineh, P.; Firouzi-Amandi, A.; Dadashpour, M. Future Prospects of Natural Polymer-Based Drug Delivery Systems in Combating Lung Diseases. In Natural Polymeric Materials Based Drug Delivery Systems in Lung Diseases; Springer: Berlin/Heidelberg, Germany, 2023; pp. 465–482. [Google Scholar]
- Gu, M.; Luan, J.; Song, K.; Qiu, C.; Zhang, X.; Zhang, M. Development of Paclitaxel Loaded Pegylated Gelatin Targeted Nanoparticles for Improved Treatment Efficacy in Non-Small Cell Lung Cancer (Nsclc): An in Vitro and in Vivo Evaluation Study. Acta Biochim. Pol. 2021, 68, 583–591. [Google Scholar] [CrossRef]
- Dhuri, A.; Sriram, A.; Aalhate, M.; Mahajan, S.; Parida, K.K.; Singh, H.; Gupta, U.; Maji, I.; Guru, S.K.; Singh, P.K. Chitosan Functionalized Pcl Nanoparticles Bearing Tyrosine Kinase Inhibitor Osimertinib Mesylate for Effective Lung Cancer Therapy. Pharm. Dev. Technol. 2023, 28, 460–478. [Google Scholar] [CrossRef] [PubMed]
- Vagena, I.-A.; Malapani, C.; Gatou, M.-A.; Lagopati, N.; Pavlatou, E.A. Enhancement of Epr Effect for Passive Tumor Targeting: Current Status and Future Perspectives. Appl. Sci. 2025, 15, 3189. [Google Scholar] [CrossRef]
- Sharma, A.; Shambhwani, D.; Pandey, S.; Singh, J.; Lalhlenmawia, H.; Kumarasamy, M.; Singh, S.K.; Chellappan, D.K.; Gupta, G.; Prasher, P. Advances in Lung Cancer Treatment Using Nanomedicines. ACS Omega 2022, 8, 10–41. [Google Scholar] [CrossRef] [PubMed]
- Hani, U.; Begum, M.Y.; Wahab, S.; Siddiqua, A. Riyaz Ali M Osmani, Mohamed Rahamathulla, A Comprehensive Review of Current Perspectives on Novel Drug Delivery Systems and Approaches for Lung Cancer Management. J. Pharm. Innov. 2022, 17, 1530–1553. [Google Scholar] [CrossRef]
- Cojocaru, E.; Petriș, O.R.; Cojocaru, C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals 2024, 17, 1059. [Google Scholar] [CrossRef] [PubMed]
- Dahlsgaard-Wallenius, S.E.; Hildebrandt, M.G.; Johansen, A.; Vilstrup, M.H.; Petersen, H.; Gerke, O.; Høilund-Carlsen, P.F.; Morsing, A.; Andersen, T.L. Hybrid Pet/Mri in Non-Small Cell Lung Cancer (Nsclc) and Lung Nodules—A Literature Review. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 584–591. [Google Scholar] [CrossRef]
- Batouty, N.M.; Saleh, G.A.; Sharafeldeen, A.; Kandil, H.; Mahmoud, A.; Shalaby, A.; Yaghi, M.; Khelifi, A.; Ghazal, M.; El-Baz, A. State of the Art: Lung Cancer Staging Using Updated Imaging Modalities. Bioengineering 2022, 9, 493. [Google Scholar] [CrossRef]
- Anani, T.; Rahmati, S.; Sultana, N.; David, A.E. Mri-Traceable Theranostic Nanoparticles for Targeted Cancer Treatment. Theranostics 2021, 11, 579–601. [Google Scholar] [CrossRef]
- Najdian, A.; Beiki, D.; Abbasi, M.; Gholamrezanezhad, A.; Ahmadzadehfar, H.; Amani, A.M.; Ardestani, M.S.; Assadi, M. Exploring Innovative Strides in Radiolabeled Nanoparticle Progress for Multimodality Cancer Imaging and Theranostic Applications. Cancer Imaging 2024, 24, 127. [Google Scholar] [CrossRef]
- Freitas, L.F.; Ferreira, A.H.; Thipe, V.C.; Varca, G.H.C.; Lima, C.S.A.; Batista, J.G.S.; Riello, F.N.; Nogueira, K.; Cruz, C.P.C.; Mendes, G.O.A.; et al. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. Nanomaterials 2021, 11, 2579. [Google Scholar] [CrossRef]
- Zhao, M.; Leggett, E.; Bourke, S.; Poursanidou, S.; Carter-Searjeant, S.; Po, S.; Carmo, M.P.D.; Dailey, L.A.; Manning, P.; Ryan, S.G.; et al. Theranostic near-Infrared-Active Conjugated Polymer Nanoparticles. ACS Nano 2021, 15, 8790–8802. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Guo, D.; Zhang, J.; Liu, X.; Liu, T.; Li, L.; Jiang, S.; Wu, D.; Jiang, H. Clinical Photoacoustic/Ultrasound Dual-Modal Imaging: Current Status and Future Trends. Front. Physiol. 2022, 13, 1036621. [Google Scholar] [CrossRef]
- Shaikh, K.I.M.A.J.; Afzal, O.; Altamimi, A.S.A.; Almalki, W.H.; Alzarea, S.I.; Al-Abbasi, F.A.; Pandey, M.; Dureja, H.; Singh, S.K.; Dua, K.; et al. Chitosan-Based Nano Drug Delivery System for Lung Cancer. J. Drug Deliv. Sci. Technol. 2023, 81, 104196. [Google Scholar] [CrossRef]
- Pawar, D.; Jaganathan, K.S. Mucoadhesive Glycol Chitosan Nanoparticles for Intranasal Delivery of Hepatitis B Vaccine: Enhancement of Mucosal and Systemic Immune Response. Drug Deliv. 2016, 23, 185–194. [Google Scholar] [CrossRef]
- Zare, M.; Samani, S.M.; Sobhani, Z. Enhanced Intestinal Permeation of Doxorubicin Using Chitosan Nanoparticles. Adv. Pharm. Bull. 2018, 8, 411–417. [Google Scholar] [CrossRef]
- Shali, H.; Shabani, M.; Pourgholi, F.; Hajivalili, M.; Aghebati-Maleki, L.; Jadidi-Niaragh, F.; Baradaran, B.; Akbari, A.A.M.-S.; Younesi, V.; Yousefi, M. Co-Delivery of Insulin-Like Growth Factor 1 Receptor Specific Sirna and Doxorubicin Using Chitosan-Based Nanoparticles Enhanced Anticancer Efficacy in A549 Lung Cancer Cell Line. Artif. Cells Nanomed. Biotechnol. 2018, 46, 293–302. [Google Scholar] [CrossRef]
- Mahmood, R.I.; Al-Taie, A.; Al-Rahim, A.M.; Mohammed-Salih, H.S.; Ibrahim, H.A.; Albukhaty, S.; Jawad, S.F.; Jabir, M.S.; Salem, M.M.; Bekhit, M.M. Biogenic Synthesized Selenium Nanoparticles Combined Chitosan Nanoparticles Controlled Lung Cancer Growth Via Ros Generation and Mitochondrial Damage Pathway. Nanotechnol. Rev. 2025, 14, 20250142. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; El-Bana, M.A.; Morsy, S.M.; Badawy, E.A.; Farrag, A.-E.; Badawy, A.M.; Abdel-Wahhab, M.A.; El-Dosoky, M.A. Synthesis and Characterization of Berberine-Loaded Chitosan Nanoparticles for the Protection of Urethane-Induced Lung Cancer. Int. J. Pharm. 2022, 618, 121652. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, Z.; Feng, L.; Deng, L.; Fang, Z.; Liu, Z.; Li, Y.; Wu, X.; Qin, L.; Guo, R.; et al. Chitosan-Based Nanoparticle Co-Delivery of Docetaxel and Curcumin Ameliorates Anti-Tumor Chemoimmunotherapy in Lung Cancer. Carbohydr. Polym. 2021, 268, 118237. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Raval, M.; Airao, V.; Ali, N.; Shazly, G.A.; Khan, R.; Prajapati, B. Formulation of Folate Receptor-Targeted Silibinin-Loaded Inhalable Chitosan Nanoparticles by the Qbd Approach for Lung Cancer Targeted Delivery. ACS Omega 2024, 9, 10353–10370. [Google Scholar] [CrossRef]
- Rostami, E. Recent Achievements in Sodium Alginate-Based Nanoparticles for Targeted Drug Delivery. Polym. Bull. 2022, 79, 6885–6904. [Google Scholar] [CrossRef]
- Huang, J.; Guo, J.; Zhu, J.; Zou, X. Supported Silver Nanoparticles over Alginate-Modified Magnetic Nanoparticles: Synthesis, Characterization and Treat the Human Lung Carcinoma. J. Saudi Chem. Soc. 2022, 26, 101393. [Google Scholar] [CrossRef]
- Veysi, A.; Yaghoobi-Ershadi, M.R.; Rassi, Y.; Hosseini-Vasoukolaei, N.; Jeddi-Tehrani, M.; Rezaee-Node, A.; Gholampour, F.; Saeidi, Z.; Fatemi, M.; Arandian, M.H.; et al. Rearing and Biology of Phlebotomus Sergenti, the Main Vector of Anthroponotic Cutaneous Leishmaniasis in Iran. J. Arthropod-Borne Dis. 2017, 11, 504–514. [Google Scholar] [PubMed]
- Işıklan, N.; Geyik, G.; Güncüm, E. Alginate-Based Bio-Nanocomposite Reinforced with Poly(2-Hydroxypropyl Methacrylamide) and Magnetite Graphene Oxide for Delivery of Etoposide and Photothermal Therapy. Mater. Today Chem. 2024, 41, 102323. [Google Scholar] [CrossRef]
- Parashar, A.K.; Saraogi, G.K.; Tiwari, B.K.; Tyagi, L.K.; Sethi, V.A.; Shrivastava, V. Polymeric Nanoparticles-Based Strategies for Cancer Immunotherapy. In Nanotechnology Based Strategies for Cancer Immunotherapy: Concepts, Design, and Clinical Applications; Sharma, R., Pandey, V., Mishra, N., Eds.; Springer Nature: Singapore, 2024; pp. 355–378. [Google Scholar]
- Milano, F.; Masi, A.; Madaghiele, M.; Sannino, A.; Salvatore, L.; Gallo, N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023, 15, 1499. [Google Scholar] [CrossRef]
- Wu, D.; Cao, X.-H.; Jia, P.-Z.; Zeng, Y.-J.; Feng, Y.-X.; Tang, L.-M.; Zhou, W.-X.; Chen, K.-Q. Excellent Thermoelectric Performance in Weak-Coupling Molecular Junctions with Electrode Doping and Electrochemical Gating. Sci. China Phys. Mech. Astron. 2020, 63, 276811. [Google Scholar] [CrossRef]
- Ali, D.S.; Gad, H.A.; Hathout, R.M. Enhancing Effector Jurkat Cell Activity and Increasing Cytotoxicity against A549 Cells Using Nivolumab as an Anti-Pd-1 Agent Loaded on Gelatin Nanoparticles. Gels 2024, 10, 352. [Google Scholar] [CrossRef]
- Vaghasiya, K.; Ray, E.; Singh, R.; Jadhav, K.; Sharma, A.; Khan, R.; Katare, O.P.; Verma, R.K. Efficient, Enzyme Responsive and Tumor Receptor Targeting Gelatin Nanoparticles Decorated with Concanavalin-a for Site-Specific and Controlled Drug Delivery for Cancer Therapy. Mater. Sci. Eng. C 2021, 123, 112027. [Google Scholar] [CrossRef]
- Kononenko, V.; Joukhan, A.; Bele, T.; Križaj, I.; Kralj, S.; Turk, T.; Drobne, D. Gelatin Nanoparticles Loaded with 3-Alkylpyridinium Salt Aps7, an Analog of Marine Toxin, Are a Promising Support in Human Lung Cancer Therapy. Biomed. Pharmacother. 2024, 177, 117007. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Wang, Z.-W.; Lu, T.-L.; Gomez, C.B.; Fang, H.-W.; Wei, Y.; Tseng, C.-L. The Synergistic Anticancer Effect of Dual Drug-(Cisplatin/Epigallocatechin Gallate) Loaded Gelatin Nanoparticles for Lung Cancer Treatment. J. Nanomater. 2020, 2020, 9181549. [Google Scholar] [CrossRef]
- Mehrotra, N.; Anees, M.; Tiwari, S.; Kharbanda, S.; Singh, H. Polylactic Acid Based Polymeric Nanoparticle Mediated Co-Delivery of Navitoclax and Decitabine for Cancer Therapy. Nanomedicine 2023, 47, 102627. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Choudhary, S.M.; Chauhan, G.; Muth, A.; Gupta, V. Transferrin-Conjugated Polymeric Nanoparticles for Receptor-Mediated Delivery of Resveratrol-Cyclodextrin Complex in Non-Small Cell Lung Cancer (Nsclc) Cells. J. Drug Deliv. Sci. Technol. 2025, 105, 106588. [Google Scholar] [CrossRef]
- Yao, F.; Lin, L.; Shi, W.; Li, C.; Liang, Z.; Huang, C. Inhibitory Effect of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Resveratrol and Phosphatase and Tensin Homolog Deleted on Chromosome Ten (Pten) Sirna on Lung Cancer Cells. Sci. Adv. Mater. 2022, 14, 810–817. [Google Scholar] [CrossRef]
- Niza, E.; Ocaña, A.; Castro-Osma, J.A.; Bravo, I.; Alonso-Moreno, C. Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. Cancers 2021, 13, 3387. [Google Scholar] [CrossRef]
- Lombardo, R.; Ruponen, M.; Rautio, J.; Lampinen, R.; Kanninen, K.M.; Koivisto, A.M.; Penttilä, E.; Löppönen, H.; Demartis, S.; Giunchedi, P.; et al. A Technological Comparison of Freeze-Dried Poly-ɛ-Caprolactone (Pcl) and Poly (Lactic-Co-Glycolic Acid) (Plga) Nanoparticles Loaded with Clozapine for Nose-to-Brain Delivery. J. Drug Deliv. Sci. Technol. 2024, 93, 105419. [Google Scholar] [CrossRef]
- Cabeza, L.; Ortiz, R.; Prados, J.; Delgado, Á.V.; Martín-Villena, M.J.; Clares, B.; Perazzoli, G.; Entrena, J.M.; Melguizo, C.; Arias, J.L. Improved Antitumor Activity and Reduced Toxicity of Doxorubicin Encapsulated in Poly(ε-Caprolactone) Nanoparticles in Lung and Breast Cancer Treatment: An in Vitro and in Vivo Study. Eur. J. Pharm. Sci. 2017, 102, 24–34. [Google Scholar] [CrossRef]
- Akbari, E.; Mousazadeh, H.; Hanifehpour, Y.; Mostafavi, E.; Gorabi, A.M.; Nejati, K.; Peyman, keyhanvar; Pazoki-Toroudi, H.; Mohammadhosseini, M.; Akbarzadeh, A. Co-Loading of Cisplatin and Methotrexate in Nanoparticle-Based Pcl-Peg System Enhances Lung Cancer Chemotherapy Effects. J. Clust. Sci. 2022, 33, 1751–1762. [Google Scholar] [CrossRef]
- Aorada, S.; Chittasupho, C.; Mangmool, S.; Angerhofer, A.; Imaram, W. Gallic Acid-Encapsulated Pamam Dendrimers as an Antioxidant Delivery System for Controlled Release and Reduced Cytotoxicity against Arpe-19 Cells. Bioconjug. Chem. 2024, 35, 1959–1969. [Google Scholar]
- Guo, Z.; Li, S.; Liu, Z.; Xue, W. Tumor-Penetrating Peptide-Functionalized Redox-Responsive Hyperbranched Poly(Amido Amine) Delivering Sirna for Lung Cancer Therapy. ACS Biomater. Sci. Eng. 2018, 4, 988–996. [Google Scholar] [CrossRef]
- Bai, S.-B.; Cheng, Y.; Liu, D.-Z.; Ji, Q.-F.; Liu, M.; Zhang, B.-L.; Mei, Q.-B.; Zhou, S.-Y. Bone-Targeted Pamam Nanoparticle to Treat Bone Metastases of Lung Cancer. Nanomedicine 2020, 15, 833–849. [Google Scholar] [CrossRef]
- Yin, Y.; Li, Y.; Wang, S.; Dong, Z.; Liang, C.; Sun, J.; Wang, C.; Chai, R.; Fei, W.; Zhang, J.; et al. Mscs-Engineered Biomimetic Pmaa Nanomedicines for Multiple Bioimaging-Guided and Photothermal-Enhanced Radiotherapy of Nsclc. J. Nanobiotechnol. 2021, 19, 80. [Google Scholar] [CrossRef]
- Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int. J. Nanomed. 2021, 16, 1681–1706. [Google Scholar] [CrossRef]
- Hanafy, N.A.N. Optimally Designed Pegylatied Arabinoxylan Paclitaxel Nano-Micelles as Alternative Delivery for Abraxane®: A Potential Targeted Therapy against Breast and Lung Cancers. Int. J. Biol. Macromol. 2025, 293, 139355. [Google Scholar]
- Bertino, E.M.; Williams, T.M.; Shilo, K.; Villalona-Calero, M.A.; Phillips, G.S.; Mo, X.; Otterson, G.A. Phase 2 Trial of Nab-Paclitaxel Plus Carboplatin for Advanced Nsclc in Patients at Risk of Bleeding from Vegf Directed Therapies: Metastatic Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, S45. [Google Scholar] [CrossRef]
- Subbiah, V.; Grilley-Olson, J.E.; Combest, A.J.; Sharma, N.; Tran, R.H.; Bobe, I.; Osada, A.; Takahashi, K.; Balkissoon, J.; Camp, A.; et al. Phase Ib/Ii Trial of Nc-6004 (Nanoparticle Cisplatin) Plus Gemcitabine in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2018, 24, 43–51. [Google Scholar] [CrossRef]
- Ibrahim, N.K.; Desai, N.; Legha, S.; Soon-Shiong, P.; Theriault, R.L.; Rivera, E.; Esmaeli, B.; Ring, S.E.; Bedikian, A.; Hortobagyi, G.N.; et al. Phase I and Pharmacokinetic Study of Abi-007, a Cremophor-Free, Protein-Stabilized, Nanoparticle Formulation of Paclitaxel. Clin. Cancer Res. 2002, 8, 1038–1044. [Google Scholar] [PubMed]
- Lim, E.A.; Bendell, J.C.; Falchook, G.S.; Bauer, T.M.; Drake, C.G.; Choe, J.H.; George, D.J.; Karlix, J.L.; Ulahannan, S.; Sachsenmeier, K.F.; et al. Phase Ia/B, Open-LabelOpen-Label, Multicenter Study of Azd4635 (an Adenosine A2a Receptor Antagonist) as Monotherapy or Combined with Durvalumab, in Patients with Solid Tumors. Clin. Cancer Res. 2022, 28, 4871–4884. [Google Scholar] [CrossRef]
- Ashique, S.; Garg, A.; Mishra, N.; Raina, N.; Ming, L.C.; Tulli, H.S.; Behl, T.; Rani, R.; Gupta, M. Nano-Mediated Strategy for Targeting and Treatment of Non-Small Cell Lung Cancer (Nsclc). Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 2769–2792. [Google Scholar] [CrossRef]
- Su, P.; Pei, W.; Wang, X.; Ma, Y.; Jiang, Q.; Liang, J.; Zhou, S.; Zhao, J.; Liu, J.; Lu, G.Q.M. Exceptional Electrochemical Her Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on a Carbon Substrate. Angew. Chem. Int. Ed. Engl. 2021, 60, 16044–16050. [Google Scholar] [CrossRef]
- Srinivasarao, D.A.; Shah, S.; Famta, P.; Vambhurkar, G.; Jain, N.; Pindiprolu, S.; Sharma, A.; Kumar, R.; Padhy, H.P.; Kumari, M.; et al. Unravelling the Role of Tumor Microenvironment Responsive Nanobiomaterials in Spatiotemporal Controlled Drug Delivery for Lung Cancer Therapy. Drug Deliv. Transl. Res. 2025, 15, 407–435. [Google Scholar] [CrossRef]
- Xu, W.; Yang, S.; Lu, L.; Xu, Q.; Wu, S.; Zhou, J.; Lu, J.; Fan, X.; Meng, N.; Ding, Y. Influence of Lung Cancer Model Characteristics on Tumor Targeting Behavior of Nanodrugs. J. Control. Release 2023, 354, 538–553. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Maeda, H.; Fang, J. Factors Affecting the Dynamics and Heterogeneity of the Epr Effect: Pathophysiological and Pathoanatomic Features, Drug Formulations and Physicochemical Factors. Expert. Opin. Drug Deliv. 2022, 19, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Subhan, M.A. Satya Siva Kishan Yalamarty, Nina Filipczak, Farzana Parveen, Vladimir P Torchilin, Recent Advances in Tumor Targeting Via Epr Effect for Cancer Treatment. J. Pers. Med. 2021, 11, 571. [Google Scholar] [CrossRef]
- Kim, J.; Cho, H.; Lim, D.-K.; Joo, M.K.; Kim, K. Perspectives for Improving the Tumor Targeting of Nanomedicine Via the Epr Effect in Clinical Tumors. Int. J. Mol. Sci. 2023, 24, 10082. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, M.; Shalaby, K.; Elkomy, M.H.; Alsaidan, O.A.; Gomaa, H.A.M.; Abdelgawad, M.A.; Mostafa, E.M. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers 2023, 15, 1123. [Google Scholar] [CrossRef]
- Sabir, F.; Qindeel, M.; Zeeshan, M.; Ain, Q.U.; Rahdar, A.; Barani, M.; González, E.; Aboudzadeh, M.A. Onco-Receptors Targeting in Lung Cancer Via Application of Surface-Modified and Hybrid Nanoparticles: A Cross-Disciplinary Review. Processes 2021, 9, 621. [Google Scholar] [CrossRef]
- Yu, M.; Mathew, A.; Liu, D.; Chen, Y.; Wu, J.; Zhang, Y.; Zhang, N. Microfluidics for Formulation and Scale-up Production of Nanoparticles for Biopharma Industry. In Microfluidics in Pharmaceutical Sciences: Formulation, Drug Delivery, Screening, and Diagnostics; Lamprou, D.A., Weaver, E., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 395–420. [Google Scholar]
- Worku, D.A.; Hewitt, V. The Role and Economics of Immunotherapy in Solid Tumour Management. J. Oncol. Pharm. Pract. 2020, 26, 2020–2024. [Google Scholar] [CrossRef]
- Cangut, B.; Akinlusi, R.; Mohseny, A.; Ghesani, N.; Ghesani, M. Evolving Paradigms in Lung Cancer: Latest Trends in Diagnosis, Management, and Radiopharmaceuticals. Semin. Nucl. Med. 2025, 55, 264–276. [Google Scholar] [CrossRef]
- Salaudeen, H.D.; Akinniranye, R.D. Precision Nanotechnology for Early Cancer Detection and Biomarker Identification. Int. J. Res. Publ. Rev. 2024, 5, 6313–6327. [Google Scholar] [CrossRef]
- Desai, N.; Rana, D.; Patel, M.; Bajwa, N.; Prasad, R.; Vora, L.K. Nanoparticle Therapeutics in Clinical Perspective: Classification, Marketed Products, and Regulatory Landscape. Small 2025, 21, 2502315. [Google Scholar] [CrossRef]
- Junyaprasert, V.B.; Thummarati, P. Innovative Design of Targeted Nanoparticles: Polymer–Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023, 15, 2216. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhai, J.; Hu, D.; Yang, R.; Wang, G.; Li, Y.; Liang, G. “Targeting Design” of Nanoparticles in Tumor Therapy. Pharmaceutics 2022, 14, 1919. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, J.; Eom, S.; Jun, H.; Lee, H.B.; Jeong, D.; Kang, S. Protein Nanoparticles Simultaneously Displaying Trail and Egfr-Binding Ligands Effectively Induce Apoptotic Cancer Cell Death and Overcome Egfr-Tki Resistance in Lung Cancer. ACS Appl. Mater. Interfaces 2025, 17, 25139–25151. [Google Scholar] [CrossRef] [PubMed]
- Nagime, P.V.; Singh, S.; Chidrawar, V.R.; Rajput, A.; Syukri, D.M.; Marwan, N.T.; Shafi, S. Moringa Oleifera: A Plethora of Bioactive Reservoirs with Tremendous Opportunity for Green Synthesis of Silver Nanoparticles Enabled with Multifaceted Applications. Nano-Struct. Nano-Objects 2024, 40, 101404. [Google Scholar] [CrossRef]
- Rakaee, M.; Tafavvoghi, M.; Ricciuti, B.; Alessi, J.V.; Cortellini, A.; Citarella, F.; Nibid, L.; Perrone, G.; Adib, E.; Fulgenzi, C.A.M.; et al. Deep Learning Model for Predicting Immunotherapy Response in Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2025, 11, 109–118. [Google Scholar] [CrossRef]
Therapy Aspect | Conventional Therapies | Novel Therapies | References |
---|---|---|---|
Primary treatment types |
|
| [40,43,44] |
Mechanism of action |
|
| [13] |
Response rates |
|
| [14] |
Adverse reactions |
|
| [45,46,47,48] |
Personalization level |
|
| [49,50,51,52] |
5-Year survival benefit |
|
| [52,53,54,55] |
Aspect | Key Findings | References |
---|---|---|
Targeted imaging | Folic acid-conjugated chitosan nanoparticles (fCNA) significantly enhanced protoporphyrin IX (PpIX) accumulation in colorectal cancer cells (HT29, Caco-2) via folate receptor-mediated endocytosis, improving tumor detection. | [72] |
Chemotherapy | Mitochondria-targeted green AuNPs increased reactive oxygen species (ROS) 4.2-fold in H460 cells and reduced tumor volume by 72% in xenografts (5 mg/kg dose). | [73] |
siRNA delivery | Chitosan-coated AuNPs delivered EGFR siRNA to A549 xenografts, reducing tumor growth by 65% (0.5 mg/kg, q3d × 4 weeks). | [74] |
Combo therapy | Fol-LSMO NPs enable targeted hyperthermia with DOX release in breast cancer. Triggers apoptosis and autophagy via caspase/LC3-II pathways. Folate conjugation enhances uptake, reduces off-target effects. | [75] |
Category | Examples | Advantages | Limitations | References |
---|---|---|---|---|
Polymers | PLGA | Biodegradable and biocompatible; FDA-approved; tunable degradation; suitable for controlled and sustained release; compatible with multiple drugs | Acidic degradation products may cause local irritation; relatively slow drug release for hydrophilic drugs | [90] |
PEG | Improves hydrophilicity; prolongs circulation time by reducing opsonization; reduces immunogenicity; enhances stability | Can cause “accelerated blood clearance” on repeated dosing; non-biodegradable (requires clearance); potential hypersensitivity reactions | [91] | |
Chitosan | Natural, biocompatible and biodegradable; mucoadhesive; enhances permeation; pH-sensitive release; modifiable for active targeting | Poor solubility at neutral pH; batch-to-batch variability; limited mechanical strength | [92] | |
Alginate | Biocompatible; gel-forming; modifiable; good for protein/peptide encapsulation; supports multiple routes | Low mechanical stability without crosslinking; limited cell uptake without modifications | [93] | |
Gelatin | Biodegradable; non-toxic; versatile for surface modification; good for protein drugs | Enzymatic degradation may be too rapid; requires crosslinking for stability | [94] | |
PCL | Slow degradation—good for long-term release; high drug loading for hydrophobic drugs | Not ideal for rapid drug release; long-term persistence may cause accumulation | [95] | |
Targeting approach | Passive targeting (EPR effect) | Simple design; no need for complex ligand chemistry; good for solid tumors with leaky vasculature | Tumor heterogeneity limits EPR efficiency; significant off-target uptake (liver/spleen) | [96] |
Active targeting (ligands, antibodies, peptides) | Higher tumor specificity; receptor-mediated uptake; can bypass some resistance mechanisms | Requires detailed knowledge of tumor receptor profile; ligand conjugation adds complexity and cost; receptor heterogeneity may reduce efficacy | [97] | |
Delivery Routes | Intravenous (IV) | Enables systemic delivery; suitable for metastatic disease; can exploit both passive and active targeting | Risk of systemic toxicity; opsonization and clearance by MPS | [98] |
Pulmonary (inhalation) | Localized delivery to lung tumors; bypasses first-pass metabolism; reduces systemic toxicity | Formulation stability in aerosol form; variability in lung deposition; mucociliary clearance | [99] | |
Oral | Patient compliance; potential for chronic therapy | Poor bioavailability for many drugs; degradation in GI tract; first-pass metabolism | [91] | |
Intratumoral | High local concentration; minimal systemic exposure | Invasive; limited use for inaccessible tumors | [97] |
Imaging Modality | Key Advantages and Limitations in Lung Cancer Theranostics | References |
---|---|---|
MRI | High soft-tissue contrast, non-ionizing; sensitive tracking of NP biodistribution; lower molecular sensitivity; gadolinium safety concerns. | [102] |
CT | Excellent spatial resolution, widely available; uses ionizing radiation, low molecular sensitivity, possible metal-agent toxicity. | [103] |
PET | Highest molecular sensitivity, quantitative biodistribution, detects metastases; short isotope half-lives, radiation exposure, complex radiochemistry. | [104] |
SPECT | Good sensitivity, longer-lived isotopes, whole-body tracking; lower spatial resolution than PET, regulatory hurdles. | [94] |
Optical (NIR, NIR-II) | High sensitivity, real-time surgical guidance; limited tissue penetration, autofluorescence, mainly preclinical use. | [105] |
Ultrasound/Photoacoustic | Real-time, no ionizing radiation, depth improvement with PA; lung air limits access, microbubble stability issues. | [106] |
Type of Polymeric NPs | Drug Encapsulated/Cell Line Used | In Vitro/In Vivo Studies | Outcome | References |
---|---|---|---|---|
Chitosan | Carbamazepine | In vivo | Enhanced brain targeting and therapeutic efficacy at 219 nm and 80% drug entrapment | [92] |
Glycol-modified chitosan | Hepatitis B vaccines | In vivo | Enhanced mucosal delivery | [108] |
Chitosan | DOX | In vivo | Enhanced intestinal absorption | [137] |
Chitosan | Paclitaxel—MDA-MB-231 breast cancer cells | Both | Enhanced anticancer activity compared to free paclitaxel in MDA-MB-231 breast cancer cells | [137] |
Chitosan | DOX, siRNA, IGF-1R—A549 lung cancer cell line | In vitro | Improve anticancer efficacy in A549 lung cancer cell line | [110] |
Chitosan | Berberine—urethane-induced lung cancer in male albino mice | In vivo | Prevented tumor angiogenesis by reducing levels of serum VEGFR2 and lung HIF-1 gene expression, oral administration and eco-friendly alternative | [112] |
Gelatin | Nivolumab—A549 lung carcinoma cell | In vitro | 87.88% inhibition rate, increased potency | [122] |
PEGylated gelatin | Paclitaxel NSCLC | Both | Highest antiproliferative effect, 100% survival, maximum tumor inhibition | [94] |
Gelatin | Concanavalin A—A549 lung cancer cells | In vitro | Increased apoptosis by boosted drug release | [123] |
Gelatin | APS7 and cisplatin—A549 cells | In vitro | Improved cisplatin efficacy by blocking nicotine-induced calcium influx | [124] |
Polycaprolactone | DOX—E0771 breast cancer cells and lung models | Both | Reduced DOX cardiotoxicity and improved anticancer activity | [131] |
Poly(amidoamine) | Docetaxel (DTX)-alendronate (ALN)—A549 cells and mouse model | Both | Enhanced DTX anticancer activity Suppressed bone resorption, pain response, and growth of bone metastases | [135] |
Clinical Trial ID/Registration No. | Polymeric NP Type/Formulation | Drug/Therapeutic Agent | Study Phase | Study Design | Target Population | Primary Outcome Measures | Status/Sponsor | Reference |
---|---|---|---|---|---|---|---|---|
NCT00729612 | Albumin based NP | Paclitaxel | Phase II | Interventional | NSCLC, Advanced Stage | PFS, OS | Completed/Greg Otterson, Ohio State University Comprehensive Cancer Center | [139] |
NCT02240238 | Cisplatin NP NC 6004 | Gemcitabine | Phase I and II | Interventional | NSCLC, solid tumors | Safety, MTD | Completed/Nano Carrier Co., Ltd. | [140] |
NCT00073723 | Protein formulation | ABI-007, Protein formulation of paclitaxel | Phase I and II | Interventional | NSCLC | Safety, MTD | Completed/Celgene Corporation | [141] |
NCT04314895 | NanoPac (sterile nanoparticulate) intratumoral injection | Paclitaxel | Phase II | Interventional | NSCLC, SCLC, Neoplasm of lung | Safety, MTD | Completed/NanOlogy, LLC. | [140] |
NCT02740985 | Capsule nanoparticle suspension | Durvalumab AZD4635 | Phase Ib | Interventional | NSCLC Advanced solid malignancies | PFS, ORR, Safety | Completed/AstraZeneca | [142] |
Factor | Influence on EPR Effect | Impact on Clinical Translation | References |
---|---|---|---|
Tumor type | Highly angiogenic tumors (e.g., liver, some breast cancers) exhibit greater vascular permeability; desmoplastic tumors (e.g., pancreatic, some lung tumors) have restricted NP extravasation. | Nanomedicine accumulation varies widely; EPR-based delivery more effective in leaky tumors, less so in fibrotic or poorly vascularized tumors. | [147] |
Tumor size | Small, rapidly growing tumors have immature, leaky vasculature; large tumors may have hypoxic or necrotic cores with poor perfusion. | Drug penetration is reduced in large tumors; dosing strategies may need to be tailored to tumor growth stage. | [148] |
Tumor location | Location determines local blood flow and vessel permeability; tumors in highly vascularized organs differ from those in low-perfusion or protected areas (e.g., brain). | EPR effect is less pronounced in tumors with restricted access (e.g., behind the BBB), limiting passive targeting efficacy. | [149] |
Tumor microenvironment | Dense extracellular matrix, high interstitial fluid pressure, and stromal barriers reduce NP penetration. | May necessitate combination strategies (e.g., stromal modulation, vascular normalization) to enhance delivery. | [147] |
Patient-specific physiology | Variations in vascular density, permeability, and immune response affect NP clearance and distribution. | Personalized nanomedicine design and patient stratification may improve therapeutic predictability. | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapoor, D.U.; Gandhi, S.M.; Swarn, S.; Lal, B.; Prajapati, B.G.; Khondee, S.; Mangmool, S.; Singh, S.; Chittasupho, C. Polymeric Nanoparticles for Targeted Lung Cancer Treatment: Review and Perspectives. Pharmaceutics 2025, 17, 1091. https://doi.org/10.3390/pharmaceutics17091091
Kapoor DU, Gandhi SM, Swarn S, Lal B, Prajapati BG, Khondee S, Mangmool S, Singh S, Chittasupho C. Polymeric Nanoparticles for Targeted Lung Cancer Treatment: Review and Perspectives. Pharmaceutics. 2025; 17(9):1091. https://doi.org/10.3390/pharmaceutics17091091
Chicago/Turabian StyleKapoor, Devesh U., Sonam M. Gandhi, Sambhavi Swarn, Basant Lal, Bhupendra G. Prajapati, Supang Khondee, Supachoke Mangmool, Sudarshan Singh, and Chuda Chittasupho. 2025. "Polymeric Nanoparticles for Targeted Lung Cancer Treatment: Review and Perspectives" Pharmaceutics 17, no. 9: 1091. https://doi.org/10.3390/pharmaceutics17091091
APA StyleKapoor, D. U., Gandhi, S. M., Swarn, S., Lal, B., Prajapati, B. G., Khondee, S., Mangmool, S., Singh, S., & Chittasupho, C. (2025). Polymeric Nanoparticles for Targeted Lung Cancer Treatment: Review and Perspectives. Pharmaceutics, 17(9), 1091. https://doi.org/10.3390/pharmaceutics17091091