Are We Considering All the Potential Drug–Drug Interactions in Women’s Reproductive Health? A Predictive Model Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Compilation of Approved Drugs Indicated for Women’s Reproductive Medicine
2.2. Building the Model to Predict Drug–Drug Interactions Involving Women’s Reproductive Health Drugs
3. Results
3.1. Classifying Drugs Used in Women’s Reproductive Health
3.2. Known and Novel Drug–Drug Interactions Involving Women’s Reproductive Health Drugs
3.3. Drug–Drug Interactions Predicted to Pose a Problem for Women’s Reproductive Health
3.4. Drug–Drug Interactions Predicted to Enhance the Therapeutic Efficacy of Current Women’s Reproductive Health
3.5. Predicted Conflicts Between IVF Drugs and Drugs for Non-Gynecological Indications
4. Discussion
4.1. Identifying Clinically Relevant Drug–Drug Interactions to Aid ART Practitioners
4.2. Clinical Implications
4.3. Research Implications
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hua, A.S.P.; Kincaid Smith, P. A Comparison of the Effects of Chlorothiazide and of Metolazone in the Treatment of Hypertension. Clin. Sci. Mol. Med. 1976, 51, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.L.; Kallewaard, M.; Caspers, P.W.J.; Visser, L.E.; Leufkens, H.G.M.; Stricker, B.H.C. Hospitalisations and Emergency Department Visits Due to Drug-Drug Interactions: A Literature Review. Pharmacoepidemiol. Drug Saf. 2007, 16, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Zakharov, A.V.; Varlamova, E.V.; Lagunin, A.A.; Dmitriev, A.V.; Muratov, E.N.; Fourches, D.; Kuz’min, V.E.; Poroikov, V.V.; Tropsha, A.; Nicklaus, M.C. QSAR Modeling and Prediction of Drug-Drug Interactions. Mol. Pharm. 2016, 13, 545–556. [Google Scholar] [CrossRef]
- Hales, C.M.; Servais, J.; Martin, C.B.; Kohen, D. Prescription Drug Use Among Adults Aged 40–79 in the United States and Canada. In NCHS Data Brief; NCHS: Hyattsville, MD, USA, 2019; pp. 1–8. [Google Scholar]
- Guthrie, B.; Makubate, B.; Hernandez-Santiago, V.; Dreischulte, T. The Rising Tide of Polypharmacy and Drug-Drug Interactions: Population Database Analysis 1995–2010. BMC Med. 2015, 13, 74. [Google Scholar] [CrossRef]
- Scarsi, K.K.; Darin, K.M.; Chappell, C.A.; Nitz, S.M.; Lamorde, M. Drug–Drug Interactions, Effectiveness, and Safety of Hormonal Contraceptives in Women Living with HIV. Drug Saf. 2016, 39, 1053–1072. [Google Scholar] [CrossRef]
- Nanda, K.; Stuart, G.S.; Robinson, J.; Gray, A.L.; Tepper, N.K.; Gaffield, M.E. Drug Interactions between Hormonal Contraceptives and Antiretrovirals. Aids 2017, 31, 917–952. [Google Scholar] [CrossRef]
- Sabers, A. Pharmacokinetic Interactions between Contraceptives and Antiepileptic Drugs. Seizure 2008, 17, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Sivasubramanian, R.; Vaidya, S.; Barve, A.; Jarugula, V. Drug-Drug Interaction Studies With Oral Contraceptives: Pharmacokinetic/Pharmacodynamic and Study Design Considerations. J. Clin. Pharmacol. 2020, 60, S49–S62. [Google Scholar] [CrossRef]
- Lesko, L.J.; Vozmediano, V.; Brown, J.D.; Winterstein, A.; Zhao, P.; Lippert, J.; Höchel, J.; Chaturvedula, A.; White, A.; Schmidt, S. Establishing a Multidisciplinary Framework to Study Drug-Drug Interactions of Hormonal Contraceptives: An Invitation to Collaborate. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 706–708. [Google Scholar] [CrossRef]
- Sidra, S.; Tariq, M.H.; Farrukh, M.J.; Mohsin, M. Evaluation of Clinical Manifestations, Health Risks, and Quality of Life among Women with Polycystic Ovary Syndrome. PLoS ONE 2019, 14, e0223329. [Google Scholar] [CrossRef]
- Gemmell, L.C.; Williams, Z.; Forman, E.J. Considerations on the Restriction of Assisted Reproductive Technology (ART) Due to COVID-19. Semin. Perinatol. 2020, 44, 151288. [Google Scholar] [CrossRef] [PubMed]
- Batiha, O.; Al-Deeb, T.; Al-zoubi, E.; Alsharu, E. Impact of COVID-19 and Other Viruses on Reproductive Health. Andrologia 2020, 52, e13791. [Google Scholar] [CrossRef]
- Gerber, W.; Steyn, J.D.; Kotzé, A.F.; Hamman, J.H. Beneficial Pharmacokinetic Drug Interactions: A Tool to Improve the Bioavailability of Poorly Permeable Drugs. Pharmaceutics 2018, 10, 106. [Google Scholar] [CrossRef]
- Vilar, S.; Harpaz, R.; Uriarte, E.; Santana, L.; Rabadan, R.; Friedman, C. Drug-Drug Interaction through Molecular Structure Similarity Analysis. J. Am. Med. Inform. Assoc. 2012, 19, 1066–1074. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Liu, F.; Luo, F.; Tian, G.; Li, X. Predicting Potential Drug-Drug Interactions by Integrating Chemical, Biological, Phenotypic and Network Data. BMC Bioinform. 2017, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Tatonetti, N.P.; Ye, P.P.; Daneshjou, R.; Altman, R.B. Data-Driven Prediction of Drug Effects and Interactions. Sci. Transl. Med. 2012, 4, 125ra31. [Google Scholar] [CrossRef]
- Vilar, S.; Uriarte, E.; Santana, L.; Lorberbaum, T.; Hripcsak, G.; Friedman, C.; Tatonetti, N.P. Similarity-Based Modeling in Large-Scale Prediction of Drug-Drug Interactions. Nat. Protoc. 2014, 9, 2147–2163. [Google Scholar] [CrossRef]
- Ferdousi, R.; Safdari, R.; Omidi, Y. Computational Prediction of Drug-Drug Interactions Based on Drugs Functional Similarities. J. Biomed. Inform. 2017, 70, 54–64. [Google Scholar] [CrossRef]
- Takarabe, M.; Shigemizu, D.; Kotera, M.; Goto, S.; Kanehisa, M. Network-Based Analysis and Characterization of Adverse Drug-Drug Interactions. J. Chem. Inf. Model. 2011, 51, 2977–2985. [Google Scholar] [CrossRef]
- Park, K.; Kim, D.; Ha, S.; Lee, D. Predicting Pharmacodynamic Drug-Drug Interactions through Signaling Propagation Interference on Protein-Protein Interaction Networks. PLoS ONE 2015, 10, e0140816. [Google Scholar] [CrossRef] [PubMed]
- Dunselman, G.A.J.; Vermeulen, N.; Becker, C.; Calhaz-Jorge, C.; D’Hooghe, T.; De Bie, B.; Heikinheimo, O.; Horne, A.W.; Kiesel, L.; Nap, A.; et al. ESHRE Guideline: Management of Women with Endometriosis. Hum. Reprod. 2014, 29, 400–412. [Google Scholar] [CrossRef]
- Webber, L.; Davies, M.; Anderson, R.; Bartlett, J.; Braat, D.; Cartwright, B.; Cifkova, R.; De Muinck Keizer-Schrama, S.; Hogervorst, E.; Janse, F.; et al. ESHRE Guideline: Management of Women with Premature Ovarian Insufficiency. Hum. Reprod. 2016, 31, 926–937. [Google Scholar] [CrossRef]
- Bender Atik, R.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Nelen, W.; Peramo, B.; Quenby, S.; Vermeulen, N.; et al. ESHRE Guideline: Recurrent Pregnancy Loss. Hum. Reprod. Open 2018, 2018, hoy004. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; Andersen, M.; Azziz, R.; et al. Recommendations from the International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef]
- Gravholt, C.H.; Andersen, N.H.; Conway, G.S.; Dekkers, O.M.; Geffner, M.E.; Klein, K.O.; Lin, A.E.; Mauras, N.; Quigley, C.A.; Rubin, K.; et al. Clinical Practice Guidelines for the Care of Girls and Women with Turner Syndrome: Proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. Eur. J. Endocrinol. 2017, 177, G1–G70. [Google Scholar] [CrossRef]
- Bosch, E.; Broer, S.; Griesinger, G.; Grynberg, M.; Humaidan, P.; Kolibianakis, E.; Kunicki, M.; La Marca, A.; Lainas, G.; Le Clef, N.; et al. ESHRE Guideline: Ovarian Stimulation for IVF/ICSI†. Hum. Reprod. Open 2020, 2020, hoaa009. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, A.; Panayotidis, C.; Amso, N.; Marci, R.; Matorras, R.; Onofriescu, M.; Turp, A.B.; Vandekerckhove, F.; Veleva, Z.; Vermeulen, N.; et al. Recommendations for Good Practice in Ultrasound: Oocyte Pick Up†. Hum. Reprod. Open 2019, 2019, hoz025. [Google Scholar] [CrossRef]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A Knowledgebase for Drugs, Drug Actions and Drug Targets. Nucleic Acids Res. 2008, 36, D901–D906. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; Letunic, I.; Jensen, L.J.; Bork, P. The SIDER Database of Drugs and Side Effects. Nucleic Acids Res. 2016, 44, D1075–D1079. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Huang, J.; Niu, C.; Green, C.D.; Yang, L.; Mei, H.; Han, J.D.J. Systematic Prediction of Pharmacodynamic Drug-Drug Interactions through Protein-Protein-Interaction Network. PLoS Comput. Biol. 2013, 9, e1002998. [Google Scholar] [CrossRef]
- Luck, K.; Kim, D.K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux, B.; et al. A Reference Map of the Human Binary Protein Interactome. Nature 2020, 580, 402–408. [Google Scholar] [CrossRef]
- Bajusz, D.; Rácz, A.; Héberger, K. Why Is Tanimoto Index an Appropriate Choice for Fingerprint-Based Similarity Calculations? J. Cheminform. 2015, 7, 20. [Google Scholar] [CrossRef]
- Core R Team. A Language and Environment for Statistical Computing. R Found Statistical Computing; Core R Team: Vienna, Austria, 2019; Volume 2, Available online: https://www.R-project.org (accessed on 16 January 2024).
- Leone Roberti Maggiore, U.; Scala, C.; Remorgida, V.; Venturini, P.L.; Del Deo, F.; Torella, M.; Colacurci, N.; Salvatore, S.; Ferrari, S.; Papaleo, E.; et al. Triptorelin for the Treatment of Endometriosis. Expert Opin. Pharmacother. 2014, 15, 1153–1179. [Google Scholar] [CrossRef]
- Zhu, L.; Guan, Z.; Huang, Y.; Hua, K.; Ma, L.; Zhang, J.; Yang, D.; Perrot, V.; Li, H.; Zhang, X. The Efficacy and Safety of Triptorelin-Therapy Following Conservative Surgery for Deep Infiltrating Endometriosis: A Multicenter, Prospective, Non-Interventional Study in China. Medicine 2022, 101, e28766. [Google Scholar] [CrossRef]
- Acmaz, G.; Cinar, L.; Acmaz, B.; Aksoy, H.; Kafadar, Y.T.; Madendag, Y.; Ozdemir, F.; Sahin, E.; Muderris, I. The Effects of Oral Isotretinoin in Women with Acne and Polycystic Ovary Syndrome. BioMed Res. Int. 2019, 2019, 2513067. [Google Scholar] [CrossRef] [PubMed]
- Dungan, H.M.; Clifton, D.K.; Steiner, R.A. Minireview: Kisspeptin Neurons as Central Processors in the Regulation of Gonadotropin-Releasing Hormone Secretion. Endocrinology 2006, 147, 1154–1158. [Google Scholar] [CrossRef]
- Di Emidio, G.; Rea, F.; Placidi, M.; Rossi, G.; Cocciolone, D.; Virmani, A.; Macchiarelli, G.; Palmerini, M.G.; D’alessandro, A.M.; Artini, P.G.; et al. Regulatory Functions of L-Carnitine, Acetyl, and Propionyl l-Carnitine in a PCOS Mouse Model: Focus on Antioxidant/Antiglycative Molecular Pathways in the Ovarian Microenvironment. Antioxidants 2020, 9, 867. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.A.; Wong, J.; Blackmore, K.M.; Raboud, J.M.; Vieth, R. Vitamin D Association with Estradiol and Progesterone in Young Women. Cancer Causes Control 2010, 21, 479–483. [Google Scholar] [CrossRef]
- Freedman, D.M.; Looker, A.C.; Chang, S.C.; Graubard, B.I. Prospective Study of Serum Vitamin D and Cancer Mortality in the United States. J. Natl. Cancer Inst. 2007, 99, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Chantalat, E.; Valera, M.-C.; Vaysse, C.; Noirrit, E.; Rusidze, M.; Weyl, A.; Vergriete, K.; Buscail, E.; Lluel, P.; Fontaine, C.; et al. Estrogen Receptors and Endometriosis. Int. J. Mol. Sci. 2020, 21, 2815. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, R.; Cai, J.; Huang, Z.; Yuan, H. The Management of Hypertension in Women Planning for Pregnancy. Br. Med. Bull. 2018, 128, 75–84. [Google Scholar] [CrossRef]
- Lai, S.F.; Lam, M.T.; Li, H.W.R.; Nga, E.H.Y. A Randomized Double-Blinded Non-Inferiority Trial Comparing Fentanyl and Midazolam with Pethidine and Diazepam for Pain Relief during Oocyte Retrieval. Reprod. Biomed. Online 2020, 40, 653–660. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Zeng, J.; Ke, H.; Peng, X.; Huang, L.; Zhang, H.; Chen, Z.; Li, T.T.; Tan, Q.; et al. Effectiveness and Safety Assessment of Drospirenone/Ethinyl Estradiol Tablet in Treatment of PCOS Patients: A Single Center, Prospective, Observational Study. BMC Women’s Health 2020, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Huang, M.Z.; Hwang, J.L.; Chen, H.J.; Hsieh, B.C.; Huang, L.W.; Tzeng, C.R.; Seow, K.M. Combination of Cabergoline and Embryo Cryopreservation after GnRH Agonist Triggering Prevents OHSS in Patients with Extremely High Estradiol Levels-A Retrospective Study. J. Assist. Reprod. Genet. 2013, 30, 753–759. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, Y.; Xie, D.; Miao, Y.; Liu, J.; Wang, X. The Impact of Peak Estradiol during Controlled Ovarian Stimulation on the Cumulative Live Birth Rate of IVF/ICSI in Non-PCOS Patients. J. Assist. Reprod. Genet. 2019, 36, 2333–2344. [Google Scholar] [CrossRef] [PubMed]
- Ullah, K.; Rahman, T.U.; Pan, H.T.; Guo, M.X.; Dong, X.Y.; Liu, J.; Jin, L.Y.; Cheng, Y.; Ke, Z.H.; Ren, J.; et al. Serum Estradiol Levels in Controlled Ovarian Stimulation Directly Affect the Endometrium. J. Mol. Endocrinol. 2017, 59, 105–119. [Google Scholar] [CrossRef]
- Pinheiro, L.M.A.; da Silva Cândido, P.; Moreto, T.C.; Di Almeida, W.G.; De Castro, E.C. Estradiol Use in the Luteal Phase and Its Effects on Pregnancy Rates in IVF Cycles with GnRH Antagonist: A Systematic Review. J. Bras. Reprod. Assist. 2017, 21, 247–250. [Google Scholar] [CrossRef]
- Labarta, E.; Rodríguez, C. Progesterone Use in Assisted Reproductive Technology. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 69, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Eichner, E. Progestins. Am. J. Nurs. 1965, 65, 78–81. [Google Scholar] [CrossRef]
- Plewig, G.; Kligman, A.M. Estrogens and Oral Contraceptives. In ACNE and ROSACEA; Springer: Berlin/Heidelberg, Germany, 1993; pp. 659–661. [Google Scholar] [CrossRef]
- Sundaram, V.; Björnsson, E.S. Drug-Induced Cholestasis. Hepatol. Commun. 2017, 1, 726–735. [Google Scholar] [CrossRef]
- Tivoli, Y.A.; Rubenstein, R.M. Pruritus: An Updated Look at an Old Problem. J. Clin. Aesthetic Dermatol. 2009, 2, 30–36. [Google Scholar]
- Xie, C.; Aloreidi, K.; Quist, E.; Pocha, C. A Rare Cause of Hepatomegaly: Oral Contraceptives-Induced Peliosis Hepatis: 2255. Off. J. Am. Coll. Gastroenterol.|ACG 2017, 112, S1240. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Xu, J.; Chen, Y. Is the Oral Contraceptive or Hormone Replacement Therapy a Risk Factor for Cholelithiasis. Medicine 2017, 96, e6556. [Google Scholar] [CrossRef] [PubMed]
- Batta, A.; Kalra, B.; Khirasaria, R. Trends in FDA Drug Approvals over Last 2 Decades: An Observational Study. J. Fam. Med. Prim. Care 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed]
Reproductive Statuses | Reproductive Conditions | ||||||
---|---|---|---|---|---|---|---|
Nº | Preconception | Menstrual Disorders | Infertility & IVF | Ovarian Diseases | Uterus Diseases | Other Reproductive Diseases | Menopause |
1 | Estradiol | Acetaminophen | Follitropin | Follitropin | Bupivacaine | Risperidone | Estradiol |
2 | Etonogestrel | Tramadol | Estradiol | Estradiol | Follitropin | Oxycodone | Conjugated estrogens |
3 | Progesterone | Diclofenac | Cabergoline | Prednisolone | Estradiol | Estradiol | Progesterone |
4 | Segesterone acetate | Naproxen | Prednisolone | Simvastatin | Triptorelin | Levobipivacaine | Estradiol valerate |
5 | Medroxyprogesterone acetate | Desogestrel | Codeine | Triptorelin | Morphine | Prednisone | Comifene |
6 | Mifepristone | Leuprolide | Triptorelin | Etonogestrel | Acetaminophen | Lovastatin | Vitamin D |
7 | Megestrol acetate | Dexketoprofen | Acetaminophen | Progesterone | Conjugated estrogens | Acetaminophen | |
8 | Norethisterone | Levonogestrel | Testosterone | Estradiol acetate | Etonogestrel | Conjugated estrogens | |
9 | Desogestrel | Piroxicam | Progesterone | Medroxyprogesterone acetate | Progesterone | Etonogestrel | |
10 | Ketorolac | Ethinylestradiol | Meperidine | Topiramate | Medroxyprogesterone acetate | Warfarin |
Drug | Known DDIs Described | Known DDIs Predicted | New DDIs Predicted | Discovery Rate % |
---|---|---|---|---|
Follitropin | 123 | 122 | 89 | 42.18 |
Bupivacaine | 523 | 505 | 247 | 32.03 |
Gonadorelin | 3 | 3 | 1 | 25.00 |
Segesterone acetate | 201 | 198 | 36 | 15.19 |
Prilocaine | 38 | 26 | 6 | 13.95 |
Triptorelin | 341 | 340 | 50 | 12.82 |
Oxycodone | 834 | 832 | 102 | 10.92 |
Examestane | 46 | 45 | 5 | 10.00 |
Risperidone | 1113 | 1110 | 116 | 9.46 |
Drug Interaction | Drug Indications | Predicted Effect | Extrapolation |
---|---|---|---|
Somatotropin-Prednisolone | Infertility-RM | Reduced efficacy of prednisolone. | Both somatotropin and prednisolone are corticosteroids used in the improvement of endometrial receptivity. |
Progesterone-Estradiol | HRT-HRT | Augmented risk or severity of liver damage. | Co-administration should be considered carefully to avoid exacerbating liver damage. |
Follitropin-Fentanyl | IVF-IVF | Augmented risk or severity of cardiac arrhythmia. | The use of alternative anaesthetics may avoid unnecessary complications. |
Follitropin-Cyclosporine | IVF-Immunosuppressor | Reduced efficacy of follitropin. | The efficacy of ovarian stimulation may be compromised when patients are additionally taking cyclosporine to treat inflammatory disorders. |
Prednisone-Methylprednisolone hemisuccinate | RPL-COVID-19 | Augmented risk or severity of adverse effects. | Extra pharmacovigilance is recommended for patients with COVID-19. |
Follitropin-Simvastatin | IVF-PCOS | Reduced efficacy of follitropin. | The efficacy of ovarian stimulation may be compromised. |
Lidocaine-Prednisolone | Oocyte Retrieval-PCOS | Accelerated metabolism of lidocaine. | Prednisolone has been applied to reduce androgen concentrations in PCOS women before oocyte retrieval. Lidocaine is used for pain relief during oocyte retrieval. Residual prednisolone may hinder pharmacodynamics of lidocaine. |
Estradiol-Liraglutide | PCOS-PCOS | Poor absorption of estradiol reduces serum concentration, and potentially, its efficacy. | In PCOS treatment regimes, estradiol is administered in the form of ethinyl estradiol tablets, to improve hormonal and lipid profiles. Liraglutide is administered for weight loss before starting ovarian stimulation. |
Follitropin-Midazolam | COS-Oocyte Retrieval | Reduced efficacy of follitropin. | The efficacy of ovarian stimulation may be compromised. |
Cabergoline-Estradiol | COS-COS | Slow metabolism of estradiol. | Elevated estradiol levels interfere with uterine receptivity. |
Midazolam-Prednisolone | Oocyte Retrieval-PCOS | Accelerated metabolism of midazolam. | Prednisolone is used to reduce androgen concentrations in PCOS women before oocyte retrieval, while midazolam is an anaesthetic administered during oocyte retrieval procedures. Residual prednisolone may reduce period of pain relief. |
Drug Interaction | Drug Indications | Predicted Effect | Extrapolation |
---|---|---|---|
Estradiol-Vitamin D | PCOS-PCOS | The metabolism of estradiol can be increased when combined with vitamin D. | Administration of vitamin D may reduce the risk of breast cancer in patients at risk due to high natural levels of estradiol. |
Triptorelin-Inositol | The therapeutic efficacy of inositol can be increased. | Current PCOS treatments can potentially be improved. | |
Isotretinoin-Triptorelin | The therapeutic efficacy of triptorelin can be increased. | Current PCOS treatments can potentially be improved, especially for patients affected by PCOS-related acne and that have contraindications for the use of oral contraceptives. | |
Levocarnitine-Triptorelin | Current PCOS treatments can potentially be improved. | ||
Folic acid-Triptorelin | |||
Practolol-Triptorelin | Cardiac Arrhythmia-PCOS | ||
Isosorbide mononitrate-Triptorelin | Pregnancy Loss-PCOS | ||
Cefazolin-Triptorelin | Uterine Bleeding-PCOS | ||
Etonogestrel-Triptorelin | Contraceptive-PCOS | ||
Megestrol acetate-Triptorelin | Contraceptive-PCOS | ||
Pyridoxine-Triptorelin | Endometriosis-PCOS | ||
Triptorelin-Dienogest | PCOS-Endometriosis | The therapeutic efficacy of dienogest can be increased. | Both are proven to be effective in the treatment of endometriosis symptoms and after surgery. |
Chlorothiazide-Methyldopa | Hypertension-Preeclampsia | The therapeutic efficacy of methyldopa can be increased. | While not used in ARTs, chlorothiazide has been shown to enhance the effects of other antihypertensive agents. |
Moxifloxacin-Cabergoline | Antibiotic-Infertility | The therapeutic efficacy of cabergoline can be increased. | Current fertility treatments can potentially be improved. |
Heparin-Fluoxymesterone | RPL-Hypogonadism | The therapeutic efficacy of heparin can be increased. | Current RPL treatments can potentially be improved. |
Levallorphan-Diazepam | Depression-Fertility Issues | The therapeutic efficacy of diazepam can be increased. | Current fertility treatments can potentially be improved. |
Gonadorelin-Isotretinoin | Infertility-PCOS | The therapeutic efficacy of isotretinoin can be increased. | Current PCOS treatments can potentially be improved, especially for patients affected by PCOS-related acne and that have contraindications for the use of oral contraceptives. |
Enalapril-Hydrochlorothiazide | Preeclampsia-Hypertension | The therapeutic efficacy of enalapril can be increased. | Current preeclampsia treatments can potentially be improved. |
Prednisone-Enoxaparin | RPL-ARTs | The therapeutic efficacy of enoxaparin can be increased | Current ART treatments can potentially be improved. |
Prednisone-Bemiparin | RPL-ARTs | The therapeutic efficacy of bemiparin can be increased. | |
Methazolamide-Norethisterone | Glaucoma-Endometriosis | The therapeutic efficacy of norethisterone can be increased. | Current endometriosis treatments can potentially be improved. |
Furosemide-Fluticasone furoate | Preeclampsia-Asthma | The therapeutic efficacy of furosemide can be increased. | Current preeclampsia treatments can potentially be improved. |
Methazolamide-Ulipristal | Glaucoma-Contraceptive | The therapeutic efficacy of ulipristal can be increased. | Current contraception methods can potentially be improved. |
(A) | |||||
Drug group | Novel DDIs | Number of drugs | Discovery rate of novel DDIs | Known DDIs described | Known DDIs predicted |
Alimentary | 17 | 11 | 1.6 | 126 | 123 |
Anti Inflammatory, Analgesics, Sedatives | 195 | 79 | 2.5 | 1183 | 1177 |
Anti-infectives | 76 | 50 | 1.5 | 816 | 799 |
Anticonvulsants, Epilepsy | 10 | 8 | 1.3 | 211 | 211 |
Antidepressives, Anxiolytics | 53 | 27 | 2 | 621 | 621 |
Antineoplastics | 88 | 49 | 1.8 | 927 | 907 |
Asthma, Allergy | 75 | 26 | 2.9 | 315 | 310 |
Cardiovascular agents, Antihypertensives, Anticholesteremic Agents | 126 | 66 | 1.9 | 1108 | 1089 |
Contrast agent | 11 | 10 | 1.1 | 142 | 107 |
Diabetes | 10 | 4 | 2.5 | 72 | 72 |
Gastrointestinal problems | 32 | 17 | 1.9 | 245 | 241 |
Insomnia | 14 | 8 | 1.8 | 168 | 168 |
Mental illness | 33 | 16 | 1.3 | 279 | 276 |
Ophthalmological | 14 | 11 | 1.3 | 61 | 61 |
Parkinson | 11 | 5 | 2.2 | 72 | 72 |
Sex hormones | 20 | 15 | 1.3 | 277 | 276 |
(B) | |||||
Women’s reproductive health drug group | Novel DDIs | Number of drugs | Discovery rate of novel DDIs | Known DDIs described | Known DDIs predicted |
PCOS | 27 | 10 | 2.7 | 158 | 157 |
Preeclampsia | 1 | 1 | 1 | 0 | 0 |
Infertility | 11 | 9 | 1.2 | 14 | 14 |
Contraceptives | 17 | 10 | 1.7 | 19 | 19 |
Menstrual disorders | 3 | 2 | 1.5 | 3 | 3 |
Uterine disorders | 48 | 26 | 1.9 | 326 | 326 |
RPL | 15 | 10 | 1.5 | 48 | 48 |
(C) | |||||
IVF drug group | Novel DDIs | Number of drugs | Discovery rate of novel DDIs | Known DDIs described | Known DDIs predicted |
PCOS | 6 | 6 | 1 | 102 | 101 |
Infertility | 20 | 12 | 1.7 | 404 | 398 |
Contraceptives | 3 | 3 | 1 | 50 | 50 |
Uterine disorders | 5 | 5 | 1 | 93 | 93 |
Ovulation disorders | 1 | 1 | 1 | 11 | 11 |
HRT | 2 | 2 | 1 | 102 | 101 |
RPL | 4 | 3 | 1.3 | 49 | 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Acero, P.; Henarejos-Castillo, I.; Sanz, F.J.; Sebastian-Leon, P.; Parraga-Leo, A.; Garcia-Velasco, J.A.; Diaz-Gimeno, P. Are We Considering All the Potential Drug–Drug Interactions in Women’s Reproductive Health? A Predictive Model Approach. Pharmaceutics 2025, 17, 1020. https://doi.org/10.3390/pharmaceutics17081020
Garcia-Acero P, Henarejos-Castillo I, Sanz FJ, Sebastian-Leon P, Parraga-Leo A, Garcia-Velasco JA, Diaz-Gimeno P. Are We Considering All the Potential Drug–Drug Interactions in Women’s Reproductive Health? A Predictive Model Approach. Pharmaceutics. 2025; 17(8):1020. https://doi.org/10.3390/pharmaceutics17081020
Chicago/Turabian StyleGarcia-Acero, Pablo, Ismael Henarejos-Castillo, Francisco Jose Sanz, Patricia Sebastian-Leon, Antonio Parraga-Leo, Juan Antonio Garcia-Velasco, and Patricia Diaz-Gimeno. 2025. "Are We Considering All the Potential Drug–Drug Interactions in Women’s Reproductive Health? A Predictive Model Approach" Pharmaceutics 17, no. 8: 1020. https://doi.org/10.3390/pharmaceutics17081020
APA StyleGarcia-Acero, P., Henarejos-Castillo, I., Sanz, F. J., Sebastian-Leon, P., Parraga-Leo, A., Garcia-Velasco, J. A., & Diaz-Gimeno, P. (2025). Are We Considering All the Potential Drug–Drug Interactions in Women’s Reproductive Health? A Predictive Model Approach. Pharmaceutics, 17(8), 1020. https://doi.org/10.3390/pharmaceutics17081020