The Role of PEDF in the Eye, Bone, and Nervous and Immune Systems
Abstract
1. Introduction
2. PEDF and the Eye
3. PEDF and the Nervous System
4. PEDF and Bone
5. PEDF and the Immune System
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Zhang, S.S.-M.; Barnstable, C.J.; Tombran-Tink, J. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates. BMC Genom. 2006, 7, 248. [Google Scholar] [CrossRef]
- Lucas, A.; Yaron, J.R.; Zhang, L.; Ambadapadi, S. Overview of serpins and their roles in biological systems. Methods Mol. Biol. 2018, 1826, 1–7. [Google Scholar]
- Lyu, J.; Wang, S.; Chen, J.; Yang, X.; Gao, G.; Zhou, T. The comparison of pathogenic role and mechanism of Kallistatin and PEDF in tumors. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189273. [Google Scholar] [CrossRef]
- Capra, V.; Mirabelli-Badenier, M.; Stagnaro, M.; Rossi, A.; Tassano, E.; Gimelli, S.; Gimelli, G. Identification of a rare 17p13.3 duplication including the BHLHA9 and YWHAE genes in a family with developmental delay and behavioural problems. BMC Med. Genet. 2012, 13, 93. [Google Scholar] [CrossRef]
- Brook, N.; Brook, E.; Dharmarajan, A.; Chan, A.; Dass, C.R. Pigment epithelium-derived factor regulation of neuronal and stem cell fate. Exp. Cell Res. 2020, 389, 111891. [Google Scholar] [CrossRef]
- Sanrattana, W.; Maas, C.; De Maat, S. SERPINs-from trap to treatment. Front. Med. 2019, 6, 25. [Google Scholar] [CrossRef]
- Tombran-Tink, J. The neuroprotective and angiogenesis inhibitory serpin, PEDF: New insights into phylogeny, function, and signaling. Front. Biosci. 2005, 10, 2131–2149. [Google Scholar] [CrossRef] [PubMed]
- Famulla, S.; Lamers, D.; Hartwig, S.; Passlack, W.; Horrighs, A.; Cramer, A.; Lehr, S.; Sell, H.; Eckel, J. Pigment epithelium-derived factor (PEDF) is one of the most abundant proteins secreted by human adipocytes and induces insulin resistance and inflammatory signaling in muscle and fat cells. Int. J. Obes. 2011, 35, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Tombran-Tink, J.; Mazuruk, K.; Rodriguez, I.; Vis, D.C.-M. Organization, evolutionary conservation, expression and unusual Alu density of the human gene for pigment epithelium-derived factor, a unique neurotrophic serpin. Mol. Vis. 1996, 2, 11. [Google Scholar] [PubMed]
- Petersen, S.V.; Valnickova, Z.; Enghild, J.J. Pigment-epithelium-derived factor (PEDF) occurs at a physiologically relevant concentration in human blood: Purification and characterization. Biochem. J. 2003, 374, 199–206. [Google Scholar] [CrossRef]
- Wei, Y.; Elahy, M.; Friedhuber, A.M.; Wong, J.Y.; Hughes, J.D.; Doschak, M.R.; Dass, C.R. Triple-threat activity of PEDF in bone tumors: Tumor inhibition, tissue preservation and cardioprotection against doxorubicin. Bone 2019, 124, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, M.; Zhang, X.; Barnstable, C.J.; Li, X.; Tombran-Tink, J. Deletion of the PEDF gene leads to inflammation, photoreceptor loss and vascular disturbances in the retina. Exp. Eye Res. 2022, 222, 109171. [Google Scholar] [CrossRef]
- Michalczyk, E.R.; Chen, L.; Fine, D.; Zhao, Y.; Mascarinas, E.; Grippo, P.J.; DiPietro, L.A. Pigment epithelium-derived factor (PEDF) as a regulator of wound angiogenesis. Sci. Rep. 2018, 8, 11142. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Barnstable, C.J.; Zhang, X.; Li, X.; Zhao, S.; Tombran-Tink, J. Pigment epithelium-derived factor (PEDF) promotes survival and contraction of myoepithelial cells in lacrimal gland. Exp. Eye Res. 2025, 253, 110269. [Google Scholar] [CrossRef]
- Bahrami, B.; Shen, W.; Zhu, L.; Zhang, T.; Chang, A.; Gillies, M.C. Effects of VEGF inhibitors on human retinal pigment epithelium under high glucose and hypoxia. Clin. Exp. Ophthalmol. 2019, 47, 1074–1081. [Google Scholar] [CrossRef]
- Dawson, D.W.; Volpert, O.V.; Gillis, P.; Crawford, S.E.; Xu, H.; Benedict, W.; Bouck, N.P. Pigment epithelium-derived factor: A potent inhibitor of angiogenesis. Science 1999, 285, 245–248. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, H.; Zhao, H.; Liu, K.; Luo, D.; Chen, Y.; Chen, Y.; Yang, X.; Gu, Q.; Xu, X. Inhibition of JAK2/STAT3-mediated VEGF upregulation under high glucose conditions by PEDF through a mitochondrial ROS pathway in vitro. Investig. Ophthalmol. Vis. Sci. 2010, 51, 64–71. [Google Scholar] [CrossRef]
- Jablonski, M.M.; Iannaccone, A. Targeted disruption of Muller cell metabolism induces photoreceptor dysmorphogenesis. Glia 2000, 32, 192–204. [Google Scholar] [CrossRef]
- Imai, D.; Yoneya, S.; Gehlbach, P.L.; Wei, L.L.; Mori, K. Intraocular gene transfer of pigment epithelium-derived factor rescues photoreceptors from light-induced cell death. J. Cell. Physiol. 2005, 202, 570–578. [Google Scholar] [CrossRef]
- Michelis, G.; German, O.L.; Villasmil, R.; Soto, T.; Rotstein, N.P.; Politi, L.; Becerra, S.P. Pigment epithelium-derived factor (PEDF) and derived peptides promote survival and differentiation of photoreceptors and induce neurite-outgrowth in amacrine neurons. J. Neurochem. 2021, 159, 840–856. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Subramanian, P.; Shen, D.; Tuo, J.; Becerra, S.P.; Chan, C.-C. Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration. ASN Neuro 2013, 5, e00126. [Google Scholar] [CrossRef]
- Ogata, N.; Matsuoka, M.; Matsuyama, K.; Shima, C.; Tajika, A.; Nishiyama, T.; Wada, M.; Jo, N.; Higuchi, A.; Minamino, K.; et al. Plasma concentration of pigment epithelium-derived factor in patients with diabetic retinopathy. J. Clin. Endocrinol. Metab. 2007, 92, 1176–1179. [Google Scholar] [CrossRef]
- Al-Dwairi, R.; El-Elimat, T.; Aleshawi, A.; Al Sharie, A.; Al Beiruti, S.; Sharayah, A.K.; Allouh, M. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic and non-diabetic retinopathy: Associated factors and anatomical correlation. Int. J. Retin. Vitr. 2024, 10, 38. [Google Scholar] [CrossRef]
- Chu, X.; Yin, Y.M.; Chen, S.; Chen, F.M.; Liu, H.; Zhao, S. Suppressive Role of Pigment Epithelium-derived Factor in a Rat Model of Corneal Allograft Rejection. Transplantation 2024, 108, 2072–2083. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Tschulakow, A.V.; Karthikeyan, S.S.; Wang, K.; Kochanek, S.; Schraermeyer, U.; Julien-Schraermeyer, S. Reduction of pathological retinal neovascularization, vessel obliteration, and artery tortuosity by PEDF protein in an oxygen-induced ischemic retinopathy rat model. FASEB BioAdvances 2024, 6, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Bürger, S.; Meng, J.; Zwanzig, A.; Beck, M.; Pankonin, M.; Wiedemann, P.; Eichler, W.; Unterlauft, J.D. Pigment Epithelium-Derived Factor (PEDF) Receptors Are Involved in Survival of Retinal Neurons. Int. J. Mol. Sci. 2020, 22, 369. [Google Scholar] [CrossRef]
- Meng, J.; Yang, X.M.; Scheer, O.; Lange, J.; Müller, H.; Bürger, S.; Rothemund, S.; Younis, R.; Unterlauft, J.D.; Eichler, W. Pigment epithelium-derived factor binding to VEGFR-1 (Flt-1) increases the survival of retinal neurons. Investig. Ophthalmol. Vis. Sci. 2024, 65, 27. [Google Scholar] [CrossRef]
- Serra, S.C.; Costa, J.C.; Assunção-Silva, R.C.; Teixeira, F.G.; Silva, N.A.; Anjo, S.I.; Manadas, B.; Gimble, J.M.; Behie, L.A.; Salgado, A.J. Influence of passage number on the impact of the secretome of adipose tissue stem cells on neural survival, neurodifferentiation and axonal growth. Biochimie 2018, 155, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Höpfinger, A.; Berghoff, M.; Karrasch, T.; Schmid, A.; Schäffler, A. Systematic Quantification of Neurotrophic Adipokines RBP4, PEDF, and Clusterin in Human Cerebrospinal Fluid and Serum. J. Clin. Endocrinol. Metab. 2021, 106, e2239–e2250. [Google Scholar] [CrossRef]
- Batista, C.M.; Bianqui, L.L.T.; Zanon, B.B.; Ivo, M.M.A.A.; de Oliveira, G.P.; Maximino, J.R.; Chadi, G. Behavioral improvement and regulation of molecules related to neuroplasticity in ischemic rat spinal cord treated with PEDF. Neural Plast. 2014, 2014, 451639. [Google Scholar] [CrossRef]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Yang, Y.; Xu, B.; Qin, Y.; Zang, G.; Zhou, C.; Zheng, P.; Chen, J.; Cheng, K.; Chen, J.; et al. Pigment epithelium-derived factor alleviates depressive-like behaviors in mice by modulating adult hippocampal synaptic growth and Wnt pathway. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 98, 109792. [Google Scholar] [CrossRef]
- Jiang, M.; Gu, Y.F.; Cai, J.F.; Wang, A.; He, Y.; Feng, Y.L. MiR-186-5p Dysregulation Leads to Depression-like Behavior by De-repressing SERPINF1 in Hippocampus. Neuroscience 2021, 479, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Yu, H.; Chen, C.; Xu, X.; He, Y.; Wang, Y.; Tian, Y.; Wu, Z.; Lan, T.; Li, Y.; et al. Pigment epithelium-derived factor may induce antidepressant phenotypes in mice by the prefrontal cortex. Neurosci. Lett. 2022, 771, 136423. [Google Scholar] [CrossRef]
- Zhao, J.-B.; Pu, W.X.; Huo, N.; Ma, Y.Q. Protective effect of PEDF on ganglion cells after acute optic nerve injury in rats. Int. Eye Sci. 2017, 17, 846–849. [Google Scholar]
- Bascuas, T.; Zedira, H.; Kropp, M.; Harmening, N.; Asrih, M.; Prat-Souteyrand, C.; Tian, S.; Thumann, G. Human Retinal Pigment Epithelial Cells Overexpressing the Neuroprotective Proteins PEDF and GM-CSF to Treat Degeneration of the Neural Retina. Curr. Gene Ther. 2022, 22, 168–183. [Google Scholar] [CrossRef]
- Zhang, W.-M.; Zhang, Z.-R.; Zhang, Y.-G.; Gao, Y.-S. Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study. Iran. J. Med. Sci. 2016, 41, 382–390. [Google Scholar]
- Eichler, W.; Savković-Cvijić, H.; Bürger, S.; Beck, M.; Schmidt, M.; Wiedemann, P.; Reichenbach, A.; Unterlauft, J.D. Müller Cell-Derived PEDF Mediates Neuroprotection via STAT3 Activation. Cell. Physiol. Biochem. 2017, 44, 1411–1424. [Google Scholar] [CrossRef]
- Vigneswara, V.; Berry, M.; Logan, A.; Ahmed, Z. Pigment epithelium-derived factor is retinal ganglion cell neuroprotective and axogenic after optic nerve crush injury. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2624–2633. [Google Scholar] [CrossRef]
- Vigneswara, V.; Esmaeili, M.; Deer, L.; Berry, M.; Logan, A.; Ahmed, Z. Eye drop delivery of pigment epithelium-derived factor-34 promotes retinal ganglion cell neuroprotection and axon regeneration. Mol. Cell. Neurosci. 2015, 68, 212–221. [Google Scholar] [CrossRef]
- Comitato, A.; Subramanian, P.; Turchiano, G.; Montanari, M.; Becerra, S.P.; Marigo, V. Pigment epithelium-derived factor hinders photoreceptor cell death by reducing intracellular calcium in the degenerating retina. Cell Death Dis. 2018, 9, 560. [Google Scholar] [CrossRef]
- Stevens, A.R.; Ahmed, U.; Vigneswara, V.; Ahmed, Z. Pigment Epithelium-Derived Factor Promotes Axon Regeneration and Functional Recovery After Spinal Cord Injury. Mol. Neurobiol. 2019, 56, 7490–7507. [Google Scholar] [CrossRef]
- Hesdorffer, D.C.; Logroscino, G.; Cascino, G.; Annegers, J.F.; Hauser, W.A. Risk of unprovoked seizure after acute symptomatic seizure: Effect of status epilepticus. Ann. Neurol. 1998, 44, 908–912. [Google Scholar] [CrossRef]
- Sandoval, K.E.; Witt, K.A. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol. Dis. 2008, 32, 200–219. [Google Scholar] [CrossRef]
- Kim, J.-E.; Park, H.; Jeong, M.-J.; Kang, T.-C. Epigallocatechin-3-Gallate and PEDF 335 Peptide, 67LR Activators, Attenuate Vasogenic Edema, and Astroglial Degeneration Following Status Epilepticus. Antioxidants 2020, 9, 854. [Google Scholar] [CrossRef]
- He, J.; Cortina, M.S.; Kakazu, A.; Bazan, H.E.P. The PEDF Neuroprotective Domain Plus DHA Induces Corneal Nerve Regeneration After Experimental Surgery. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3505–3513. [Google Scholar] [CrossRef]
- Pham, T.L.; He, J.; Kakazu, A.H.; Jun, B.; Bazan, N.G.; Bazan, H.E.P. Defining a mechanistic link between pigment epithelium– derived factor, docosahexaenoic acid, and corneal nerve regeneration. J. Biol. Chem. 2017, 292, 18486–18499. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Li, C.; Liu, X.; Xu, M.; Zhang, X.; Li, X.; Barnstable, C.J.; Zhao, S.; Tombran-Tink, J. PEDF Gene Deletion Disrupts Corneal Innervation and Ocular Surface Function. Investig. Ophthalmol. Vis. Sci. 2021, 62, 18. [Google Scholar] [CrossRef] [PubMed]
- Bernardo-Colón, A.; Dong, L.; Abu-Asab, M.; Brush, R.S.; Agbaga, M.-P.; Becerra, S.P. Ablation of pigment epithelium-derived factor receptor (PEDF-R/Pnpla2) causes photoreceptor degeneration. J. Lipid Res. 2023, 64, 100358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Dai, M.; Neng, L.; Zhang, J.H.; Zhi, Z.; Fridberger, A.; Shi, X. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma—A salient feature of strial barrier associated hearing loss. FASEB J. 2013, 27, 3730–3740. [Google Scholar] [CrossRef]
- Zhao, Z.; Han, Z.; Shao, Y.; Naveena, K.; Yuan, J.; Zhou, N.; Wang, C.; Li, X.; Shi, X.; Jin, D.; et al. A OHCs-Targeted Strategy for PEDF Delivery in Noise-Induced Hearing Loss. Adv. Healthc. Mater. 2025, 14, 2403537. [Google Scholar] [CrossRef]
- Onger, M.E.; Altun, G.; Yildiran, A. Pigment epithelium-derived factor enhances peripheral nerve regeneration through modulating oxidative stress and stem cells. Anat. Rec. 2022, 306, 2621–2635. [Google Scholar] [CrossRef]
- Xi, L.; Tikhonovich, M.; Biesemeier, A.; Julien-Schraermeyer, S.; Schraermeyer, U.; Tschulakow, A.V.; Romero, F.J. Pigment Epithelium-Derived Factor Protects Retinal Neural Cells and Prevents Pathological Angiogenesis in an Ex Vivo Ischemia Model. Oxidative Med. Cell. Longev. 2022, 2022, 4199394. [Google Scholar] [CrossRef]
- Hernández-Pinto, A.; Polato, F.; Subramanian, P.; de la Rocha-Muñoz, A.; Vitale, S.; de la Rosa, E.J.; Becerra, S.P. PEDF peptides promote photoreceptor survival in rd10 retina models. Exp. Eye Res. 2019, 184, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Kolomeyer, A.M.; Sugino, I.K.; Zarbin, M.A. Characterization of the effects of retinal pigment epithelium-conditioned media on porcine and aged human retina. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 1515–1528. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Mandai, M.; Kamao, H.; Hashiguchi, T.; Shikamura, M.; Kawamata, S.; Sugita, S.; Takahashi, M. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice. Stem Cells 2015, 33, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- Winokur, P.N.; Subramanian, P.; Bullock, J.L.; Arocas, V.; Becerra, S.P. Comparison of two neurotrophic serpins reveals a small fragment with cell survival activity. Mol. Vis. 2017, 23, 372–384. [Google Scholar]
- Miyata, Y.; Matsumoto, K.; Kusano, S.; Kusakabe, Y.; Katsura, Y.; Oshitari, T.; Kosano, H. Regulation of Endothelium-Reticulum-Stress-Mediated Apoptotic Cell Death by a Polymethoxylated Flavone, Nobiletin, Through the Inhibition of Nuclear Translocation of Glyceraldehyde 3-Phosphate Dehydrogenase in Retinal Müller Cells. Cells 2021, 10, 669. [Google Scholar] [CrossRef]
- Di, G.; Zhao, X.; Qi, X.; Zhang, S.; Feng, L.; Shi, W.; Zhou, Q. VEGF-B promotes recovery of corneal innervations and trophic functions in diabetic mice. Sci. Rep. 2017, 7, 40582. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Y.; He, Q.; Ao, G.; Xu, N.; He, W.; Liu, X.; Huang, L.; Yu, Q.; Kanamaru, H.; et al. PEDF-34 attenuates neurological deficit and suppresses astrocyte-dependent neuroinflammation by modulating astrocyte polarization via 67LR/JNK/STAT1 signaling pathway after subarachnoid hemorrhage in rats. J. Neuroinflamm. 2024, 21, 178. [Google Scholar] [CrossRef]
- Cauble, M.; Yang, P.; Baumann, U.; Gebauer, J.M.; Orr, B.G.; Duong, L.T.; Holl, M.M.B. Microstructure dependent binding of pigment epithelium derived factor (PEDF) to type I collagen fibrils. J. Struct. Biol. 2017, 199, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, K.; Yoshida, T.; Maruno, T.; Oki, H.; Ohkubo, T.; Koide, T.; Kobayashi, Y. Spatiotemporal regulation of PEDF signaling by type I collagen remodeling. Proc. Natl. Acad. Sci. USA 2020, 117, 11450–11458. [Google Scholar] [CrossRef] [PubMed]
- Quan, G.M.; Ojaimi, J.; Nadesapillai, A.W.; Zhou, H.; Choong, P.F. Resistance of Epiphyseal Cartilage to Invasion by Osteosarcoma Is Likely to Be Due to Expression of Antiangiogenic Factors. Pathobiology 2002, 70, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Quan, G.M.Y.; Ojaimi, J.; Li, Y.; Kartsogiannis, V.; Zhou, H.; Choong, P.F.M. Localization of Pigment Epithelium-Derived Factor in Growing Mouse Bone. Calcif. Tissue Int. 2005, 76, 146–153. [Google Scholar] [CrossRef]
- Alcantara, M.B.; Nemazannikova, N.; Elahy, M.; Dass, C.R. Pigment epithelium-derived factor upregulates collagen I and downregulates matrix metalloproteinase 2 in osteosarcoma cells, and colocalises to collagen I and heat shock protein 47 in fetal and adult bone. J. Pharm. Pharmacol. 2014, 66, 1586–1592. [Google Scholar] [CrossRef]
- Elahy, M.; Doschak, M.R.; Hughes, J.D.; Baindur-Hudson, S.; Dass, C.R. Alginate bead-encapsulated PEDF induces ectopic bone formation in vivo in the absence of co-administered mesenchymal stem cells. Curr. Drug Targets 2018, 19, 467–478. [Google Scholar] [CrossRef]
- Jones, I.C.; Carnagarin, R.; Armstrong, J.; Lin, D.P.L.; Baxter-Holland, M.; Elahy, M.; Dass, C.R. Pigment Epithelium-Derived Factor: Inhibition of Phosphorylation of Insulin Receptor (IR)/IR Substrate (IRS), Osteogeneration from Adipocytes, and Increased Levels Due to Doxorubicin Exposure. Pharmaceutics 2023, 15, 1960. [Google Scholar] [CrossRef]
- Xu, C.; Du, Y.; Tian, J.; Liu, C.; Huang, Y.; Zhou, T.; Ning, Y. Pigment epithelium-derived factor modulates periodontal homeostasis in mice and induces osteogenic differentiation of human periodontal ligament fibroblasts. Connect. Tissue Res. 2022, 63, 485–497. [Google Scholar] [CrossRef]
- Jovanovic, M.; Marini, J.C. Update on the Genetics of Osteogenesis Imperfecta. Calcif. Tissue Int. 2024, 115, 891–914. [Google Scholar] [CrossRef]
- Fratzl-Zelman, N.; Schmidt, I.; Roschger, P.; Roschger, A.; Glorieux, F.H.; Klaushofer, K.; Wagermaier, W.; Rauch, F.; Fratzl, P. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone. Bone 2015, 73, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Selina, A.; Kandagaddala, M.; Kumar, V.; Abraham, S.S.C.; Danda, S.; Madhuri, V. SERPINF1 gene variants causing late-onset progressive deforming osteogenesis imperfecta—A study of 18 patients from India. Bone Rep. 2023, 18, 101690. [Google Scholar] [CrossRef]
- Ward, L.; Bardai, G.; Moffatt, P.; Al-Jallad, H.; Trejo, P.; Glorieux, F.H.; Rauch, F. Osteogenesis Imperfecta Type VI in Individuals from Northern Canada. Calcif. Tissue Int. 2016, 98, 566–572. [Google Scholar] [CrossRef]
- Farber, C.R.; Reich, A.; Barnes, A.M.; Becerra, P.; Rauch, F.; Cabral, W.A.; Bae, A.; Quinlan, A.; Glorieux, F.H.; Clemens, T.L.; et al. A Novel IFITM5 Mutation in Severe Atypical Osteogenesis Imperfecta Type VI Impairs Osteoblast Production of Pigment Epithelium-Derived Factor. J. Bone Miner. Res. 2014, 29, 1402–1411. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Liu, Y.; Song, L.-J.; Lv, F.; Xu, X.-J.; San, A.; Yang, H.-M.; Yang, Z.-Y.; Jiang, Y.; Wang, O.; et al. Novel Mutations in SERPINF1 Result in Rare Osteogenesis Imperfecta Type VI. Calcif. Tissue Int. 2017, 100, 55–66. [Google Scholar] [CrossRef]
- Amorim, D.M.R.; Koga, G.K.C.; dos Santos, R.N.; Secundo, P.F.C.; Fernandes, E.d.Á.; Cardili, L.; Maeda, S.S.; Fernandes, A.d.R.C.; Lazaretti-Castro, M. Rare Association Between Osteogenesis Imperfecta and Chondrosarcoma: Could a Pathogenic Variant in the Gene SERPINF1 Explain It? Calcif. Tissue Int. 2023, 112, 118–122. [Google Scholar] [CrossRef]
- Jin, Z.; Burrage, L.C.; Jiang, M.; Lee, Y.; Bertin, T.; Chen, Y.; Tran, A.; Gibbs, R.A.; Jhangiani, S.; Sutton, V.R.; et al. Whole-Exome Sequencing Identifies an Intronic Cryptic Splice Site in SERPINF1 Causing Osteogenesis Imperfecta Type VI. JBMR Plus 2018, 2, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Antoniazzi, F.; Pietrobelli, A.; Gandini, A.; Cavarzere, P.; Ramaroli, D.-A.; Mottes, M.; Guzzo, A.; De Gironcoli, M.; Genesini, S.; Zaffanello, M.; et al. Type VI Osteogenesis imperfecta: Effect of plasma transfusion on bone metabolism. J. Biol. Regul. Homeost. Agents 2022, 36, 389–395. [Google Scholar] [CrossRef]
- Venturi, G.; Gandini, A.; Monti, E.; Carbonare, L.D.; Corradi, M.; Vincenzi, M.; Valenti, M.T.; Valli, M.; Pelilli, E.; Boner, A.; et al. Lack of expression of SERPINF1, the gene coding for pigment epithelium-derived factor, causes progressively deforming osteogenesis imperfecta with normal type I collagen. J. Bone Miner. Res. 2012, 27, 723–728. [Google Scholar] [CrossRef]
- Al-Jallad, H.; Palomo, T.; Moffatt, P.; Roughley, P.; Glorieux, F.H.; Rauch, F. Normal bone density and fat mass in heterozygous SERPINF1 mutation carriers. J. Clin. Endocrinol. Metab. 2014, 99, E2446–E2450. [Google Scholar] [CrossRef]
- Moreira, M.L.M.; de Araújo, I.M.; de Molfetta, G.A.; Silva, W.A.; de Paula, F.J.A. Repetitive stress fracture: A warning sign of genetic susceptibility to fracture? A case report of a heterozygous variant in SERPINF1. Arch. Endocrinol. Metab. 2021, 65, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Gattu, A.K.; Swenson, E.S.; Iwakiri, Y.; Samuel, V.T.; Troiano, N.; Berry, R.; Church, C.D.; Rodeheffer, M.S.; Carpenter, T.O.; Chung, C. Determination of mesenchymal stem cell fate by pigment epithelium-derived factor (PEDF) results in increased adiposity and reduced bone mineral content. FASEB J. 2013, 27, 4384–4394. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Song, N.; Tombran-Tink, J.; Niyibizi, C. Pigment epithelium-derived factor suppresses expression of Sost/Sclerostin by osteocytes: Implication for its role in bone matrix mineralization. J. Cell. Physiol. 2015, 230, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- BioGPS [Internet]. La Jolla (CA): The Scripps Research Institute; ver 94eefe6. Available online: http://biogps.org/?full#goto=genereport&id=20317 (accessed on 20 June 2025).
- Su, A.I.; Wiltshire, T.; Batalov, S.; Lapp, H.; Ching, K.A.; Block, D.; Zhang, J.; Soden, R.; Hayakawa, M.; Kreiman, G.; et al. A Gene Atlas of the Mouse and Human Protein-Encoding Transcriptomes. Proc. Natl. Acad. Sci. USA 2004, 101, 6062–6067. [Google Scholar] [CrossRef]
- Belinsky, G.S.; Sreekumar, B.; Andrejecsk, J.W.; Saltzman, W.M.; Gong, J.; Herzog, R.I.; Lin, S.; Horsley, V.; Carpenter, T.O.; Chung, C. Pigment epithelium-derived factor restoration increases bone mass and improves bone plasticity in a model of osteogenesis imperfecta type VI via Wnt3a blockade. FASEB J. 2016, 30, 2837–2848. [Google Scholar] [CrossRef]
- Rajagopal, A.; Homan, E.P.; Joeng, K.S.; Suzuki, M.; Bertin, T.; Cela, R.; Munivez, E.; Dawson, B.; Jiang, M.-M.; Gannon, F.; et al. Restoration of the serum level of SERPINF1 does not correct the bone phenotype in Serpinf1 null mice. Mol. Genet. Metab. 2016, 117, 378–382. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, Y.; Wang, X.; Zhao, F.; Sun, M.; Zheng, X.; Dong, H.; Guo, K. Pigment Epithelium-Derived Factor (PEDF) Protects Osteoblastic Cell Line from Glucocorticoid-Induced Apoptosis via PEDF-R. Int. J. Mol. Sci. 2016, 17, 730. [Google Scholar] [CrossRef]
- Nakamura, D.S.; Hollander, J.M.; Uchimura, T.; Nielsen, H.C.; Zeng, L. Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskelet. Disord. 2017, 18, 39. [Google Scholar] [CrossRef]
- Caire, R.; Roche, B.; Picot, T.; Aanei, C.-M.; He, Z.; Campos, L.; Thomas, M.; Malaval, L.; Vico, L.; Lafage-Proust, M.-H. Parathyroid Hormone Remodels Bone Transitional Vessels and the Leptin Receptor-Positive Pericyte Network in Mice. J. Bone Miner. Res. 2019, 34, 1487–1501. [Google Scholar] [CrossRef]
- Kang, H.; Ac, S.A.; Barnes, A.M.; Martin, A.; David, V.; Crawford, S.E.; Marini, J.C. Antagonism Between PEDF and TGF-β Contributes to Type VI Osteogenesis Imperfecta Bone and Vascular Pathogenesis. J. Bone Miner. Res. 2022, 37, 925–937. [Google Scholar] [CrossRef]
- Li, F.; Armstrong, G.B.; Tombran-Tink, J.; Niyibizi, C. Pigment epithelium derived factor upregulates expression of vascular endothelial growth factor by human mesenchymal stem cells: Possible role in PEDF regulated matrix mineralization. Biochem. Biophys. Res. Commun. 2016, 478, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cain, J.D.; Tombran-Tink, J.; Niyibizi, C. Pigment epithelium derived factor regulates human Sost/Sclerostin and other osteocyte gene expression via the receptor and induction of Erk/GSK-3beta/beta-catenin signaling. BBA Mol. Basis Dis. 2018, 1864, 3449–3458. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cain, J.D.; Tombran-Tink, J.; Niyibizi, C. Pigment epithelium-derived factor (PEDF) reduced expression and synthesis of SOST/sclerostin in bone explant cultures: Implication of PEDF-osteocyte gene regulation in vivo. J. Bone Miner. Metab. 2019, 37, 773–779. [Google Scholar] [CrossRef]
- Wen, H.; Liu, M.; Liu, Z.; Yang, X.; Liu, X.; Ni, M.; Dong, M.; Luan, X.; Yuan, Y.; Xu, X.; et al. PEDF improves atherosclerotic plaque stability by inhibiting macrophage inflammation response. Int. J. Cardiol. 2017, 235, 37–41. [Google Scholar] [CrossRef]
- Hirsch, J.; Johnson, C.L.; Nelius, T.; Kennedy, R.; de Riese, W.; Filleur, S. PEDF inhibits IL8 production in prostate cancer cells through PEDF receptor/phospholipase A2 and regulation of NFkappaB and PPARgamma. Cytokine 2011, 55, 202–210. [Google Scholar] [CrossRef]
- Ide, Y.; Matsui, T.; Ishibashi, Y.; Takeuchi, M.; Yamagishi, S.-I. Pigment epithelium-derived factor inhibits advanced glycation end product-elicited mesangial cell damage by blocking NF-kappaB activation. Microvasc. Res. 2010, 80, 227–232. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Y.; Feng, S.; Liu, Z.; Ye, Y.; Zhou, R.; Liu, L. PEDF inhibits LPS-induced acute lung injury in rats and promotes lung epithelial cell survival by upregulating PPAR-γ. BMC Pulm. Med. 2023, 23, 359. [Google Scholar] [CrossRef]
- Singh, R.B.; Blanco, T.; Mittal, S.K.; Taketani, Y.; Chauhan, S.K.; Chen, Y.; Dana, R. Pigment Epithelium-derived Factor secreted by corneal epithelial cells regulates dendritic cell maturation in dry eye disease. Ocul. Surf. 2020, 18, 460–469. [Google Scholar] [CrossRef]
- Singh, R.B.; Blanco, T.; Mittal, S.K.; Alemi, H.; Chauhan, S.K.; Chen, Y.; Dana, R. Pigment Epithelium-Derived Factor Enhances the Suppressive Phenotype of Regulatory T Cells in a Murine Model of Dry Eye Disease. Am. J. Pathol. 2021, 191, 720–729. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Y.; Sang, Y.; Xu, L.; Jin, X.; Tao, Y.; Li, D.; Du, M. Pigment epithelium-derived factor, a novel decidual natural killer cells-derived factor, protects decidual stromal cells via anti-inflammation and anti-apoptosis in early pregnancy. Hum. Reprod. 2020, 35, 1537–1552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, K.; Zhang, Y. Pigment epithelium-derived factor facilitates NLRP3 inflammasome activation through downregulating cytidine monophosphate kinase 2: A potential treatment strategy for missed abortion. Int. J. Mol. Med. 2020, 45, 1436–1446. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Z.; Lei, L.; Song, Y.; Liu, S.; Cui, J.; Dong, C.; Ding, J.; Cheng, X.; Su, Y.; et al. Secreted PEDF modulates fibroblast collagen synthesis through M1 macrophage polarization under expanded condition. Biomed. Pharmacother. 2021, 142, 111951. [Google Scholar] [CrossRef]
- Principe, D.R.; DeCant, B.; Diaz, A.M.; Mangan, R.J.; Hwang, R.; Lowy, A.; Shetuni, B.B.; Sreekumar, B.K.; Chung, C.; Bentrem, D.J.; et al. PEDF inhibits pancreatic tumorigenesis by attenuating the fibro-inflammatory reaction. Oncotarget 2016, 7, 28218–28234. [Google Scholar] [CrossRef]
- Plebanek, M.P.; Angeloni, N.L.; Vinokour, E.; Li, J.; Henkin, A.; Martinez-Marin, D.; Filleur, S.; Bhowmick, R.; Henkin, J.; Miller, S.D.; et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat. Commun. 2017, 8, 1319. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Marin, D.; Jarvis, C.; Nelius, T.; de Riese, W.; Volpert, O.V.; Filleur, S.; Tang, C.-H. PEDF increases the tumoricidal activity of macrophages towards prostate cancer cells in vitro. PLoS ONE 2017, 12, e0174968. [Google Scholar] [CrossRef] [PubMed]
- Nelius, T.; Samathanam, C.; Martinez-Marin, D.; Gaines, N.; Stevens, J.; Hickson, J.; de Riese, W.; Filleur, S. Positive Correlation Between PEDF Expression Levels and Macrophage Density in the Human Prostate. Prostate 2013, 73, 549–561. [Google Scholar] [CrossRef]
- Moradi-Chaleshtori, M.; Koochaki, A.; Shojaei, S.; Paryan, M.; Safarzadeh, M.; Hashemi, S.M.; Mohammadi-Yeganeh, S. Overexpression of pigment epithelium-derived factor in breast cancer cell-derived exosomes induces M1 polarization in macrophages. Immunol. Lett. 2022, 248, 31–36. [Google Scholar] [CrossRef]
- Zand, S.; Buzney, E.; Duncan, L.M.; Dadras, S.S. Heterogeneity of metastatic melanoma: Correlation of MITF with its transcriptional targets MLSN1, PEDF, HMB-45, and MART-1. Am. J. Clin. Pathol. 2016, 146, 353–360. [Google Scholar] [CrossRef]
- Lee, P.X.; Martinez, J.; Dass, C. Stimulation of bone regeneration with pigment epithelium-derived factor microparticles: Evidence in silico, in vitro and in vivo. Pharmazie 2016, 71, 382–389. [Google Scholar]
Tissue | Experimental Model | Major Biological Findings | References |
---|---|---|---|
Eye | KO mouse | Macrophage infiltration, glia activation, pathologies linked to the vasculature, loss of photoreceptors, swelling of the inner plexiform layer leads to visual loss | [12] |
KO mouse | Ocular surface and lacrimal gland disturbances, myoepithelial cell death | [14] | |
Cell culture | In retinal pigment epithelium (RPE) cells grown under normoxic conditions, addition of anti-VEGF agents resulted in a downregulation of PEDF | [15] | |
Cell culture | Prevents apoptosis in light stressed photoreceptor cells | [19,20,21] | |
Mouse | Decelerates degeneration of the retinal pigment epithelium in age-related macular degeneration | [22] | |
Clinical observation | Suggested to protect the retina in rhegmatogenous retinal detachment | [24] | |
Rat | Improves graft survival rate of corneal allografts | [25] | |
Rat | Better than anti-VEGFs in oxygen-induced retinopathy | ||
Nervous system | Cell culture | Has pro-survival effects of PEDF on retinal ganglion cells (RGCs) | [26] |
Mouse | Improves motor behavioural performance in mouse model of lower thoracic photothrombotic ischaemia | [30] | |
Mouse | Provides resistance to depression | [35] | |
Mouse | Reduces apoptosis of retinal ganglionic cells (RGCs) occurring after optic nerve injury | [36] | |
Cell culture | Treated RPE cells had increased glutathione levels post-H2O2 incubation | [37] | |
Tissue culture | Promotes RGC survival | [39] | |
Tissue culture | Promotes adult RGC neuroprotection and axon regeneration | [41] | |
Mouse | Promotes significant axon regeneration with boosted physiological function in injured dorsal column | [43] | |
Mouse | Ameliorates depression-like behaviours in the chronic unpredictable mild stress model | [33] | |
Mice | 44-mer peptide plus docosahexaenoic acid stimulates corneal nerve regeneration | [47] | |
Mouse | Restores intrastrial fluid–blood barrier integrity, thereby reducing hearing loss | [51] | |
Rat | Reduced outer hair cell and spiral ganglion neuron loss-mediated hearing loss | [52] | |
Rat | Increases both area and number of myelinated axons | [53] | |
Mouse | In an ex vivo model of ocular ischaemia/hypoxia, PEDF inhibited labyrinth angiogenesis and kept the capillary lumen patent | [54] | |
Mouse | Peptides containing the neurotrophic region of PEDF decreased the number of apoptotic photoreceptors in retinal degeneration models in mice | [55] | |
Bone | Mouse | Induces mesenchymal stem cells (MSCs) to the osteoblast lineage | [82] |
Mouse | Chitosan microparticles encapsulating PEDF were shown to induce de novo bone formation in muscle pockets | [110] | |
Mouse | Alginate beads incorporated with PEDF protein embedded in intramuscular pockets were found to produce do novo bone tissue | [67] | |
Mouse | Promotes transdifferentiation of adipocytes to osteoblasts | [68] | |
KO mouse | Boosts trabecular bone volume/total volume | [86] | |
Immune system | Mouse | Enhances the stability of atherosclerotic plaques by PPAR-γ-mediated anti-inflammation in macrophages | [92] |
ARPE-19 cells | PEDF dampened loss of cell viability | [50] | |
Mouse | Inhibited expression of TNF-α, IL-6 and IL-1β, and progression of acute lung injury. | [98] | |
RLE-6TN cells | Inhibits lipopolysaccharide-evoked inflammatory damage and apoptosis | [98] | |
Mouse | Plays a protective role in depression | [32] | |
Mouse | Enhances suppression of dendritic cell maturation, reduced pro-inflammatory cytokine expression in the conjunctiva, and thereby reduced disease severity | [100] | |
Cell culture | Reduces apoptosis of decidual stromal cells (DSCs) following LPS stimulation | [101] | |
Cell culture | Neutralises macrophage migration and blocks macrophage-induced proliferation of tumour cells | [104] | |
Cell culture | Induces pro-cancer macrophage migration in spheroid and 2D culture models | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanpaisaeng, K.; Dass, C.R. The Role of PEDF in the Eye, Bone, and Nervous and Immune Systems. Pharmaceutics 2025, 17, 1064. https://doi.org/10.3390/pharmaceutics17081064
Chanpaisaeng K, Dass CR. The Role of PEDF in the Eye, Bone, and Nervous and Immune Systems. Pharmaceutics. 2025; 17(8):1064. https://doi.org/10.3390/pharmaceutics17081064
Chicago/Turabian StyleChanpaisaeng, Krittikan, and Crispin R. Dass. 2025. "The Role of PEDF in the Eye, Bone, and Nervous and Immune Systems" Pharmaceutics 17, no. 8: 1064. https://doi.org/10.3390/pharmaceutics17081064
APA StyleChanpaisaeng, K., & Dass, C. R. (2025). The Role of PEDF in the Eye, Bone, and Nervous and Immune Systems. Pharmaceutics, 17(8), 1064. https://doi.org/10.3390/pharmaceutics17081064