Electroporation- and Liposome-Mediated Co-Transfection of Single and Multiple Plasmids
Abstract
1. Introduction
2. Material and Methods
2.1. Mathematical Models
2.2. Cell Culture
2.3. Plasmid Preparation
2.4. Electroporation
2.5. Lipofection
2.6. Spectral Flow Cytometry
2.7. Relative Fluorescence Intensity
2.8. Sorting
2.9. qPCR for Plasmid Copy Number
2.10. Cytotoxicity
2.11. Statistical Analyses
3. Results
3.1. Statistical Modeling
3.2. Transfection Efficiency Based on Transgene Expression Following Plasmid Delivery
3.2.1. Electroporation of a Single Plasmid
3.2.2. Lipofection of a Single Plasmid
3.2.3. Electroporation of Multiple Plasmids
3.2.4. Lipoplex Transfection of Multiple Plasmids
3.3. Cytotoxicity
3.4. Plasmid Copy Number
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardarelli, F.; Digiacomo, L.; Marchini, C.; Amici, A.; Salomone, F.; Fiume, G.; Rossetta, A.; Gratton, E.; Pozzi, D.; Caracciolo, G. The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Sci. Rep. 2016, 6, 25879. [Google Scholar] [CrossRef] [PubMed]
- González-Cuevas, J.A.; Argüello, R.; Florentin, M.; André, F.M.; Mir, L.M. Experimental and Theoretical Brownian Dynamics Analysis of Ion Transport During Cellular Electroporation of E. coli Bacteria. Ann. Biomed. Eng. 2024, 52, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Pérez, G.; Nogales, A.; Martín, V.; Almazán, F.; Martínez-Sobrido, L. Reverse Genetic Approaches for the Generation of Recombinant Zika Virus. Viruses 2018, 10, 597. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Riaño, E.; Cheng, B.Y.H.; Carlos de la Torre, J.; Martínez-Sobrido, L. Arenavirus reverse genetics for vaccine development. J. Gen. Virol. 2013, 94, 1175–1188. [Google Scholar] [CrossRef]
- Hou, Y.J.; Okuda, K.; Edwards, C.E.; Martinez, D.R.; Asakura, T.; Dinnon, K.H., 3rd; Kato, T.; Lee, R.E.; Yount, B.L.; Mascenik, T.M.; et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020, 182, 429–446.e14. [Google Scholar] [CrossRef]
- Torii, S.; Ono, C.; Suzuki, R.; Morioka, Y.; Anzai, I.; Fauzyah, Y.; Maeda, Y.; Kamitani, W.; Fukuhara, T.; Matsuura, Y. Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction. Cell Rep. 2021, 35, 109014. [Google Scholar] [CrossRef]
- Xie, X.; Lokugamage, K.G.; Zhang, X.; Vu, M.N.; Muruato, A.E.; Menachery, V.D.; Shi, P.-Y. Engineering SARS-CoV-2 using a reverse genetic system. Nat. Protoc. 2021, 16, 1761–1784. [Google Scholar] [CrossRef]
- Park, H.-J.; Shin, J.; Kim, J.; Cho, S.-W. Nonviral delivery for reprogramming to pluripotency and differentiation. Arch. Pharm. Res. 2014, 37, 107–119. [Google Scholar] [CrossRef]
- Hayes, M.; Zavazava, N. Strategies to Generate Induced Pluripotent Stem Cells BT—Embryonic Stem Cell Immunobiology: Methods and Protocols; Zavazava, N., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 77–92. [Google Scholar]
- Schlaeger, T.M.; Daheron, L.; Brickler, T.R.; Entwisle, S.; Chan, K.; Cianci, A.; DeVine, A.; Ettenger, A.; Fitzgerald, K.; Godfrey, M.; et al. A comparison of non-integrating reprogramming methods. Nat. Biotechnol. 2015, 33, 58–63. [Google Scholar] [CrossRef]
- Mansouri, M.; Berger, P. Multigene delivery in mammalian cells: Recent advances and applications. Biotechnol. Adv. 2018, 36, 871–879. [Google Scholar] [CrossRef]
- Mansouri, M.; Berger, P. Strategies for multigene expression in eukaryotic cells. Plasmid 2014, 75, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Bhang, D.H.; Beede, A.; Huang, T.L.; Stripp, B.R.; Bloch, K.D.; Wagers, A.J.; Tseng, Y.-H.; Ryeom, S.; Kim, C.F. Lung Stem Cell Differentiation in Mice Directed by Endothelial Cells via a BMP4-NFATc1-Thrombospondin-1 Axis. Cell 2014, 156, 440–455. [Google Scholar] [CrossRef] [PubMed]
- Kozisek, T.; Samuelson, L.; Hamann, A.; Pannier, A.K. Systematic comparison of nonviral gene delivery strategies for efficient co-expression of two transgenes in human mesenchymal stem cells. J. Biol. Eng. 2023, 17, 76. [Google Scholar] [CrossRef] [PubMed]
- Ayyadevara, V.S.S.A.; Roh, K.-H. Calcium enhances polyplex-mediated transfection efficiency of plasmid DNA in Jurkat cells. Drug Deliv. 2020, 27, 805–815. [Google Scholar] [CrossRef]
- de Wolf, H.K.; Johansson, N.; Thong, A.-T.; Snel, C.J.; Mastrobattista, E.; Hennink, W.E.; Storm, G. Plasmid CpG depletion improves degree and duration of tumor gene expression after intravenous administration of polyplexes. Pharm. Res. 2008, 25, 1654–1662. [Google Scholar] [CrossRef]
- Hattori, Y.; Nakamura, M.; Takeuchi, N.; Tamaki, K.; Shimizu, S.; Yoshiike, Y.; Taguchi, M.; Ohno, H.; Ozaki, K.I.; Onishi, H. Effect of cationic lipid in cationic liposomes on siRNA delivery into the lung by intravenous injection of cationic lipoplex. J. Drug Target. 2019, 27, 217–227. [Google Scholar] [CrossRef]
- Peletta, A.; Prompetchara, E.; Tharakhet, K.; Kaewpang, P.; Buranapraditkun, S.; Techawiwattanaboon, T.; Jbilou, T.; Krangvichian, P.; Sirivichayakul, S.; Manopwisedjaroen, S.; et al. DNA Vaccine Administered by Cationic Lipoplexes or by In Vivo Electroporation Induces Comparable Antibody Responses against SARS-CoV-2 in Mice. Vaccines 2021, 9, 874. [Google Scholar] [CrossRef]
- Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M.; et al. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013, 31, 638–646. [Google Scholar] [CrossRef]
- Hald Albertsen, C.; Kulkarni, J.A.; Witzigmann, D.; Lind, M.; Petersson, K.; Simonsen, J.B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 2022, 188, 114416. [Google Scholar] [CrossRef]
- Kauffman, K.J.; Webber, M.J.; Anderson, D.G. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release 2016, 240, 227–234. [Google Scholar] [CrossRef]
- Rapaka, H.; Manturthi, S.; Arjunan, P.; Venkatesan, V.; Thangavel, S.; Marepally, S.; Patri, S.V. Influence of Hydrophobicity in the Hydrophilic Region of Cationic Lipids on Enhancing Nucleic Acid Delivery and Gene Editing. ACS Appl. Bio Mater. 2022, 5, 1489–1500. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Suzuki, K.; Hirschler-Laszkiewicz, I.; Rothblum, L.I. Paradoxical Effect of Eukaryotic Expression Vectors on Reporters. BioTechniques 2002, 33, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Kim, D.S.; Chung, K.H.; Park, Y.S. Inhibition of angiogenesis and tumor progression by hydrodynamic cotransfection of angiostatin K1-3, endostatin, and saxatilin genes. Cancer Gene Ther. 2006, 13, 563–571. [Google Scholar] [CrossRef]
- Cervia, L.D.; Yuan, F. Current Progress in Electrotransfection as a Nonviral Method for Gene Delivery. Mol. Pharm. 2018, 15, 3617–3624. [Google Scholar] [CrossRef]
- Escoffre, J.-M.; Portet, T.; Wasungu, L.; Teissié, J.; Dean, D.; Rols, M.-P. What is (Still not) Known of the Mechanism by Which Electroporation Mediates Gene Transfer and Expression in Cells and Tissues. Mol. Biotechnol. 2009, 41, 286–295. [Google Scholar] [CrossRef]
- Kotnik, T.; Rems, L.; Tarek, M.; Miklavčič, D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu. Rev. Biophys. 2019, 48, 63–91. [Google Scholar] [CrossRef] [PubMed]
- Hodges, B.L.; Taylor, K.M.; Joseph, M.F.; Bourgeois, S.A.; Scheule, R.K. Long-term Transgene Expression from Plasmid DNA Gene Therapy Vectors Is Negatively Affected by CpG Dinucleotides. Mol. Ther. 2004, 10, 269–278. [Google Scholar] [CrossRef]
- De Marco Garcia, N.V.; Fishell, G. Subtype-selective electroporation of cortical interneurons. J. Vis. Exp. 2014, 90, e51518. [Google Scholar] [CrossRef]
- Gazdhar, A.; Temuri, A.; Knudsen, L.; Gugger, M.; Schmid, R.A.; Ochs, M.; Geiser, T. Targeted Gene Transfer of Hepatocyte Growth Factor to Alveolar Type II Epithelial Cells Reduces Lung Fibrosis in Rats. Hum. Gene Ther. 2012, 24, 105–116. [Google Scholar] [CrossRef]
- Pucihar, G.; Krmelj, J.; Reberšek, M.; Napotnik, T.B.; Miklavčič, D. Equivalent Pulse Parameters for Electroporation. IEEE Trans. Biomed. Eng. 2011, 58, 3279–3288. [Google Scholar] [CrossRef]
- Byron, C.R.; DeWitt, M.R.; Latouche, E.L.; Davalos, R.V.; Robertson, J.L. Treatment of Infiltrative Superficial Tumors in Awake Standing Horses Using Novel High-Frequency Pulsed Electrical Fields. Front. Vet. Sci. 2019, 6, 265. [Google Scholar] [CrossRef]
- Deipolyi, A.R.; Golberg, A.; Yarmush, M.L.; Arellano, R.S.; Oklu, R. Irreversible electroporation: Evolution of a laboratory technique in interventional oncology. Diagn. Interv. Radiol. 2014, 20, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Geboers, B.; Scheffer, H.J.; Graybill, P.M.; Ruarus, A.H.; Nieuwenhuizen, S.; Puijk, R.S.; van den Tol, P.M.; Davalos, R.V.; Rubinsky, B.; de Gruijl, T.D.; et al. High-Voltage Electrical Pulses in Oncology: Irreversible Electroporation, Electrochemotherapy, Gene Electrotransfer, Electrofusion, and Electroimmunotherapy. Radiology 2020, 295, 254–272. [Google Scholar] [CrossRef] [PubMed]
- Haltiwanger, S. 5—Why electroporation is a useful technique for cancer treatments. In Electroporation-Based Therapies for Cancer; Sundararajan, R., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 103–125. [Google Scholar]
- Partridge, B.R.; O’Brien, T.J.; Lorenzo, M.F.; Coutermarsh-Ott, S.L.; Barry, S.L.; Stadler, K.; Muro, N.; Meyerhoeffer, M.; Allen, I.C.; Davalos, R.V.; et al. High-Frequency Irreversible Electroporation for Treatment of Primary Liver Cancer: A Proof-of-Principle Study in Canine Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2020, 31, 482–491.e4. [Google Scholar] [CrossRef]
- Shen, J.; Pan, P.; Hu, X.; Zhao, J.; Wu, H. Safety and Efficacy of Irreversible Electroporation in Locally Advanced Pancreatic Cancer: An Evaluation from a Surgeon’s Perspective. Cancers 2022, 14, 5677. [Google Scholar] [CrossRef] [PubMed]
- Camarillo, I.G.; Xiao, F.; Madhivanan, S.; Salameh, T.; Nichols, M.; Reece, L.M.; Leary, J.F.; Otto, K.; Natarajan, A.; Ramesh, A.; et al. 4—Low and high voltage electrochemotherapy for breast cancer: An in vitro model study. In Electroporation-Based Therapies for Cancer; Sundararajan, R., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 55–102. [Google Scholar]
- Campana, L.G.; Edhemovic, I.; Soden, D.; Perrone, A.M.; Scarpa, M.; Campanacci, L.; Cemazar, M.; Valpione, S.; Miklavčič, D.; Mocellin, S.; et al. Electrochemotherapy—Emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. Eur. J. Surg. Oncol. 2019, 45, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Gothelf, A.; Mir, L.M.; Gehl, J. Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 2003, 29, 371–387. [Google Scholar] [CrossRef]
- Lisec, B.; Markelc, B.; Ursic Valentinuzzi, K.; Sersa, G.; Cemazar, M. The effectiveness of calcium electroporation combined with gene electrotransfer of a plasmid encoding IL-12 is tumor type-dependent. Front. Immunol. 2023, 14, 1189960. [Google Scholar] [CrossRef]
- Dean, D.A. Import of plasmid DNA into the nucleus is sequence specific. Exp. Cell Res. 1997, 230, 293–302. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, X.; Song, Y.K.; Vollmer, R.; Stolz, D.B.; Gasiorowski, J.Z.; Dean, D.A.; Liu, D. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther. 2004, 11, 675–682. [Google Scholar] [CrossRef]
- Gasiorowski, J.Z.; Dean, D.A. Postmitotic Nuclear Retention of Episomal Plasmids Is Altered by DNA Labeling and Detection Methods. Mol. Ther. 2005, 12, 460–467. [Google Scholar] [CrossRef]
- Vaughan, E.E.; Dean, D.A. Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol. Ther. 2006, 13, 422–428. [Google Scholar] [CrossRef]
- Badding, M.A.; Lapek, J.D.; Friedman, A.E.; Dean, D.A. Proteomic and functional analyses of protein-DNA complexes during gene transfer. Mol. Ther. 2013, 21, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Materna, S.C.; Marwan, W. Estimating the number of plasmids taken up by a eukaryotic cell during transfection and evidence that antisense RNA abolishes gene expression in Physarum polycephalum. FEMS Microbiol. Lett. 2005, 243, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.; Yamamura, K.; Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991, 108, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Novo, D. A comparison of spectral unmixing to conventional compensation for the calculation of fluorochrome abundances from flow cytometric data. Cytom. Part A 2022, 101, 885–891. [Google Scholar] [CrossRef]
- Ishii, K.; Hashimoto-Gotoh, T.; Matsubara, K. Random replication and random assortment model for plasmid incompatibility in bacteria. Plasmid 1978, 1, 435–445. [Google Scholar] [CrossRef]
- Projan, S.J.; Novick, R.P. Reciprocal intrapool variation in plasmid copy numbers: A characteristic of segregational incompatibility. Plasmid 1984, 12, 52–60. [Google Scholar] [CrossRef]
- Wang, L.; Chang, C.-C.; Sylvers, J.; Yuan, F. A statistical framework for determination of minimal plasmid copy number required for transgene expression in mammalian cells. Bioelectrochemistry 2021, 138, 107731. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, C.-C.; Yuan, F. Copy number of naked DNA delivered into nucleus of mammalian cells by electrotransfection. Bioelectrochemistry 2023, 153, 108491. [Google Scholar] [CrossRef]
- Yuan, H.; Jiang, A.; Fang, H.; Chen, Y.; Guo, Z. Optical properties of natural small molecules and their applications in imaging and nanomedicine. Adv. Drug Deliv. Rev. 2021, 179, 113917. [Google Scholar] [CrossRef] [PubMed]
- Hollon, T.; Yoshimura, F.K. Variation in enzymatic transient gene expression assays. Anal. Biochem. 1989, 182, 411–418. [Google Scholar] [CrossRef]
- Raikov, D. On the composition of Poisson laws. C. R. Acad. Sci. USSR 1937, 14, 9–11. [Google Scholar]
- Lesueur, L.L.; Mir, L.M.; André, F.M. Overcoming the Specific Toxicity of Large Plasmids Electrotransfer in Primary Cells In Vitro. Mol. Ther. Nucleic Acids 2016, 5, e291. [Google Scholar] [CrossRef] [PubMed]
- Tousignant, J.D.; Gates, A.L.; Ingram, L.A.; Johnson, C.L.; Nietupski, J.B.; Cheng, S.H.; Eastman, S.J.; Scheule, R.K. Comprehensive Analysis of the Acute Toxicities Induced by Systemic Administration of Cationic Lipid:Plasmid DNA Complexes in Mice. Hum. Gene Ther. 2000, 11, 2493–2513. [Google Scholar] [CrossRef]
- Yew, N.S.; Zhao, H.; Przybylska, M.; Wu, I.H.; Tousignant, J.D.; Scheule, R.K.; Cheng, S.H. CpG-Depleted Plasmid DNA Vectors with Enhanced Safety and Long-Term Gene Expression in Vivo. Mol. Ther. 2002, 5, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, D.; Barbeau, B.; Léger, C.; Rassart, E. Experimental bias in the evaluation of the cellular transient expression in DNA co-transfection experiments. Cell. Mol. Biol. Res. 1995, 41, 155–159. [Google Scholar]
- Roth, D.B. Amplifying Mechanisms of Lymphomagenesis. Mol. Cell 2002, 10, 1–2. [Google Scholar] [CrossRef]
- Huszár, T.; Mucsi, I.; Terebessy, T.; Masszi, A.; Adamkó, S.; Jeney, C.; Rosivall, L. The use of a second reporter plasmid as an internal standard to normalize luciferase activity in transient transfection experiments may lead to a systematic error. J. Biotechnol. 2001, 88, 251–258. [Google Scholar] [CrossRef]
- Di Blasi, R.; Marbiah, M.M.; Siciliano, V.; Polizzi, K.; Ceroni, F. A call for caution in analysing mammalian co-transfection experiments and implications of resource competition in data misinterpretation. Nat. Commun. 2021, 12, 2545. [Google Scholar] [CrossRef]
- Kreiss, P.; Mailhe, P.; Scherman, D.; Pitard, B.; Cameron, B.; Rangara, R.; Aguerre-Charriol, O.; Airiau, M.; Crouzet, J. Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res. 1999, 27, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, T.N.; Raiker, R.S.; Jay, S.M. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Mol. Pharm. 2015, 12, 3650–3657. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.; Haselton, F.; Giorgio, T. Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J. Biol. Chem. 1997, 272, 25641–25647. [Google Scholar] [CrossRef]
- Batard, P.; Jordan, M.; Wurm, F. Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection. Gene 2001, 270, 61–68. [Google Scholar] [CrossRef]
- Cohen, R.N.; van der Aa, M.A.; Macaraeg, N.; Lee, A.P.; Szoka, F.C., Jr. Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. J. Control. Release 2009, 135, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Eder, B.A.; Lin, J.; Li, S.; Zhu, Y.; Wang, T.-H.; Guo, T.; Mao, H.-Q. Liter-scale manufacturing of shelf-stable plasmid DNA/PEI transfection particles for viral vector production. Mol. Ther. Methods Clin. Dev. 2024, 32, 101194. [Google Scholar] [CrossRef]
- Sabin, J.; Alatorre-Meda, M.; Miñones, J.; Domínguez-Arca, V.; Prieto, G. New insights on the mechanism of polyethylenimine transfection and their implications on gene therapy and DNA vaccines. Colloids Surf. B Biointerfaces 2022, 210, 112219. [Google Scholar] [CrossRef]
Sample | Plasmid | ||||
---|---|---|---|---|---|
eCFP | eGFP | mOrange | mCherry | Total DNA | |
CFP only | 2 µg | - | - | - | 2 µg |
GFP only | - | 2 µg | - | - | 2 µg |
mOrange only | - | - | 2 µg | - | 2 µg |
mCherry only | - | - | - | 2 µg | 2 µg |
Triple transfection (constant mass) | 0.67 µg | 0.67 µg | 0.67 µg | - | 2 µg |
Triple transfection (additive) | 2 µg | 2 µg | 2 µg | - | 6 µg |
Quadruple transfection (constant mass) | 0.5 µg | 0.5 µg | 0.5 µg | 0.5 µg | 2 µg |
Quadruple transfection (additive) | 2 µg | 2 µg | 2 µg | 2 µg | 8 µg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baliga, U.K.; Gurunian, A.; Nogales, A.; Martinez-Sobrido, L.; Dean, D.A. Electroporation- and Liposome-Mediated Co-Transfection of Single and Multiple Plasmids. Pharmaceutics 2025, 17, 905. https://doi.org/10.3390/pharmaceutics17070905
Baliga UK, Gurunian A, Nogales A, Martinez-Sobrido L, Dean DA. Electroporation- and Liposome-Mediated Co-Transfection of Single and Multiple Plasmids. Pharmaceutics. 2025; 17(7):905. https://doi.org/10.3390/pharmaceutics17070905
Chicago/Turabian StyleBaliga, Uday K., Anthony Gurunian, Aitor Nogales, Luis Martinez-Sobrido, and David A. Dean. 2025. "Electroporation- and Liposome-Mediated Co-Transfection of Single and Multiple Plasmids" Pharmaceutics 17, no. 7: 905. https://doi.org/10.3390/pharmaceutics17070905
APA StyleBaliga, U. K., Gurunian, A., Nogales, A., Martinez-Sobrido, L., & Dean, D. A. (2025). Electroporation- and Liposome-Mediated Co-Transfection of Single and Multiple Plasmids. Pharmaceutics, 17(7), 905. https://doi.org/10.3390/pharmaceutics17070905