Insights into the Structural Patterns in Human Glioblastoma Cell Line SF268 Activity and ADMET Prediction of Curcumin Derivatives
Abstract
1. Introduction
2. Materials and Methods
2.1. Purification of Selected Curcumin Derivatives
2.1.1. (1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2-methoxy-4,1-phenylene) diacetate (4)
2.1.2. Cyclopentyl (4-((1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl) succinate (5)
2.1.3. Allyl (4-(1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl) succinate (11)
2.1.4. Diallyl O,O′-(((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2-methoxy-4,1-phenylene)) disuccinate (12)
2.1.5. Benzyl (4-((1E,3Z,6E)-3-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-5-oxohepta-1,3,6-trien-1-yl)-2-methoxyphenyl) succinate (13)
2.1.6. Dibenzyl O,O′-(((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2-methoxy-4,1-phenylene)) disuccinate (14)
2.2. Cell Culture
2.3. Mammalian Cytotoxicity
2.4. SF268 Cell Line Citotoxicity
2.5. Mechanism of Action
2.5.1. In Vitro Tubulin Polymerization
2.5.2. Immunofluorescence Staining of Microtubules in SF268 Cells
- A (vehicle control): 0.1% DMSO
- B (apoptosis control): 10 µM staurosporine
- C–F (test compounds): curcumin (10 µg/mL), compound 2 (10 µg/mL), compound 6 (10 µg/mL), and compound 11 (10 µg/mL).
2.5.3. Immunofluorescence Staining of BAX in SF268 Cells
- A (vehicle control): 0.1% DMSO
- B (apoptosis control): 10 µM staurosporine
- C–F (test compounds): curcumin (10 µg/mL), compound 2 (10 µg/mL), compound 6 (10 µg/mL), and compound 11 (10 µg/mL).
2.5.4. Mitochondrial Membrane Potential (Δψ) Measurements
2.5.5. Intracellular Reactive Oxygen Species Production
2.6. Prediction of Physicochemical and ADMET Properties and Pharmacokinetic Parameters
2.6.1. Prediction of Physicochemical Properties
2.6.2. Prediction of ADMET Properties and Pharmacokinetic Parameters
2.7. Statistical Analysis
3. Results
3.1. Curcumin Derivatives
3.2. SF268 Cell Line Cytotoxic Activities of the Curcumin Derivatives In Vitro
3.3. Mechanism of Action Studies
3.3.1. Effects of Curcumin on SF268 Cell Microtubules
3.3.2. Curcumin Derivatives Affect Tubulin Polymerization
3.3.3. Curcumin Derivative Treatment Affects the Mitochondrial Membrane Potential
3.3.4. Curcumin Derivatives Do Not Result in Reactive Oxygen Species (ROS) Production
3.3.5. Treatment with Curcumin Derivatives Increases Active Bax Levels in SF268 Cancer Cells
3.4. Prediction of Physicochemical and ADMET Properties and Pharmacokinetic Parameters
3.4.1. Prediction of Physicochemical Properties
3.4.2. Prediction of ADMET Properties and Pharmacokinetic Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiri, S.; Ryba, T. Cancer, metastasis, and the epigenome. Mol. Cancer 2024, 23, 154. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Kehm, R.D.; Yang, W.; Tehranifar, P.; Terry, M.B. 40 Years of Change in Age- and Stage-Specific Cancer Incidence Rates in US Women and Men. JNCI Cancer Spectr. 2019, 3, pkz038. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Siegel, R.L.; Rosenberg, P.S.; Jemal, A. Emerging cancer trends among young adults in the USA: Analysis of a population-based cancer registry. Lancet Public Health 2019, 4, e137–e147. [Google Scholar] [CrossRef] [PubMed]
- Weir, H.K.; Thompson, T.D.; Stewart, S.L.; White, M.C. Cancer Incidence Projections in the United States Between 2015 and 2050. Prev. Chronic Dis. 2022, 18, E59. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Francis, S.S.; Barnholtz-Sloan, J.S. Epidemiology of Brain and Other CNS Tumors. Curr. Neurol. Neurosci. Rep. 2021, 21, 68. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.K.; Kwon, H.J.; Kubica, P.A.; Huff, W.X.; O’Regan, R.; Dey, M. Brain Metastases: An Update on the Multi-disciplinary Approach of Clinical Management. Neurochirurgie 2022, 68, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R.; Odia, Y.; Khosla, A.A.; Ahluwalia, M.S. Key Clinical Principles in the Management of Glioblastoma. JCO Oncol. Pract. 2023, 19, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Lah, T.T.; Novak, M.; Breznik, B. Brain malignancies: Glioblastoma and brain metastases. Semin. Cancer Biol. 2020, 60, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Ser, M.H.; Webb, M.J.; Sener, U.; Campian, J.L. Immune Checkpoint Inhibitors and Glioblastoma: A Review on Current State and Future Directions. J. Immunother. Precis. Oncol. 2024, 7, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Brahm, C.G.; van Linde, M.E.; Enting, R.H.; Schuur, M.; Otten, R.H.J.; Heymans, M.W.; Verheul, H.M.W.; Walenkamp, A.M.E. The Current Status of Immune Checkpoint Inhibitors in Neuro-Oncology: A Systematic Review. Cancers 2020, 12, 586. [Google Scholar] [CrossRef] [PubMed]
- Gedeon, P.C.; Champion, C.D.; Rhodin, K.E.; Woroniecka, K.; Kemeny, H.R.; Bramall, A.N.; Bernstock, J.D.; Choi, B.D.; Sampson, J.H. Checkpoint inhibitor immunotherapy for glioblastoma: Current progress, challenges and future outlook. Expert Rev. Clin. Pharmacol. 2020, 13, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Z.; Dai, W.; Liao, K.; Sun, Q.; Chen, D.; Pan, X.; Feng, L.; Ding, Y.; Wei, S. The Development of Immunotherapy for the Treatment of Recurrent Glioblastoma. Cancers 2023, 15, 4308. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; et al. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med. 2019, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Goel, A. Curcumin and Colorectal Cancer: An Update and Current Perspective On This Natural Medicine. Semin. Cancer Biol. 2022, 80, 73–86. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, Y.; Zhang, M. The beneficial effects of curcumin on aging and age-related diseases: From oxidative stress to antioxidant mechanisms, brain health and apoptosis. Front. Aging Neurosci. 2025, 17, 1533963. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Oliinyk, P.; Khavrona, O.; Lozynska, I.; Lysiuk, R.; Darmohray, R.; Antonyak, H.; Dub, N.; Zayachuk, V.; Antoniv, O.; et al. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol. Neurobiol. 2025, 62, 1225–1246. [Google Scholar] [CrossRef] [PubMed]
- Azzini, E.; Peña-Corona, S.I.; Hernández-Parra, H.; Chandran, D.; Saleena, L.A.K.; Sawikr, Y.; Peluso, I.; Dhumal, S.; Kumar, M.; Leyva-Gómez, G.; et al. Neuroprotective and anti-inflammatory effects of curcumin in Alzheimer’s disease: Targeting neuroinflammation strategies. Phytother. Res. 2024, 38, 3169–3189. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, 595, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Kyritsis, A.P.; Galani, V.; Lazari, D.; Sioka, C.; Voulgaris, S.; Alexiou, G.A. The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway. Cancers 2024, 16, 1554. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.C.; Mittal, S. Antitumor Activity of Curcumin in Glioblastoma. Int. J. Mol. Sci. 2020, 21, 9435. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Huang, S.Y.; Zhou, D.D.; Xiong, R.G.; Zhao, C.N.; Fang, A.P.; Zhang, Y.J.; Li, H.B.; Zhu, H.L. Effects and Mechanisms of Curcumin for the Prevention and Management of Cancers: An Updated Review. Antioxidants 2022, 11, 1481. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Liang, A.; Rangel, A.; Gyengesi, E.; Niedermayer, G.; Münch, G. High bioavailability curcumin: An anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch. Toxicol. 2017, 91, 1623–1634. [Google Scholar] [CrossRef] [PubMed]
- González, Y.; Mojica-Flores, R.; Moreno-Labrador, D.; Cubilla-Rios, L.; Rao, K.S.J.; Fernández, P.L.; Larionov, O.V.; Lakey-Beitia, J. Polyphenols with Anti-Inflammatory Properties: Synthesis and Biological Activity of Novel Curcumin Derivatives. Int. J. Mol. Sci. 2023, 24, 3691. [Google Scholar] [CrossRef] [PubMed]
- Gordon, O.N.; Luis, P.B.; Sintim, H.O.; Schneider, C. Unraveling Curcumin Degradation: Autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J. Biol. Chem. 2015, 290, 4817–4828. [Google Scholar] [CrossRef] [PubMed]
- Farideh, M.; Ashrafi, K.M.R.; Mostafa, R.T.; Reza, K. Protective effects of accompanying proteins on light- and water-mediated degradation of Curcumin. J. Paramed. Sci. 2014, 5, 50–57. [Google Scholar]
- Shen, L.; Ji, H.F. The pharmacology of curcumin: Is it the degradation products? Trends Mol. Med. 2012, 18, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Ji, H.F. Contribution of degradation products to the anticancer activity of curcumin. Clin. Cancer Res. 2009, 15, 7108. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, P.; Coppola, L.; Salvatore, M. Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers 2019, 11, 1098. [Google Scholar] [CrossRef] [PubMed]
- Rutka, J.T.; Giblin, J.R.; Dougherty, D.Y.; Liu, H.C.; McCulloch, J.R.; Bell, C.W.; Stern, R.S.; Wilson, C.B.; Rosenblum, M.L. Establishment and characterization of five cell lines derived from human malignant gliomas. Acta Neuropathol. 1987, 75, 92–103. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Cell Summary for Cell Line SF268, SF268. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/cell/4148 (accessed on 20 September 2024).
- De Carlo, A.; Ronchi, D.; Piastra, M.; Tosca, E.M.; Magni, P. Predicting ADMET Properties from Molecule SMILE: A Bottom-Up Approach Using Attention-Based Graph Neural Networks. Pharmaceutics 2024, 16, 776. [Google Scholar] [CrossRef] [PubMed]
- Sripriya, N.; Kumar, M.R.; Karthick, N.A.; Bhuvaneswari, S.; Prakash, N.K.U. In silico evaluation of multispecies toxicity of natural compounds. Drug Chem. Toxicol. 2021, 44, 480–486. [Google Scholar] [CrossRef]
- Lakey-Beitia, J.; González, Y.; Doens, D.; Stephens, D.E.; Santamaría, R.; Murillo, E.; Gutiérrez, M.; Fernández, P.L.; Rao, K.S.; Larionov, O.V.; et al. Assessment of Novel Curcumin Derivatives as Potent Inhibitors of Inflammation and Amyloid-β Aggregation in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 60, S59–S68. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lopez, D.; Cherigo, L.; De Sedas, A.; Spadafora, C.; Martinez-Luis, S. Evaluation of antiparasitic, anticancer, antimicrobial and hypoglycemic properties of organic extracts from Panamanian mangrove plants. Asian Pac. J. Trop. Med. 2018, 11, 32–39. [Google Scholar] [CrossRef]
- Jeyaraman, P.; Samuel, M.; Johnson, A.; Raman, N. Synthesis, characterization, ADMET, in vitro and in vivo studies of mixed ligand metal complexes from a curcumin Schiff base and lawsone. Nucleosides Nucleotides Nucleic Acids 2021, 40, 242–263. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Wang, X.I.; Keenan, S.M.; Andaya, C.; Zhang, Q.; Peng, Y.; Welsh, W.J. Novel microtubule polymerization inhibitor with potent anti-proliferative and anti-tumor activity. Cancer Res. 2009, 69, 1910–1915. [Google Scholar] [CrossRef] [PubMed]
- Kuzminska, J.; Szyk, P.; Mlynarczyk, D.T.; Bakun, P.; Muszalska-Kolos, I.; Dettlaff, K.; Sobczak, A.; Goslinski, T.; Jelinska, A. Curcumin Derivatives in Medicinal Chemistry: Potential Applications in Cancer Treatment. Molecules 2024, 29, 5321. [Google Scholar] [CrossRef] [PubMed]
- Smaili, S.S.; Hsu, Y.T.; Sanders, K.M.; Russell, J.T.; Youle, R.J. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential. Cell Death Differ. 2001, 8, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Trisciuoglio, D.; Tupone, M.G.; Desideri, M.; Di Martile, M.; Gabellini, C.; Buglioni, S.; Pallocca, M.; Alessandrini, G.; D’aguanno, S.; Del Bufalo, D. BCL-XL overexpression promotes tumor progression-associated properties. Cell Death Dis. 2017, 8, 3216. [Google Scholar] [CrossRef] [PubMed]
- Koessinger, A.L.; Cloix, C.; Koessinger, D.; Heiland, D.H.; Bock, F.J.; Strathdee, K.; Kinch, K.; Martínez-Escardó, L.; Paul, N.R.; Nixon, C.; et al. Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death Differ. 2022, 29, 2089–2104. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, S.; Das, L.; Kapoor, N.; Das, A.; Dwivedi, V.; Poddar, A.; Chakraborti, G.; Janik, M.; Basu, G.; Panda, D.; et al. Curcumin recognizes a unique binding site of tubulin. J. Med. Chem. 2011, 54, 6183–6196. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Growth Screening (%RG) | IC50 SF268 (µg/mL) | IC50 VERO (µg/mL) | Selectivity Index (SI) |
---|---|---|---|---|
1 | 15.92 | 6.3 | 15.9 | 2.52 |
2 | 17.09 | 3.966 | 11.9 | 3 |
3 | 32.94 | 0.88 | 13.2 | 13.24 |
4 | 20.02 | 2.45 | 42.1 | 17.16 |
5 | 50.81 | N/A | 12.6 | N/A |
6 | 22.79 | 0.8332 | 12.9 | 15.45 |
7 | 50.92 | N/A | N/A | N/A |
8 | 55.22 | N/A | N/A | N/A |
9 | 45.56 | N/A | N/A | N/A |
10 | 51.98 | N/A | N/A | N/A |
11 | 27.88 | 0.59 | 11.9 | 20.17 |
12 | 49.2 | N/A | N/A | N/A |
13 | 49.88 | N/A | N/A | N/A |
14 | 85.07 | N/A | N/A | N/A |
15 | 47.93 | N/A | N/A | N/A |
16 | 57.17 | N/A | N/A | N/A |
17 | 46.78 | N/A | N/A | N/A |
18 | 62.91 | N/A | N/A | N/A |
19 | 40.04 | 1.109 | 15.2 | 13.71 |
20 | 62.95 | N/A | N/A | N/A |
21 | 42.95 | 36.4 | 46 | 1.26 |
22 | 43.95 | 58.87 | 72.8 | 1.19 |
Physicochemical Property | Curcumin and Derivatives | |||||||
---|---|---|---|---|---|---|---|---|
1 * | 2 | 3 | 4 | 6 | 11 | 19 | ||
Formula ** | C21H20O6 | C28H26O6 | C23H22O7 | C25H24O8 | C26H26O9 | C28H28O9 | C38H32O9 | |
Water solubility (mg/mL) | 0.04 | 4 × 10−3 | 3 × 10−3 | 5 × 10−3 | 5 × 10−3 | 3 × 10−3 | 1.13 × 10−5 | |
Diffusion coefficient (cm2/s × 105) | 0.66 | 0.57 | 0.62 | 0.59 | 0.57 | 0.55 | 0.49 | |
Log BB | −0.82 | −0.83 | −0.89 | −1.12 | −1.10 | −1.23 | −1.26 | |
Lipinski’s Rule | MW (g/mol) ** | 368.38 | 458.51 | 410.42 | 452.46 | 482.49 | 508.52 | 632.67 |
LogP | 3.51 | 5.27 | 3.93 | 3.79 | 3.70 | 4.02 | 7.06 | |
HAB ** | 6 | 6 | 7 | 8 | 9 | 9 | 9 | |
HDB ** | 3 | 2 | 2 | 1 | 2 | 2 | 2 | |
Complies with Lipinski’s Rule | Yes | Yes | Yes | Yes | Yes | No | No | |
Veber’s Rule | TPSA (Å2) ** | 96.22 | 85.22 | 102.29 | 108.36 | 128.59 | 128.59 | 128.59 |
RB *** | 7 | 10 | 9 | 11 | 13 | 15 | 14 | |
Complies with Veber’s Rule | Yes | Yes | Yes | No | No | No | No |
ADMET Property | Curcumin and Its Derivatives | |||||||
---|---|---|---|---|---|---|---|---|
1 * | 2 | 3 | 4 | 6 | 11 | 19 | ||
Absorption (A) | Fa% | 99.95% | 59.74% | 57.04% | 73.50% | 68.99% | 53.70% | 0.61% |
Fb% | 92.39% | 47.92% | 51.08% | 64.92% | 58.54% | 42.67% | 0.31% | |
Distribution (D) | FU% | 4.55% | 3.00% | 4.43% | 4.95% | 4.79% | 4.29% | 2.55% |
Effect. human jejunal perm. (cm/s × 104) | 6.55 | 5.70 | 5.16 | 4.71 | 3.23 | 2.86 | 2.45 | |
Skin perm. (cm/s × 107) | 8.82 | 25.80 | 16.35 | 11.72 | 20.17 | 31.82 | 72.33 | |
BBB filter | Low (97%) | Low (97%) | Low (90%) | Low (97%) | Low (97%) | Low (79%) | Low (90%) | |
hERG filter | No | No | No | No | No | No | No | |
P-glycoprotein inhib. | Yes (58%) | Yes (83%) | Yes (68%) | Yes (76%) | Yes (62%) | Yes (64%) | Yes (88%) | |
P-glycoprotein subst. | Yes (99%) | Yes (99%) | Yes (99%) | Yes (99%) | Yes (99%) | Yes (99%) | Yes (99%) | |
OATP1B1 inhib. | No (50%) | Yes (84%) | Yes (98%) | Yes (98%) | Yes (98%) | Yes (98%) | Yes (98%) | |
BCRP inhib. | Yes (98%) | Yes (98%) | Yes (98%) | Yes (98%) | Yes (89%) | Yes (84%) | Yes (89%) | |
BCRP subst. | Yes (95%) | Yes (64%) | Yes (95%) | Yes (84%) | Yes (95%) | Yes (95%) | Yes (53%) | |
Metabolism (M) | CYP3A4 subst. | No (54%) | No (77%) | No (33%) | Yes (70%) | No (65%) | No (66%) | Yes (73%) |
CYP3A4 inhib. | No (66%) | Yes (51%) | No (72%) | No (74%) | Yes (89%) | Yes (44%) | Yes | |
CYP2D6 subst. | No (72%) | No (60%) | No (77%) | No (77%) | No (85%) | No (77%) | No (81%) | |
CYP2D6 inhib. | No (84%) | No (63%) | No (84%) | No (80%) | No (84%) | No (56%) | Yes (42%) | |
CYP1A2 inhib. | Yes (95%) | Yes (95%) | Yes (95%) | Yes (95%) | Yes (95%) | Yes (95%) | Yes (95%) | |
CYP2C9 inhib. | No (69%) | No (61%) | Yes (34%) | No (62%) | No (67%) | No | No | |
CYP2C19 inhib. | No (99%) | No (99%) | No (99%) | No (99%) | No (99%) | No (99%) | No (99%) |
ADMET Property | Curcumin and Its Derivatives | |||||||
---|---|---|---|---|---|---|---|---|
1 * | 2 | 3 | 4 | 6 | 11 | 19 | ||
Excretion (E) | OCT2 inhib. | Yes | Yes (50%) | Yes | Yes | Yes | Yes | Yes |
OCT2 subst. | No (93%) | No (84%) | No (93%) | No (93%) | No (91%) | No (82%) | No | |
Toxicity (T) | ORAT LD50 | 1439.98 mg/kg | 1298.04 mg/kg | 1227. 59 mg/kg | 1727.98 mg/kg | 1801.93 mg/kg | 1143.83 mg/kg | 360.75 mg/kg |
ORCT | 494.67 mg/kg/day | 237.63 mg/kg/day | 360.51 mg/kg/day | 187.56 mg/kg/day | 205.83 mg/kg/day | 215.78 mg/kg/day | 45.13 mg/kg/day | |
Max RTD | Above_3.16 (59%) | Above_3.16 (62%) | Above_3.16 (59%) | Above_3.16 (89%) | Above_3.16 (65%) | Below_3.16 (61%) | Below_3.16 (59%) | |
BDG | No (95%) | No (95%) | No (95%) | No (95%) | No (83%) | No (83%) | No (95%) | |
Ames Toxicity | Positive MUT m97 + 1537 (21%) | Negative | Positive MUT m97 + 1537 (21%) | Negative | Negative | Negative | Negative | |
T. pyriformis Toxicity | 0.99 mmol/L | 1.69 mmol/L | 0.97 mmol/L | 0.91 mmol/L | 0.49 mmol/L | 0.48 mmol/L | 1.26 mmol/L | |
MT | 0.07 mg/L | 9 × 10−3 mg/L | 0.04 mg/L | 0.01 mg/L | 0.01 mg/L | 4 × 10−3 mg/L | 1.98 × 10−4 mg/L | |
D. magna Toxicity | 11.47 mg/L | 0.23 mg/L | 4.04 mg/L | 1.20 mg/L | 1.23 mg/L | 0.24 mg/L | 0.04 mg/L | |
PhL test | Nontoxic (99%) | Nontoxic (99%) | Nontoxic (99%) | Nontoxic (99%) | Nontoxic (99%) | Nontoxic (74%) | Nontoxic (84%) |
Pharmacokinetic Parameter | Curcumin and Its Derivatives | ||||||
---|---|---|---|---|---|---|---|
1 * | 2 | 3 | 4 | 6 | 11 | 19 | |
Fa% | 99.95 | 59.74 | 57.04 | 73.50 | 68.99 | 53.70 | 0.61 |
Fb% | 92.39 | 47.92 | 51.08 | 64.92 | 58.54 | 42.67 | 0.31 |
Cmax (ng/mL) | 60.45 | 5.33 | 12.01 | 18.98 | 14.47 | 6.67 | 0.01 |
Tmax (h) | 3.59 | 26.55 | 26.19 | 19.85 | 20.41 | 24.71 | 8.43 |
AUC (ng-h/mL) | 1660.82 | 361.24 | 708.38 | 845.07 | 598.84 | 328.07 | 1.00 |
Vd (L) | 137.42 | 645.27 | 274.78 | 224.91 | 240.96 | 346.57 | 1037.85 |
t1/2 (h) | 17.15 | 35.37 | 26.89 | 20.39 | 17.12 | 18.53 | 23.93 |
Cl (L/h) | 5.56 | 12.60 | 7.08 | 7.65 | 9.76 | 12.96 | 30.06 |
Compound | SI | Lipinski’s Rule | Veber | Fa% | Fb% | t1/2 | Water Sol. | Log BB | Ames Toxicity |
---|---|---|---|---|---|---|---|---|---|
11 | 20.17 | No | No | 53.70 | 42.67 | 18.53 | 3 × 10−3 | −1.24 | Neg |
4 | 17.16 | Yes | No | 73.50 | 64.92 | 20.39 | 5 × 10−3 | −1.13 | Neg |
6 | 15.45 | Yes | No | 68.99 | 58.54 | 17.12 | 5 × 10−3 | −1.11 | Neg |
19 | 13.71 | No | No | 0.61 | 0.31 | 18.53 | 1.13 × 10−5 | −1.27 | Neg |
3 | 13.24 | Yes | Yes | 57.04 | 51.08 | 26.89 | 3 × 10−3 | −0.90 | Pos |
2 | 3.0 | Yes | Yes | 59.74 | 47.92 | 35.37 | 4 × 10−3 | −0.84 | Neg |
1 | 2.52 | Yes | Yes | 99.95 | 92.39 | 17.00 | 0.05 | −0.82 | Pos |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronado, L.; Lakey-Beitia, J.; Pecchio, M.; Ng, M.G.; Correa, R.; Samudio-Ríos, G.; Cruz-Mora, J.; Fuentes, A.L.; Rao, K.S.J.; Spadafora, C. Insights into the Structural Patterns in Human Glioblastoma Cell Line SF268 Activity and ADMET Prediction of Curcumin Derivatives. Pharmaceutics 2025, 17, 968. https://doi.org/10.3390/pharmaceutics17080968
Coronado L, Lakey-Beitia J, Pecchio M, Ng MG, Correa R, Samudio-Ríos G, Cruz-Mora J, Fuentes AL, Rao KSJ, Spadafora C. Insights into the Structural Patterns in Human Glioblastoma Cell Line SF268 Activity and ADMET Prediction of Curcumin Derivatives. Pharmaceutics. 2025; 17(8):968. https://doi.org/10.3390/pharmaceutics17080968
Chicago/Turabian StyleCoronado, Lorena, Johant Lakey-Beitia, Marisin Pecchio, Michelle G. Ng, Ricardo Correa, Gerardo Samudio-Ríos, Jessica Cruz-Mora, Arelys L. Fuentes, K. S. Jagannatha Rao, and Carmenza Spadafora. 2025. "Insights into the Structural Patterns in Human Glioblastoma Cell Line SF268 Activity and ADMET Prediction of Curcumin Derivatives" Pharmaceutics 17, no. 8: 968. https://doi.org/10.3390/pharmaceutics17080968
APA StyleCoronado, L., Lakey-Beitia, J., Pecchio, M., Ng, M. G., Correa, R., Samudio-Ríos, G., Cruz-Mora, J., Fuentes, A. L., Rao, K. S. J., & Spadafora, C. (2025). Insights into the Structural Patterns in Human Glioblastoma Cell Line SF268 Activity and ADMET Prediction of Curcumin Derivatives. Pharmaceutics, 17(8), 968. https://doi.org/10.3390/pharmaceutics17080968