Preclinical Trials of Cancer Stem Cells Targeted by Metal-Based Coordination Complexes: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Data Extraction
2.3. Assessment of Methodological Quality of Included Articles
3. Results
- Systematic Review
3.1. Analysis of the Characteristics of Metal Complexes
3.1.1. Platinum
3.1.2. Copper
3.1.3. Nickel
3.1.4. Iridium
3.1.5. Palladium
3.1.6. Cobalt
3.1.7. Silver
3.1.8. Osmium
3.1.9. Ruthenium
3.1.10. Gold
4. Discussion
- Antitumor Activity of Coordination Complexes Against Cancer Stem Cells: A Cytotoxic Perspective
- Mechanisms of action of metal complexes leading to induced cell death
- Modulation of tumor stem cell markers by the metallocomplex
- Limitations, Translational Challenges, and Future Research Opportunities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- World Health Organization. Cancer: Fact Sheet [Internet]; WHO: Geneva, Switzerland, 2022; Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 28 June 2025).
- Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: An evolving concept. Nat. Rev. Cancer 2012, 12, 133–143. [Google Scholar] [CrossRef]
- Das, P.K.; Pillai, S.; Md Rakib, A.; Khanam, J.A.; Gopalan, V.; Lam, A.K.Y.; Islam, F. Plasticity of cancer stem cell: Origin and role in disease progression and therapy resistance. Stem Cell Rev. Rep. 2020, 16, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mayea, Y.; Mir, C.; Masson, F.; Paciucci, R.; Lleonart, M.E. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin. Cancer Biol. 2020, 60, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Marcu, L.G. Cancer stem cells as therapeutic targets of pancreatic cancer. Fundam. Clin. Pharmacol. 2020, 34, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther. 2016, 160, 145–158. [Google Scholar] [CrossRef]
- Greaves, M.; Maley, C.C. Clonal evolution in cancer. Nature 2012, 481, 306–313. [Google Scholar] [CrossRef]
- Chikamatsu, K.; Takahashi, G.; Sakakura, K.; Ferrone, S.; Masuyama, K. Resistance to apoptosis-inducing stimuli in CD44+ head and neck squamous cell carcinoma cells. Head Neck 2012, 34, 336–343. [Google Scholar] [CrossRef]
- Prince, M.E.P.; Ailles, L.E. Cancer stem cells in head and neck squamous cell cancer. J. Clin. Oncol. 2008, 26, 2871–2875. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Nör, J.E. Head and neck cancer stem cells. J. Dent. Res. 2012, 91, 334–340. [Google Scholar] [CrossRef]
- Peiris-Pagés, M.; Martinez-Outschoorn, U.E.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer stem cell metabolism. Breast Cancer Res. 2016, 18, 55. [Google Scholar] [CrossRef]
- Furno, E.L.; van der Laan, S.; Maiorano, D. Genomic instability of pluripotent stem cells: Origin and consequences. In Pluripotent Stem Cells—From the Bench to the Clinic; Tomizawa, M., Ed.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Cao, R.; Jia, J.; Ma, X.; Zhou, M.; Fei, H. Novel copper complexes with anticancer activity. J. Med. Chem. 2013, 56, 3636–3644. [Google Scholar] [CrossRef]
- Feng, Y.X.; Sokol, E.S.; Del Vecchio, C.A.; Sanduja, S.; Claessen, J.H.; Proia, T.A.; Jin, D.X.; Reinhardt, F.; Ploegh, H.L.; Wang, Q. Cancer stem cells and therapeutic resistance in breast cancer. Cancer Discov. 2014, 4, 702–715. [Google Scholar] [CrossRef]
- Heddleston, J.M.; Li, Z.; Lathia, J.D.; Bao, S.; Hjelmeland, A.B.; Rich, J.N. Cancer stem cells in glioblastoma multiforme and their role in resistance to therapy. Ir. J. Med. Sci. 2010, 102, 789–795. [Google Scholar]
- Korkaya, H.; Paulson, A.; Charafe-Jauffret, E.; Ginestier, C.; Brown, M.; Dutcher, J.; Clouthier, S.G.; Wicha, M.S.; Jordan, C.T. Regulation of mammary stem/progenitor cells by PTEN/Akt/β-Catenin signaling. PLoS Biol. 2009, 7, e1000121. [Google Scholar] [CrossRef] [PubMed]
- Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 2003, 100, 3983–3988. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.A. Cancer stem cells and the fight against cancer. Science 2015, 347, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Beck, B.; Blanpain, C. Unraveling cancer stem cell potential. Nat. Rev. Cancer 2013, 13, 727–738. [Google Scholar] [CrossRef]
- Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med. 2017, 23, 1124–1134. [Google Scholar] [CrossRef]
- Guo, S.; Zheng, S.; Liu, M.; Wang, G. Novel anti-cancer stem cell compounds: A comprehensive review. Pharmaceutics 2024, 16, 1024. [Google Scholar] [CrossRef] [PubMed]
- Kostova, I. Anticancer metallocenes and metal complexes of transition elements from groups 4 to 7. Molecules 2024, 29, 824. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleki, S.; Aliabadi, A.; Khaksar, S. Unveiling the promising anticancer effect of copper-based compounds: A comprehensive review. J. Cancer Res. Clin. Oncol. 2024, 150, 213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- PRISMA Statement. Transparent Reporting of Systematic Reviews and Meta-Analyses. Available online: http://www.prisma-statement.org/ (accessed on 3 June 2025).
- Brasil Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Saúde Ambiental, do Trabalhador e Vigilância das Emergências em Saúde Pública. Training of Tutors in Field Epidemiology: Module 03—Introduction to Scientific Communication; Ministry of Health: Brasília, Brazil, 2022.
- Fang, J.; Gerschel, P.; Singh, K.; Apfel, U.P.; Suntharalingam, K. Cobalt(III)-macrocyclic scaffolds with anti-cancer stem cell activity. Molecules 2024, 29, 2743. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ni, W.X.; Cara, W.L.; Yiu, S.M.; Ei, C.; Cheung, M.T.W.; Ko, C.C.; Che, C.M.; Lam, Y.W.; Lau, T.C. Anticancer activities of copper(II) complexes containing thiosemicarbazones and their potential applications. Chem. Sci. 2012, 3, 1582–1588. [Google Scholar] [CrossRef]
- Li, Y.; Fang, J.; Zhang, Y.; Suntharalingam, K. An immunogenic anti-cancer stem cell bi-nuclear copper(II)-flufenamic acid complex. Dalton Trans. 2024, 53, 6410–6415. [Google Scholar] [CrossRef]
- Alcalá, S.; Villarino, L.; Couceiro, J.R.; Martinez-Calvo, C.; Palencia-Campos, A.; Navarro, D.; Cabezas-Sainz, P.; Rodriguez-Arabaolaza, I.; Cordero-Barreal, A.; Trilla-Fuertes, L.; et al. Targeting cancer stem cell OXPHOS with tailored ruthenium complexes as a new anti-cancer strategy. J. Exp. Clin. Cancer Res. 2024, 43, 33. [Google Scholar] [CrossRef]
- Casagrande, N.; Borghese, C.; Colombatti, A.; Aldinucci, D. Dinuclear gold(I) complexes based on carbene and diphosphane ligands: Bis [2-(dicyclohexylphosphano)ethyl]amine complex inhibits the proteasome activity, decreases stem cell markers and spheroid viability in lung cancer cells. J. Biol. Inorg. Chem. 2023, 28, 751–766. [Google Scholar] [CrossRef]
- Singh, K.; Northcote-Smith, J.; Singh, K.; Suntharalingham, K. Cancer stem cell activity of copper(II)-terpyridine complexes with aryl sulfonamide groups. Dalton Trans. 2023, 52, 9694–9704. [Google Scholar] [CrossRef]
- Osei, P.B.; Northcote-Smith, J.; Fang, J.; Singh, K.; Ortu, F.; Suntharalingam, K. The bulk breast cancer cell and breast cancer stem cell activity of binuclear copper(II)-phenanthroline complexes. Chem. Eur. J. 2023, 29, e202301188. [Google Scholar] [CrossRef]
- Passeri, G.; Northcote-Smith, J.; Perera, R.; Gubic, N.; Suntharalingam, K. An osteosarcoma stem cell potent nickel(II)-polypyridyl complex containing flufenamic acid. Molecules 2022, 27, 3277. [Google Scholar] [CrossRef]
- Markova, L.; Heger, Z.; Kasparkova, J.; Brabec, V. Dipyridophenazine iridium(III) complex as a phototoxic cancer stem cell selective, mitochondria targeting agent. Chem. Biol. Interact. 2022, 360, 109955. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Cressey, P.B.; Boodram, J.N.; Suntharalingam, K. A bioinspired redox-modulating copper(II)–macrocyclic complex bearing non-steroidal anti-inflammatory drugs with anti-cancer stem cell activity. Dalton Trans. 2022, 51, 5904–5912. [Google Scholar] [CrossRef] [PubMed]
- Erkisa, M.; Tüzün, B.; Gençler Özkan, A.M.; Ari, F. Combination of histone deacetylase inhibitor with Cu(II) 5,5-diethylbarbiturate complex induces apoptosis in breast cancer stem cells: A promising novel approach. Anticancer. Agents Med. Chem. 2021, 21, 1850–1860. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Cressey, P.B.; Suntharalingam, K. A dithiacyclam-coordinated silver(I) polymer with anti-cancer stem cell activity. Dalton Trans. 2021, 50, 5779–5783. [Google Scholar] [CrossRef]
- Peng, W.; Hegazy, A.M.; Jiang, N.; Chen, X.; Qi, H.-X.; Zhao, X.-D.; Pu, J.; Ye, R.-R.; Li, R.-T. Identification of two mitochondrial-targeting cyclometalated iridium(III) complexes as potent anti-glioma stem cells agents. J. Inorg. Biochem. 2020, 203, 110909. [Google Scholar] [CrossRef]
- Acharya, S.; Gupta, S.; Anjali, B.; Govind, C.; Pandey, D.S. Inhibition of 3D colon cancer stem cell spheroids by cytotoxic Ru II-p-cymene complexes of mesalazine derivatives. Chem. Commun. 2020, 56, 5421–5424. [Google Scholar] [CrossRef]
- Feld, C.J.; Cressey, P.B.; Suntharalingam, K. Breast cancer stem cell potency of nickel(II)–polypyridyl complexes containing non-steroidal anti-inflammatory drugs. Chem. Eur. J. 2020, 26, 14011–14017. [Google Scholar] [CrossRef]
- Xiao, Z.; Johnson, A.; Singh, K.; Suntharalingam, K. The discrete breast cancer stem cell mammosphere activity of group 10-bis(azadiphosphine) metal complexes. Angew. Chem. Int. Ed. 2021, 60, 6704–6709. [Google Scholar] [CrossRef]
- Zajac, J.; Novohradsky, V.; Markova, L.; Brabec, V.; Kasparkova, J. Platinum (IV) derivatives with cinnamate axial ligands as potent agents against both differentiated and tumorigenic cancer stem rhabdomyosarcoma cells. Angew. Chem. Int. Ed. 2020, 59, 3329–3335. [Google Scholar] [CrossRef]
- Eskandari, A.; Suntharalingam, K. A tri-metallic palladium complex with breast cancer stem cell potency. Dalton Trans. 2020, 49, 4211–4215. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Eskandari, A.; Suntharalingam, K. Modulating the chemical and biological properties of cancer stem cell-potent copper(II)-nonsteroidal anti-inflammatory drug complexes. Molecules 2019, 24, 1677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Yan, M.; Wang, H.; Zhang, C. Effects of copper on cell proliferation and apoptosis in hepatocellular carcinoma. Mol. Med. Rep. 2017, 15, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Novohradsky, V.; Markova, L.; Kostrhunova, H.; Trávníček, Z.; Brabec, V.; Kasparkova, J. An anticancer Os(II) bathophenanthroline complex as a human breast cancer stem cell-selective, mammosphere potent agent that kills cells by necroptosis. Sci. Rep. 2019, 9, 13327. [Google Scholar] [CrossRef]
- Abe, D.O.; Eskandari, A.; Suntharalingam, K. Diflunisal-adjoined cobalt(III)-polypyridyl complexes as anti-cancer stem cell agents. Dalton Trans. 2018, 47, 13761–13765. [Google Scholar] [CrossRef]
- Laws, K.; Hanna, L.; Fisher, A.; Lumb, I.; Pickett, J.; Suntharalingam, K. Highly charged, cytotoxic, cyclometalated iridium(III) complexes as cancer stem cell mitochondriotropics. Chem. Eur. J. 2018, 24, 15205–15210. [Google Scholar] [CrossRef]
- Lu, C.; Eskandari, A.; Cressey, P.B.; Suntharalingam, K. Cancer stem cell and bulk cancer cell active copper(II) complexes with vanillin Schiff base derivatives and naproxen. Chem. Eur. J. 2017, 23, 11366–11374. [Google Scholar] [CrossRef]
- Lu, C.; Laws, K.; Eskandari, A.; Suntharalingam, K. A reactive oxygen species-generating, cyclooxygenase-2 inhibiting, cancer stem cell-potent tetranuclear copper(II) cluster. Dalton Trans. 2017, 46, 12785–12789. [Google Scholar] [CrossRef]
- Eskandari, A.; Boodram, J.N.; Cressey, P.B.; Lu, C.; Bruno, P.M.; Hemann, M.T.; Suntharalingam, K. The breast cancer stem cell potency of copper(II) complexes bearing nonsteroidal anti-inflammatory drugs and their encapsulation using polymeric nanoparticles. Dalton Trans. 2016, 45, 17867–17873. [Google Scholar] [CrossRef]
- Suntharalingam, K.; Lin, W.; Johnstone, T.C.; Bruno, P.M.; Zheng, Y.R.; Hemann, M.T.; Lippard, S.J. A breast cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex. J. Am. Chem. Soc. 2014, 136, 4606–4611. [Google Scholar] [CrossRef]
- Fang, J.; Xu, Z.; Yu, Y.; Zhang, Y.; Suntharalingam, K. A breast cancer stem active cobalt(III)-cyclam complex containing flufenamic acid with immunogenic potential. Angew. Chem. Int. Ed. 2024, 63, e202317940. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, T.; Yuan, Y.; Li, N.; Wang, X.; Guan, J. Copper and copper complexes in tumor therapy. ChemMedChem 2024, 19, e202400060. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.J.; Lippard, S.J. Targeting and mechanisms of action of platinum-based anticancer drugs. Chem. Rev. 2007, 107, 1387–1407. [Google Scholar] [CrossRef]
- Todd, R.C.; Lippard, S.J. Metallomics: An introduction to the chemistry and biology of metal-based drugs. Metallomics 2009, 1, 280–291. [Google Scholar] [CrossRef]
- McWhinney, S.R.; Goldberg, R.M.; McLeod, H.L. Molecular cancer therapeutics. Mol. Cancer Ther. 2009, 8, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, A.; Singh, N.K.; Singh, S. Role of copper in cancer. Biometals 2003, 16, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Gasch, C.; Ffrench, B.; O’Donovan, N.; Norris, L.; McCann, A. The role of the copper transporter ATP7A in cancer. Mol. Cancer 2017, 16, 43. [Google Scholar] [CrossRef]
- Aztopal, N.; Yelekci, K.; Ersan, S.; Gündüz, C.; Kucukoglu, K. Anticancer properties of copper complexes. Bioorg. Med. Chem. 2017, 25, 269–276. [Google Scholar] [CrossRef]
- Gibson, D. Multi-action Pt(IV) anticancer agents; do we understand how they work? J. Inorg. Biochem. 2019, 191, 77–84. [Google Scholar] [CrossRef]
- Ravera, M.; Gabano, E.; McGlinchey, M.J.; Osella, D. A view on multi-action Pt(IV) antitumor prodrugs. Inorg. Chim. Acta 2019, 492, 32–47. [Google Scholar]
- National Research Council. Copper in Drinking Water; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper coordination compounds as biologically active agents. Int. J. Mol. Sci. 2020, 21, 3965. [Google Scholar] [CrossRef]
- Marzano, C.; Pellei, M.; Tisato, F.; Santini, C. Copper-based compounds as potential anticancer agents. Anticancer Agents Med. Chem. 2009, 9, 185–211. [Google Scholar] [CrossRef]
- Wang, K.; Michelakos, T.; Wang, B.; Shang, Z.; DeLeo, A.B.; Duan, Z.; Hornicek, F.J.; Schwab, J.H.; Wang, X. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett. 2021, 505, 37–48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Molinaro, C.; Martoriati, A.; Pelinski, L.; Cailliau, K. The role of copper in cancer: Insights into a new therapeutic approach. Cancers 2020, 12, 2863. [Google Scholar] [CrossRef] [PubMed]
- Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Antitumor activity of copper complexes. Chem. Rev. 2014, 114, 815–862. [Google Scholar] [CrossRef]
- Boodram, J.N.; McGregor, I.J.; Bruno, P.M.; Cressey, P.B.; Hemann, M.T.; Suntharalingam, K. Breast cancer stem cell potent copper(II)–non-steroidal anti-inflammatory drug complexes. Angew. Chem. 2016, 128, 2895–2900. [Google Scholar] [CrossRef]
- Abu-Surrah, A.S.; Kettunen, M. The role of copper in cancer treatment. Curr. Med. Chem. 2006, 13, 1337–1357. [Google Scholar] [CrossRef]
- Afrasiabi, Z.; Sinn, E.; Lin, W.; Ma, Y.; Campana, C.; Padhye, S. The effects of copper on cell proliferation and apoptosis in cancer. J. Inorg. Biochem. 2005, 99, 1526–1531. [Google Scholar] [CrossRef]
- Liu, T.; Sun, X.; Cao, Z. The role of copper in cancer development and therapy. Onco Targets Ther. 2019, 12, 2605–2614. [Google Scholar] [CrossRef]
- Flamme, M.; Cressey, P.B.; Lu, C.; Suntharalingam, K. Induction of necroptosis in cancer stem cells using a nickel(II)-dithiocarbamate phenanthroline complex. Chem. Eur. J. 2017, 23, 9674–9682. [Google Scholar] [CrossRef]
- Snyder, A.G.; Hubbard, N.W.; Messmer, M.N.; Kofman, S.B.; Hagan, C.E.; Orozco, S.L.; Chiang, K.; Daniels, B.P.; Baker, D.; Oberst, A. Intratumoral activation of necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. 2019, 4, eaaw2004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jollie, D. Platinum 2008; Johnson Matthey: Hertfordshire, UK, 2008; pp. 42–43. [Google Scholar]
- Liu, Z.; Sadler, P.J. Copper complexes as anticancer agents. Acc. Chem. Res. 2014, 47, 1174–1185. [Google Scholar] [CrossRef]
- Hearn, J.M.; Romero-Canellón, I.; Qamar, B.; Liu, Z.; Hands-Portman, I.; Sadler, P.J. Antitumor activity of a copper complex. ACS Chem. Biol. 2013, 8, 1335–1343. [Google Scholar] [CrossRef]
- Moromizato, S.; Hisamatsu, Y.; Suzuki, T.; Matsuno, Y.; Abe, R.; Aoki, S. Copper complexes as anticancer agents. Inorg. Chem. 2012, 51, 12697–12706. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, V.; Berrocal-Martin, R.; Wedge, C.J.; Romero-Canelón, I.; Sanchez-Cano, C.; Song, J.I. Mitochondria-targeted spin-labelled luminescent iridium anticancer complexes. Chem. Sci. 2017, 8, 8271–8278. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.; Ray, P. The role of cancer stem cells in tumor progression. J. Exp. Clin. Cancer Res. 2017, 36, 164. [Google Scholar] [CrossRef] [PubMed]
- Kacar, O.; Sagdinc, S.G.; Sahin, E.; Buyukgungor, O. Copper complexes as anticancer agents. Anticancer Drugs 2014, 25, 17–29. [Google Scholar] [CrossRef]
- Afarinkia, K.; Rauf, S.; Vallis, K.A. The role of copper complexes in cancer therapy. PLoS ONE 2013, 8, e64278. [Google Scholar]
- Guney, E.; Yilmaz, V.T.; Sengul, A.; Buyukgungor, O. Copper complexes in cancer treatment. Inorg. Chim. Acta 2010, 363, 438–448. [Google Scholar] [CrossRef]
- Singh, B.; Berry, J.A.; Shoher, A.; Ramakrishnan, V.; Lucci, A. COX-2 overexpression increases motility and invasion of breast cancer cells. Int. J. Oncol. 2005, 26, 1393–1399. [Google Scholar] [CrossRef]
- Zhong, G.; Wang, X.; Li, J.; Xie, Z.; Wu, Q.; Chen, J.; Wang, Y.; Chen, Z.; Cao, X.; Li, T.; et al. Insights into the role of copper in neurodegenerative diseases and the therapeutic potential of natural compounds. Curr. Neuropharmacol. 2024, 22, 1650–1671. [Google Scholar] [CrossRef]
- Banti, C.N.; Hadjikakou, S.K. Metalomics: The role of metals in biology and medicine. Metallomics 2013, 5, 569–596. [Google Scholar] [CrossRef]
- Gautier, A.; Cisnetti, F. The impact of metal ions on biological systems. Metallomics 2012, 4, 23–32. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Wei, Q.; Gao, S.; Zhang, L.; Sun, D. Design and synthesis of copper(II) complexes as potential anticancer agents. Eur. J. Med. Chem. 2018, 157, 62–80. [Google Scholar] [CrossRef] [PubMed]
- Medvetz, D.A.; Hindi, K.M.; Panzner, M.J.; Ditto, A.J.; Yun, Y.H.; Youngs, W.J. Anticancer activity of Ag(I) N-heterocyclic carbene complexes derived from 4,5-dichloro-1H-imidazole. Metal-Based Drugs 2008, 2008, 384010. [Google Scholar] [CrossRef] [PubMed]
- Štarha, P.; Trávníček, Z.; Vančo, J.; Dvořák, Z. Half-sandwich Ru(II) and Os(II) bathophenanthroline complexes containing a releasable dichloroacetato ligand. Molecules 2018, 23, 420. [Google Scholar] [CrossRef] [PubMed]
- Romero-Canelon, I.; Salassa, L.; Sadler, P.J. Targeting cancer with metal-based drugs: A review of the potential of metal-based drugs. J. Med. Chem. 2013, 56, 1291–1300. [Google Scholar]
- Prakash, R.; Telleria, C.M. Cancer cell repopulation after therapy: Which is the mechanism? Oncoscience 2023, 10, 14–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zho, S.; Wang, F.; Wong, E.T.; Fonkem, E.; Hsieh, T.-C.; Wuu, J.M.; Wu, E. Salinomycin: A novel anti-cancer agent with known anti-coccidial activities. Curr. Med. Chem. 2013, 20, 4095–4101. [Google Scholar] [CrossRef]
- Naujokat, C.; Steinhart, R. Salinomycin as a drug for targeting human cancer stem cells. J. Biomed. Biotechnol. 2012, 2012, 950658. [Google Scholar] [CrossRef]
- Sulaiman, A.A.A.; Casagrande, N.; Borghese, C.; Corona, G.; Isab, A.A.; Ahmad, S.; Aldinucci, D.; Altaf, M. Design, synthesis, and preclinical activity in ovarian cancer models of new phosphanegold(I)-N-heterocyclic carbene complexes. J. Med. Chem. 2022, 65, 14424–14440. [Google Scholar] [CrossRef]
- Schmidt, C.; Albrecht, L.; Balasupramaniam, S.; Misgeld, R.; Karge, B.; Brönstrup, M.; Prokop, A.; Baumann, K.; Reichl, S.; Ott, I. A gold(I) biscarbene complex with improved activity as a TrxR inhibitor and cytotoxic drug: Comparative studies with different gold metallodrugs. Metallomics 2019, 11, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Q.; Long, H.; Zhang, L.; Wang, X.; Li, Y. A new gold(I) complex Au(PPh3)PT is a deubiquitinase inhibitor and inhibits tumor growth. eBioMedicine 2019, 39, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Micale, N.; Schirmeister, T.; Ettari, R.; Yousuf, S.; Dal Piaz, F. Selected cytotoxic gold compounds cause significant inhibition of 20S proteasome catalytic activities. J. Inorg. Biochem. 2014, 141, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, L.; Li, X.; Suntharalingam, K. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem. Soc. Rev. 2022, 51, 5518–5556. [Google Scholar] [CrossRef]
- Brown, H.K.; Tellez-Gabriel, M.; Heymann, D. Cancer stem cells in osteosarcoma. Cancer Lett. 2017, 386, 189–195. [Google Scholar] [CrossRef]
Selected Articles | Year |
---|---|
1. A Breast Cancer Stem Cell-Selective, Mammospheres-Potent Osmium (VI) Nitrido Complex | 2014 |
2. The Breast Cancer Stem Cell Potency of Copper (II) Complexes Bearing Nonsteroidal Anti-Inflammatory Drugs and Their Encapsulation Using Polymeric Nanoparticles | 2016 |
3. Cancer Stem Cell and Bulk Cancer Cell Active Copper (II) Complexes with Vanillin Schiff Base Derivatives and Naproxen | 2017 |
4. A Reactive Oxygen Species-Generating, Cyclooxygenase-2 Inhibiting, Cancer Stem Cell-Potent Tetranuclear Copper (II) Cluster | 2017 |
5. Induction of Necroptosis in Cancer Stem Cells Using a Nickel (II)-Dithiocarbamate Phenanthroline Complex | 2017 |
6. Highly Charged, Cytotoxic, Cyclometalated Iridium (III) Complexes as Cancer Stem Cell Mitochondriotropics | 2018 |
7. Diflunisal-Adjoined Cobalt (III)-Polypyridyl Complexes as Anti-Cancer Stem Cell Agents | 2018 |
8. Modulating the Chemical and Biological Properties of Cancer Stem Cell-Potent Copper (II)-Nonsteroidal Anti-Inflammatory Drug Complexes | 2019 |
9. An Anticancer Os (II) Bathophenanthroline Complex as a Human Breast Cancer Stem Cell-Selective, Mammosphere Potent Agent That Kills Cells by Necroptosis | 2019 |
10. A Triangular Platinum (II) Multinuclear Complex with Cytotoxicity Towards Breast Cancer Stem Cells | 2019 |
11. Platinum (IV) Derivatives with Cinnamate Axial Ligands as Potent Agents Against Both Differentiated and Tumorigenic Cancer Stem Rhabdomyosarcoma Cells | 2020 |
12. Breast Cancer Stem Cell Potency of Nickel (II)-Polypyridyl Complexes Containing Non-Steroidal Anti-Inflammatory Drugs | 2020 |
13. Identification of Two Mitochondrial-Targeting Cyclometalated Iridium (III) Complexes as Potent Anti-Glioma Stem Cell Agents | 2020 |
14. The Discrete Breast Cancer Stem Cell Mammosphere Activity of Group 10-Bis (Azadiphosphine) Metal Complexes | 2020 |
15. A Tri-Metallic Palladium Complex with Breast Cancer Stem Cell Potency | 2020 |
16. Inhibition of 3D Colon Cancer Stem Cell Spheroids by Cytotoxic Ru(II)-p-Cymene Complexes of Mesalazine Derivatives | 2020 |
17. Combination of Histone Deacetylase Inhibitor with Cu (II) 5,5-Diethylbarbiturate Complex Induces Apoptosis in Breast Cancer Stem Cells: A Promising Novel Approach | 2021 |
18. A Dithiacyclam-Coordinated Silver (I) Polymer with Anti-Cancer Stem Cell Activity | 2021 |
19. An Osteosarcoma Stem Cell-Potent Nickel (II)-Polypyridyl Complex Containing Flufenamic Acid | 2022 |
20. Dipyridophenazine Iridium (III) Complex as a Phototoxic Cancer Stem Cell Selective, Mitochondria Targeting Agent | 2022 |
21. A Bioinspired Redox-Modulating Copper (II)-Macrocyclic Complex Bearing Non-Steroidal Anti-Inflammatory Drugs with Anti-Cancer Stem Cell Activity | 2022 |
22. The Bulk Breast Cancer Cell and Breast Cancer Stem Cell Activity of Binuclear Copper (II)-Phenanthroline Complexes | 2023 |
23. A Breast Cancer Stem Active Cobalt (III)-Cyclam Complex Containing Flufenamic Acid with Immunogenic Potential | 2023 |
24. Dinuclear Gold (I) Complexes Based on Carbene and Diphosphane Ligands: Bis [2-(Dicyclohexylphosphano)ethyl]amine Complex Inhibits Proteasome Activity, Decreases Stem Cell Markers and Spheroid Viability in Lung Cancer Cells | 2023 |
25. Targeting Cancer Stem Cell OXPHOS with Tailored Ruthenium Complexes as a New Anti-Cancer Strategy | 2024 |
26. An Immunogenic Anti-Cancer Stem Cell Bi-Nuclear Copper (II)-Flufenamic Acid Complex | 2024 |
27. Cobalt (III)-Macrocyclic Scaffolds with Anti-Cancer Stem Cell Activity | 2024 |
First Author (Year) | Country | Cancer Type | CSC Markers | Coordination Complex 1 | Type of Cell Death 2 |
---|---|---|---|---|---|
Fang, 2024 [28] | UK | Breast cancer | – | [Co(1,4,7,11-tetraazacyclotetradecane)Cl2]+ [Co(1-oxa-4,8,12-triazacyclotetradecane)Cl2]+ | Induces cell death (unspecified) |
Fang, 2024 [29] | UK | Breast cancer | – | [Co(cyclam)Cl2]+, [Co(oxacyclam)Cl2]+ | Apoptosis |
Li, 2024 [30] | UK | Breast cancer | – | Cu (II)–flufenamic acid complexes | Induces cell death (unspecified) |
Alcalá, 2024 [31] | Spain | Pancreatic, colorectal, osteosarcoma | CD133, EpCAM, CXCR4 | Ru (II) complexes | Induces cell death (unspecified) |
Casagrande, 2023 [32] | Italy | Lung cancer | NOTCH1, CD133, ALDH1, CD44 | Dinuclear Au(I) complex | Apoptosis |
Singh, 2023 [33] | UK | Breast cancer | – | Cu (II)–terpyridine complexes | Apoptosis |
Osei, 2023 [34] | UK | Breast cancer | C117 | Cu (II)–phenanthroline complexes | Apoptosis |
Passeri, 2022 [35] | UK | Osteosarcoma | C117 | Ni (II)–flufenamic acid + phenanthroline complexes | Necroptosis |
Markova, 2022 [36] | Czech Republic | Rhabdomyosarcoma | CD133 | Ir (III)–benzimidazole complex | Necrosis |
Johnson, 2022 [37] | UK | Breast cancer | – | Cu (II)–cyclam + NSAID complexes | Induces cell death (unspecified) |
Erkisa, 2021 [38] | Turkey | Breast cancer | – | Cu (II)–valproic acid–barbital complex | Apoptosis |
Johnson, 2021 [39] | UK | Breast cancer | – | Polymeric Ag(I) complex | Apoptosis |
Peng, 2020 [40] | China | Glioblastoma | – | Cyclometalated Ir(III) complexes | Apoptosis |
Acharya, 2020 [41] | India | Colon cancer | SOX2, KLF4, Oct4, HES1 | [Ru(p-cymene)X2]2 (X = Cl, I) | Induces cell death (unspecified) |
Feld, 2020 [42] | UK | Breast cancer | – | Ni (II)–NSAID complexes | Necroptosis |
Xiao, 2020 [43] | UK | Breast cancer | – | Pt(II), Pd(II), Ni(II) complexes | Apoptosis |
Zajac, 2020 [44] | Czech Republic | Rhabdomyosarcoma | CD44, CD133 | Pt(NH3)2(OH)(cinn)Cl2 complexes | Induces cell death (unspecified) |
Eskandari, 2020 [45] | UK | Breast cancer | – | Trimetallic Pd complex | Apoptosis |
Shin, 2019 [46] | UK | Breast cancer | – | Cu–NSAID complex | Apoptosis |
Zhang, 2019 [47] | UK | Breast cancer | - | Copper (II) coordination complexes containing NSAIDs | Apoptosis |
Novohradsky, 2019 [48] | Czech Republic | Breast cancer | C44 and CD24 | Os (II)/Ru (II)–p-cymene–bphen–dca complex | Induces cell death (unspecified) |
Abe, 2018 [49] | UK | Breast cancer | - | Cobalt (III)–diflunisal–polypyridyl complex | Apoptosis |
Laws, 2018 [50] | UK | Breast cancer | - | Iridium (III)–polypyridyl–pyridinium complex | Apoptosis |
Lu, 2017 [51] | UK | Breast cancer | - | Copper (II)–vanillin–naproxen Schiff base complex | Induces cell death (unspecified) |
Lu, 2017 [52] | UK | Breast cancer | - | Tetranuclear copper (II) complex | Induces cell death (unspecified) |
Eskandari, 2016 [53] | UK | Breast cancer | - | Copper (II)–phenanthroline–NSAID complex | Induces cell death (unspecified) |
Suntharalingam, 2014 [54] | USA | Breast cancer | CD44 | Osmium (VI) Nitrido complex | Apoptosis |
Studies Examining Breast Cancer | ||||||||
---|---|---|---|---|---|---|---|---|
First author | Complex | HMLER-shEcad mammospheres2 | ||||||
Xiao, 2020 [43] | Nickel (II) complex Palladium (II) complex Platinum (II) complex | 2.98 ± 0.03 0.97 ± 0.09 0.24 ± 0.02 | ||||||
First author | Complex | HMLER | HMLER-shEcad 1 | |||||
Suntharalingam, 2014 [54] | Osmium (VI) Nitrido complex (1) Osmium (VI) Nitrido complex (2) Osmium (VI) Nitrido complex (3) | 11.20 ± 0.48 14.58 ± 0.20 82.80 ± 18.43 | 4.91 ± 0.86 16.06 ± 4.12 53.99 ± 2.45 | |||||
Lu, 2017 [51] | Copper (II) complexes with vanillin Schiff base derivatives and NSAIDs: | 37.6 ± 3.3 | 36.0 ± 4.6 | |||||
Lu, 2017 [52] | Tetranuclear copper (II) complexes: | 8.3 ± 0.5 | 8.4 ± 0.1 | |||||
Eskandari, 2016 [53] | Cu (bathocuproinedisulfonic acid disodium) (indomethacin)2 complex: | 0.31 ± 0.01 | 0.22 ± 0.01 | |||||
First author | Complex | HMLER | HMLER-shEcad 1 | HMLER-shEcad mammospheres 2 | ||||
Abe, 2018 [49] | Diflunisal–adjoined cobalt (III) polypyridyl complexes | 3.9 ± 0.2 | 2.1 ± 0.1 | 22.8 ± 2.7 | ||||
Mono-platinum complex | 5.01 ± 0.03 | 7.01 ± 0.06 | 14.50 ± 0.91 | |||||
Dinuclear platinum complex | 2.59 ± 0.09 | 2.35 ± 0.01 | 16.00 ± 0.56 | |||||
Tri-platinum (II) complex | 2.24 ± 0.01 | 1.26 ± 0.03 | 4.55 ± 0.02 | |||||
Feld, 2020 [42] | Nickel (II)-3,4,7,8-tetramethyl-1,10-phenanthroline complexes bearing NSAID | 2.74 ± 0.06 | 1.83 ± 0.11 | 55.40 ± 0.42 | ||||
Fang, 2024 [28] | [Co(1,4,7,11-tetraazacyclotetradecane)Cl2]+ | 4,64 ± 0.25 | 1,83 ± 0.32 | 51.46 ± 1.49 | ||||
[Co(1-oxa-4,8,12-triazacyclotetradecane)Cl2]+ | 13,86 ± 0.01 | 3.09 ± 0.01 | 55.04 ± 3.23 | |||||
Eskandari, 2020 [45] | Tri-metallic palladium | 2.24 ± 0.01 | 1.26 ± 0.03 | 4.55 ± 0.02 | ||||
Singh, 2023 [33] | Copper (ii) complexes with aryl-sulfonamide-functionalized terpyridine ligands | 0.85 ± 0.04 | 0.69 ± 0.12 | 3.44 ± 0.03 | ||||
Cobalt (III): [Co(1,4,7,11-tetraazaciclotetradecano)Cl2]+ | 4.64 ± 0.25 | 1.83 ± 0.32 | 51.46 ± 1.49 | |||||
Cobalt (III): [Co(1-oxa-4,8,12 triazaciclotetradecano)Cl2]+ | 13.86 ± 0.01 | 3.09 ± 0.01 | 55.04 ± 3.23 | |||||
Li, 2024 [30] | Binuclear copper (II) complex comprising two copper (II) centers bound to flufenamic acid | 3.57 ± 0.03 | 3.04 ± 0.09 | 9.17 ± 2.47 | ||||
Binuclear Cu(II) complex with two Cu(II) centers coordinated to 3,4,7,8-tetramethyl-1,10-phenanthroline | 0.31 ± 0.01 | 0.38 ± 0.17 | 0.74 ± 0.11 | |||||
Fang, 2024 [55] | Cobalt (III)–cyclam complex attached to two flufenamic acid moieties | 0.27 ± 0.03 | 0.18 ± 0.003 | 0.27 ± 0.02 | ||||
Trans-dichloro (cyclam)-cobalt(III) chloride | >100 | >100 | >133 | |||||
First author | Complex | HMLER | HMLER-shEcad 1 | HMLER-shEcad mammospheres 2 | MDA-MB-231 | |||
Passeri, 2022 [35] | Nickel (II)–dithiocarbamate phenanthroline complexes | 4.7 ± 0.2 | 4.7 ± 0.2 | 2.3 ± 0.2 | 3.3 ± 1.2 | |||
First author | Complex | HMLER | HMLER-shEcad 1 | HMLER-shEcad mammospheres 2 | U2OS | HepG2 | ||
Laws, 2018 [50] | Iridium (III) complexes bearing polypridyl and charged 1-methyl-2-(2-pyridyl) pyridinium ligands | 5.4 ± 0.3 | 5.2 ± 0.1 | 21.0 ± 0.2 | 18.5 ± 3.0 | 65.4 ± 4.8 | ||
First author | Complex | MCF-7 | MCF-7 CD44+/CD24− 15 | SKBR-3 | SKBR-3 CD44+/CD24− 16 | |||
Novohradsky, 2019 [48] | Os (II) complex [Os(p-cym)(bphen)(dca)]PF6 and its Ru analog | 2.6 ± 0.4 | 0.58 ± 0.07 | 1.0 ± 0.2 | 0.32 ± 0.09 | |||
First author | Complex | HMLER | HMLER-shEcad 1 | HMLER-shEcad mammospheres 2 | HEK 293 | |||
Osei, 2023 [34] | Copper (II)–phenanthroline complexes | 0.03 ± 0.001 | 0.08 ± 0.004 | 0.11 ± 0.001 | 0.09 ± 0.003 | |||
First author | Complex | HMLER | HMLER-shEcad 1 | HMLER-shEcad mammospheres 2 | BEAS-2B | MCF10A | HEK 293 | |
Johnson, 2021 [39] | Silver (I) polymeric complex | 4.58 ± 0.14 | 4.02 ± 0.35 | 12.95 ± 1.35 | 8.66 ± 0.48 | 10.12 ± 0.74 | 34.31 ± 0.10 | |
Johnson, 2022 [37] | Copper (ii)–dithiacyclam and copper (ii)–cyclam complexes bearing NSAIDs | 20.7 ± 0.2 | 12.5 ± 0.4 | Nt* 17 | 57.1 ± 0.9 | 92.2 ± 1.2 | 57.2 ± 1.0 | |
Studies Examining Osteosarcoma | ||||||||
First author | Complex | U2OS | U2OS-MTX 3 | OSC-osteosphere 4 | ||||
Passeri, 2022 [35] | Nickel (II)–flufenamic acid complexes with 4,7-diphenyl-1,10-phenanthroline | 25.16 ± 0.40 | 26.90 ± 0.71 | 2.97 ± 0.04 | ||||
Studies Examining Rhabdomyosarcoma | ||||||||
First author | Complex | MCF-7 CD44− 5 | MCF-7 CD44+ 6 | RD CD133− 7 | RD CD133+ 8 | |||
Zajac, 2020 [44] | cis,trans,cis-[Pt(NH3)2(OH)(cinn)Cl2] (1) cis,trans,cis-[Pt(NH3)2(cinn)2Cl2] (2) | 12 ± 2 0.6 ± 0.1 | 17 ± 1 0.8 ± 0.1 | 8.4 ± 0.1 0.22 ± 0.04 | 12.0 ± 0.7 0.31 ± 0.06 | |||
First author | Complex | MRC-5 9 | DR 10 | |||||
Markova, 2022 [36] | Ir (III) compound photoactivated by visible light of the type [Ir(C^N)2(dppz)][PF6] where C^N = 1-methyl-2-(2′-thienyl)benzimidazole | 0.8 ± 0.1 | 0.046 ± 0.002 | |||||
Studies Examining Glioblastoma Multiforme | ||||||||
First author | Complex | GSC-3# 11 | GSC-12# 12 | GSC-18# 13 | U87 | U251 | HAC | 293T |
Peng, 2020 [40] | Ir (III) (1) Ir (III) (2) |
9.05 ± 0.9 7.55 ± 0.8 |
5.26 ± 0.5 5.40 ± 0.5 |
7.14 ± 0.7 8.80 ± 0.78 |
20.58 ± 2.1 31.04 ± 3.2 |
20.66 ± 2.2 27.15 ± 2.8 |
29.44 ± 3.0 27.87 ± 2.5 |
28.71 ± 2.8 26.25 ± 2.6 |
Studies Examining Colorectal Cancer | ||||||||
First author | Complex | HT-29 | MIAPaCa-2 | HepG2 | MDA-MB-231 | |||
Acharya, 2020 [41] | Ru (II)–p-cymene complex of an imidazole-mesalazine Schiff base (I) Ru (II)–p-cymene complex of an imidazole-mesalazine Schiff base (II) |
3.2 ± 0.3 2.6 ± 0.3 |
2.8 ± 0.1 2.3 ± 0.2 |
2.9 ± 0.3 2.4 ± 0.4 |
2.9 ± 0.4 2.2 ± 0.2 | |||
Studies Examining Lung Cancer | ||||||||
First author | Complex | A549 | A549-MCTSs 14 | |||||
Casagrande, 2023 [32] | Dinuclear gold(I) carbene complexes with IPr and diphosphane ligands (Dppe, Dppp, DCyPA) | 0.13 ± 0.05 | 0.95 µM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, A.C.M.; Baptista, L.E.C.V.; Couto, M.N.A.; Kanashiro, M.M. Preclinical Trials of Cancer Stem Cells Targeted by Metal-Based Coordination Complexes: A Systematic Review. Pharmaceutics 2025, 17, 931. https://doi.org/10.3390/pharmaceutics17070931
Bezerra ACM, Baptista LECV, Couto MNA, Kanashiro MM. Preclinical Trials of Cancer Stem Cells Targeted by Metal-Based Coordination Complexes: A Systematic Review. Pharmaceutics. 2025; 17(7):931. https://doi.org/10.3390/pharmaceutics17070931
Chicago/Turabian StyleBezerra, Ana Caroline Mafra, Lucas Elohim Cardoso Viana Baptista, Maria Núbia Alencar Couto, and Milton Masahiko Kanashiro. 2025. "Preclinical Trials of Cancer Stem Cells Targeted by Metal-Based Coordination Complexes: A Systematic Review" Pharmaceutics 17, no. 7: 931. https://doi.org/10.3390/pharmaceutics17070931
APA StyleBezerra, A. C. M., Baptista, L. E. C. V., Couto, M. N. A., & Kanashiro, M. M. (2025). Preclinical Trials of Cancer Stem Cells Targeted by Metal-Based Coordination Complexes: A Systematic Review. Pharmaceutics, 17(7), 931. https://doi.org/10.3390/pharmaceutics17070931