pH Gradient-Driven Loading of Doxorubicin into Niosomes: A Comparative Study Using Bromocresol Green as a Visual Indicator
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Niosomes Preparation
2.3. Drug Loading
2.3.1. Bromocresol Green, BCG, Loading
2.3.2. Doxorubicin Loading
2.4. Bromocresol Green Lambda Max and Calibration Graph
2.5. Doxorubicin Lambda Max and Calibration Graph
2.6. Bromocresol Green Entrapment Efficiency
2.7. Measuring Doxorubicin Entrapment Efficiency
2.8. Physical Size Using Zetasizer
2.9. Niosomes Morphology
2.10. Statistical Analysis
3. Results and Discussion
3.1. Finding Lambda Max and Calibration Graph
3.2. Passive Loading of BCG into Niosomes
3.3. Studying the Ability of Niosomes to Form a pH Gradient Using BCG and the Effect of the pH Gradient on the %EE of BCG
3.3.1. Formulations of pH Gradient Niosomes Containing Span 60 or Span 40 with Cholesterol Only (F4 and F5)
3.3.2. Effect of Co-Surfactant Used and Niosomal Size on Entrapment Efficiency Using pH Gradient
3.3.3. Rationalising the Effect of Co-Surfactants on Niosomal Stability During pH Gradient Loading
3.3.4. Co-Surfactants Cannot Maintain a pH Gradient Without Niosomes
3.3.5. Other Uses of BCG in Studying Niosomes
3.3.6. Addition of BCG and Actively Loading It into Niosomes After Optimising Niosomes
3.3.7. Main Surfactants Span 60 vs. Span 40
3.3.8. Effect of Different Buffers on BCG Entrapment Efficiency
- Changing acid buffer
- b.
- Changing alkaline buffer
3.3.9. Effect of Temperature on BCG Loading
3.3.10. Effect of Different Ratios of Cholesterol to Span 60 on Active Loading of BCG and Its %EE
3.3.11. Concluding Remarks on the Use of Bromocresol Green in pH Gradient Studies
3.4. Studying the Entrapment of Doxorubicin Using pH Gradient
3.4.1. Passive Loading of Doxorubicin into Niosomes
3.4.2. pH Gradient Loading of Doxorubicin into Niosomes
3.4.3. Effect of Ammonium Sulfate Concentration
3.4.4. Effect of Percentage of Cholesterol in the Formulation
3.4.5. Effect of Extrusion on Size and %EE
4. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liga, S.; Paul, C.; Moacă, E.A.; Péter, F. Niosomes: Composition, Formulation Techniques, and Recent Progress as Delivery Systems in Cancer Therapy. Pharmaceutics 2024, 16, 223. [Google Scholar] [CrossRef] [PubMed]
- Hadjipour, A.; Essa, E.A.; Elkordy, A.A. A glance into factors affecting the possible combined entrapment of curcumin and methylene blue into niosomal formulations as a potential anticancer therapy. J. Drug Deliv. Sci. Technol. 2024, 100, 106120. [Google Scholar] [CrossRef]
- Elkordy, A.A.; Chaw, C.S.; Yeo, L.K. Effects of preparation methods on the characteristics of niosomes. Br. J. Pharm. [Internet] 2019, 4, e616. [Google Scholar] [CrossRef]
- Moammeri, A.; Chegeni, M.M.; Sahrayi, H.; Ghafelehbashi, R.; Memarzadeh, F.; Mansouri, A.; Akbarzadeh, I.; Abtahi, M.S.; Hejabi, F.; Ren, Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater. Today Bio 2023, 23, 100837. [Google Scholar] [CrossRef]
- Aboubakr, E.M.; Mohammed, H.A.; Hassan, A.S.; Mohamed, H.B.; Dosoky, M.I.E.; Ahmad, A.M. Glutathione-loaded non-ionic surfactant niosomes: A new approach to improve oral bioavailability and hepatoprotective efficacy of glutathione. Nanotechnol. Rev. 2022, 11, 117–137. [Google Scholar] [CrossRef]
- Gao, S.; Sui, Z.; Jiang, Q.; Jiang, Y. Functional Evaluation of Niosomes Utilizing Surfactants in Nanomedicine Applications. Int. J. Nanomed. 2024, 19, 10283–10305. [Google Scholar] [CrossRef] [PubMed]
- Fadaei, M.S.; Fadaei, M.R.; Kheirieh, A.E.; Rahmanian-Devin, P.; Dabbaghi, M.M.; Nazari Tavallaei, K.; Shafaghi, A.; Hatami, H.; Rahimi, V.B.; Nokhodchi, A.; et al. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI J. 2024, 23, 212–263. [Google Scholar] [PubMed]
- Durak, S.; Esmaeili Rad, M.; Alp Yetisgin, A.; Eda Sutova, H.; Kutlu, O.; Cetinel, S.; Zarrabi, A. Niosomal Drug Delivery Systems for Ocular Disease—Recent Advances and Future Prospects. Nanomaterials 2020, 10, 1191. [Google Scholar] [CrossRef] [PubMed]
- Mawazi, S.M.; Ge, Y.; Widodo, R.T. Niosome Preparation Techniques and Structure—An Illustrated Review. Pharmaceutics 2025, 17, 67. [Google Scholar] [CrossRef]
- Ugorji, O.L.; Umeh, O.N.C.; Agubata, C.O.; Adah, D.; Obitte, N.C.; Chukwu, A. The effect of noisome preparation methods in encapsulating 5-fluorouracil and real time cell assay against HCT-116 colon cancer cell line. Heliyon 2022, 8, e12369. [Google Scholar] [CrossRef]
- Yeo, L.K.; Chaw, C.S.; Elkordy, A.A. The Effects of Hydration Parameters and Co-Surfactants on Methylene Blue-Loaded Niosomes Prepared by the Thin Film Hydration Method. Pharmaceuticals 2019, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.Q.; Qi, X.R.; Xiang, B. Preparation and Characterization of Drug Liposomes by pH-Gradient Method [Internet]. In Liposome-Based Drug Delivery Systems; Lu, W.L., Qi, X.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 47–58. [Google Scholar] [CrossRef]
- (PDF) Protolytic Properties of Dyes Embedded in Gelatin Films. ResearchGate [Internet]. 2024. Available online: https://www.researchgate.net/publication/228821688_Protolytic_Properties_of_Dyes_Embedded_in_Gelatin_Films (accessed on 3 April 2025).
- Bromocresol Green—Bromocresol Green [Internet]. Available online: https://www.sigmaaldrich.com/FR/en/substance/bromocresolgreen6980176608 (accessed on 3 April 2025).
- Shokrollahi, A.; Firoozbakht, F. Determination of the acidity constants of neutral red and bromocresol green by solution scanometric method and comparison with spectrophotometric results. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 13–20. [Google Scholar] [CrossRef]
- García, M.C.; Naitlho, N.; Calderón-Montaño, J.M.; Drago, E.; Rueda, M.; Longhi, M.; Rabasco, A.M.; López-Lázaro, M.; Prieto-Dapena, F.; González-Rodríguez, M.L. Cholesterol Levels Affect the Performance of AuNPs-Decorated Thermo-Sensitive Liposomes as Nanocarriers for Controlled Doxorubicin Delivery. Pharmaceutics 2021, 13, 973. [Google Scholar] [CrossRef]
- Aloss, K.; Hamar, P. Recent Preclinical and Clinical Progress in Liposomal Doxorubicin. Pharmaceutics 2023, 15, 893. [Google Scholar] [CrossRef] [PubMed]
- d’Avanzo, N.; Sidorenko, V.; Simón-Gracia, L.; Rocchi, A.; Ottonelli, I.; Ruozi, B.; Longo, F.; Celia, C.; Teesalu, T. C-end rule peptide-guided niosomes for prostate cancer cell targeting. J. Drug Deliv. Sci. Technol. 2024, 91, 105162. [Google Scholar] [CrossRef]
- (PDF) Doxorubicin: An Overview of the Anti-Cancer and Chemoresistance Mechanisms OPEN ACCESS [Internet]. ResearchGate. Available online: https://www.researchgate.net/publication/346969867_Doxorubicin_An_Overview_of_the_Anti-Cancer_and_Chemoresistance_Mechanisms_OPEN_ACCESS (accessed on 3 April 2025).
- Yan, H.; Zhang, Z.; Jia, X.; Song, J. d-α-Tocopheryl polyethylene glycol succinate/Solutol HS 15 mixed micelles for the delivery of baohuoside I against non-small-cell lung cancer: Optimization and in vitro, in vivo evaluation. Int. J. Nanomed. 2016, 11, 4563–4571. [Google Scholar] [CrossRef]
- Katrajkar, K.; Darji, L.; Kethavath, D.; Thakkar, S.; Kshirsagar, B.; Misra, M. Shedding light on interaction of so called inactive ingredients (excipients) with permeability-glycoprotein. J. Drug Deliv. Sci. Technol. 2019, 52, 531–552. [Google Scholar] [CrossRef]
- Downloads [Internet]. Available online: https://products.basf.com/basf/products/global/en/downloads (accessed on 5 April 2025).
- Mescheryakova, S.A.; Matlakhov, I.S.; Strokin, P.D.; Drozd, D.D.; Goryacheva, I.Y.; Goryacheva, O.A. Fluorescent Alloyed CdZnSeS/ZnS Nanosensor for Doxorubicin Detection. Biosensors 2023, 13, 596. [Google Scholar] [CrossRef]
- Hasani, M.; Sani, N.A.; Khodabakhshi, B.; Arabi, M.S.; Mohammadi, S.; Yazdani, Y. Encapsulation of Leflunomide (LFD) in a novel niosomal formulation facilitated its delivery to THP-1 monocytic cells and enhanced Aryl hydrocarbon receptor (AhR) nuclear translocation and activation. Daru 2019, 27, 635–644. [Google Scholar] [CrossRef]
- Hashemi Dehaghi, M.; Haeri, A.; Keshvari, H.; Abbasian, Z.; Dadashzadeh, S. Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods. Iran. J. Pharm. Res. 2017, 16, 413–422. [Google Scholar]
- Gabizon, A.A.; Gabizon-Peretz, S.; Modaresahmadi, S.; La-Beck, N.M. Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): An updated analysis and future perspective. BMJ Oncol. 2025, 4, e000573. Available online: https://bmjoncology.bmj.com/content/4/1/e000573 (accessed on 2 April 2025). [CrossRef]
- Yang, K.; Tran, K.; Salvati, A. Tuning Liposome Stability in Biological Environments and Intracellular Drug Release Kinetics. Biomolecules 2022, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Arslanov, V.V.; Krylov, D.I. Reassembly of the vesicular structure of niosomes after their destruction in a mechanical field. J. Colloid. Interface Sci. 2024, 662, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, N.; Cox, K.A.; McKenzie, C.A.; van Baarda, F.; Gallagher, R.C.; Karlsson, G.; Edwards, K.; Mayer, L.D.; Allen, C.; Bally, M.B. pH gradient loading of anthracyclines into cholesterol-free liposomes: Enhancing drug loading rates through use of ethanol. Biochim. Biophys. Acta (BBA)—Biomembr. 2004, 1661, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Thabet, Y.; Elsabahy, M.; Eissa, N.G. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods 2022, 199, 9–15. [Google Scholar] [CrossRef]
- Span® 60 CAS 1338-41-6 | 840121 [Internet]. Available online: https://www.merckmillipore.com/GB/en/product/Span-60,MDA_CHEM-840121 (accessed on 26 April 2025).
- (PDF) Nonionic Surfactant Vesicular Systems for Effective Drug Delivery—An Overview. ResearchGate [Internet], 2024. Available online: https://www.researchgate.net/publication/257741982_Nonionic_surfactant_vesicular_systems_for_effective_drug_delivery-An_overview (accessed on 6 April 2025).
- Annisa, R. Spanlastic as a Transdermal Drug Delivery System: A Systematic Review. Biomed. Pharmacol. J. 2025, 18, 447–457. [Google Scholar] [CrossRef]
- de Souza, H.M.R.; Guedes, J.S.; Freitas, R.H.C.N.; Gelves, L.G.V.; Fokoue, H.H.; Sant’Anna, C.M.R.; Barreiro, E.J.; Lima, L.M. Comparative chemical and biological hydrolytic stability of homologous esters and isosteres. J. Enzym. Inhib. Med. Chem. 2022, 37, 718–727. [Google Scholar] [CrossRef]
- Mohsen, A.M.; Wagdi, M.A.; Salama, A. Rutin loaded bilosomes for enhancing the oral activity and nephroprotective effects of rutin in potassium dichromate induced acute nephrotoxicity in rats. Sci. Rep. 2024, 14, 23799. [Google Scholar] [CrossRef]
- Sorbitan Monopalmitate—Span® 40 [Internet]. Available online: https://www.sigmaaldrich.com/FR/en/substance/sorbitanmonopalmitate4025726266579 (accessed on 26 April 2025).
- Fatima, M.T.; Islam, Z.; Ahmad, E.; Barreto, G.E.; Md Ashraf, G. Ionic gradient liposomes: Recent advances in the stable entrapment and prolonged released of local anesthetics and anticancer drugs. Biomed. Pharmacother. 2018, 107, 34–43. [Google Scholar] [CrossRef]
- Lambros, M.; Tran, T.H.; Fei, Q.; Nicolaou, M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022, 14, 972. [Google Scholar] [CrossRef]
- RLO: Acids Alkalis and Bases: Further Application [Internet]. Available online: https://www.nottingham.ac.uk/helmopen/rlos/biological-sciences/acid_base_further_app/page_two.html (accessed on 11 April 2025).
- HEPES Buffer, 7365-45-9, High-Purity, H3375, Sigma-Aldrich [Internet]. Available online: https://www.sigmaaldrich.com/FR/en/product/sigma/h3375 (accessed on 11 April 2025).
- Trizma Base, 77-86-1, High-Purity, T1503, Sigma-Aldrich [Internet]. Available online: https://www.sigmaaldrich.com/FR/en/product/sigma/t1503 (accessed on 11 April 2025).
- Al-Ghobashy, M.A. Electrophoretic behavior of charge regulated zwitter ionic buffers in covalently and dynamically coated fused silica capillaries. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 71–78. [Google Scholar] [CrossRef]
- Bi, H.; Xue, J.; Jiang, H.; Gao, S.; Yang, D.; Fang, Y.; Shi, K. Current developments in drug delivery with thermosensitive liposomes. Asian J. Pharm. Sci. 2019, 14, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Somjid, S.; Shinsuphan, N.; Temprom, L.; Krongsuk, S. Effects of cholesterol and temperature on structural properties and dynamic behavior of niosome bilayers with melatonin Inclusion: A Coarse-Grained simulation study. J. Mol. Liq. 2022, 368, 120686. [Google Scholar] [CrossRef]
- Chen, J. Preparation of Doxorubicin Liposomes by Remote Loading Method [Internet]. In Liposomes: Methods and Protocols; D’Souza, G.G.M., Zhang, H., Eds.; Springer: New York, NY, USA, 2023; pp. 95–101. [Google Scholar] [CrossRef]
- Roces, C.B.; Port, E.C.; Daskalakis, N.N.; Watts, J.A.; Aylott, J.W.; Halbert, G.W.; Perrie, Y. Rapid scale-up and production of active-loaded PEGylated liposomes. Int. J. Pharm. 2020, 586, 119566. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Tang, X.; Gui, Y.; Lu, S.; Song, Y.; Deng, Y. Impact of formulation parameters and circulation time on PEGylated liposomal doxorubicin related hand-foot syndrome. Int. J. Pharm. 2024, 665, 124659. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kang, B.; Yang, E.; Kim, K.; Kwak, M.K.; Chang, P.S.; Jung, H.S. Precise control of liposome size using characteristic time depends on solvent type and membrane properties. Sci. Rep. 2023, 13, 4728. [Google Scholar] [CrossRef]
- Fritze, A.; Hens, F.; Kimpfler, A.; Schubert, R.; Peschka-Süss, R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim. Biophys. Acta (BBA)—Biomembr. 2006, 1758, 1633–1640. [Google Scholar] [CrossRef]
Formulation Code | Co-Surfactant Used | Span Surfactant Used | Total Number of Moles of Ingredients (µmol) | Molar Ratio of Span Surfactant: Cholesterol: Co-Surfactant | Thin Film Hydration Buffer |
---|---|---|---|---|---|
F1 | Cremophor RH40 | Span 60 | 60 | 45:45:10 | 5 mL of Trizma (0.1 M, pH 9.0, 0.1 mg/mL BCG) |
F2 * | Cremophor ELP | Span 60 | 60 | 46.5:46.5:7.0 | 5 mL of Trizma (0.1 M, pH 9.0, 0.1 mg/mL BCG) |
F3 | Solutol HS-15 | Span 60 | 60 | 45:45:10 | 5 mL of Trizma (0.1 M, pH 9.0, 0.1 mg/mL BCG) |
F4 | N/A | Span 60 | 60 | 50:50:0 | 5 mL of Trizma (0.1 M, pH 9.0, 0.1 mg/mL BCG) |
F5 | N/A | Span 40 | 60 | 50:50:0 | 5 mL of Trizma (0.1 M, pH 9.0, 0.1 mg/mL BCG) |
F6 | Solutol HS-15 | Span 60 | 60 | 45:45:10 | 4.5 mL of Trizma (0.1 M, pH 9.0) |
F7 | Solutol HS-15 | Span 40 | 60 | 45:45:10 | 4.5 mL of Trizma (0.1 M, pH 9.0) |
F8 | Solutol HS-15 | Span 60 | 60 | 45:45:10 | 4.5 mL of Trizma (0.1 M, pH 9.0) |
F9 | Solutol HS-15 | Span 40 | 60 | 45:45:10 | 4.5 mL of Trizma (0.1 M, pH 9.0) |
F10 | Solutol HS-15 | Span 60 | 60 | 45:45:10 | 4.5 mL of HEPES (0.1 M, pH 8.0) |
F11 | Solutol HS-15 | Span 60 | 60 | 45:45:10 | 4.5 mL of HEPES (0.1 M, pH 8.0) |
F12 | Solutol HS-15 | Span 60 | 60 | 35:55:10 | 4.5 mL of Trizma (0.1 M, pH 9.0) |
F13 | Solutol HS-15 | Span 60 | 60 | 55:35:10 | 4.5 mL of Trizma (0.1 M, pH 9.0) |
Formulation Code | Molar Ratio of Span 60: Cholesterol: Solutol HS-15 | Total Number of Moles of Ingredients (µmol) | Hydration Buffer | External Buffer Exchange Method |
---|---|---|---|---|
F1-D | 45:45:10 | 120 | 5 mL of Trizma (0.1 M, pH 9.0) | N/A |
F2-D | 45:45:10 | 120 | 5 mL Ammonium sulfate (0.12 M) | Sephadex G50 (in PBS 1×) |
F3-D | 45:45:10 | 120 | 5 mL Ammonium sulfate (0.12 M) | Sephadex G50 (in Trizma 0.1 M) |
F4-D | 45:45:10 | 120 | 5 mL Ammonium sulfate (0.25 M) | Sephadex G50 (in Trizma 0.1 M) |
F5-D | 55:35:10 | 120 | 5 mL Ammonium sulfate (0.12 M) | Sephadex G50 (in Trizma 0.1 M) |
F5-D-E * | 55:35:10 | 120 | 5 mL Ammonium sulfate (0.12 M) | Sephadex G50 (in Trizma 0.1 M) |
Formulation | Before Sonication | After Sonication | ||||
---|---|---|---|---|---|---|
%EE (±SD) | Niosomes Size– d nm (±SD) | PDI (±SD) | %EE (±SD) | Niosomes Size– d nm (±SD) | PDI (±SD) | |
F1 | 3.92 ± 0.07 | 1631 ± 191.0 | 0.78 ± 0.28 | 2.37 ± 0.86 | 177.9 ± 8.28 | 0.52 ± 0.07 |
F2 | 4.30 ± 1.34 | 1687 ± 493.8 | 0.72 ± 0.18 | 2.55 ± 1.77 | 219.1 ± 39.38 | 0.46 ± 0.06 |
F3 | 4.99 ± 1.30 | 1171 ± 119.1 | 0.76 ± 0.09 | 0.00 | 159.6 ± 4.34 | 0.53 ± 0.03 |
Formulation | Before Sonication | After Sonication | ||||||
---|---|---|---|---|---|---|---|---|
Niosomes Size– d nm (±SD) | PDI (±SD) | %EE | Niosomes Size– d nm (±SD) | PDI (±SD) | %EE | |||
15 min * (±SD) | 60 min ** (±SD) | 15 min * (±SD) | 60 min ** (±SD) | |||||
F1 | 1631 ± 191.0 | 0.78 ± 0.28 | 55.73 ± 1.15 | 61.80 ± 1.53 | 177.9 ± 8.28 | 0.52 ± 0.07 | 15.57 ± 1.72 | 15.09 ± 2.74 |
F2 | 1687 ± 493.8 | 0.72 ± 0.18 | 41.45 ± 1.68 | 39.83 ± 1.74 | 219.1 ± 39.38 | 0.46 ±0.06 | 17.81 ± 4.48 | 13.90 ± 2.58 |
F3 | 1171 ± 119.1 | 0.76 ± 0.09 | 57.45 ± 1.97 | 49.47 ± 2.52 | 159.6 ± 4.34 | 0.53 ± 0.03 | 67.86 ± 4.26 | 42.02 ± 4.81 |
Formulation Code | Niosomes Size– d nm (±SD) | PDI (±SD) | %EE | |
---|---|---|---|---|
15 min * (±SD) | 60 min ** (±SD) | |||
F6 | 147.8 (±6.30) | 0.39 (±0.04) | 68.59 (±0.70) | 34.61 (±2.97) |
F7 | 226.9 (±16.08) | 0.37 (±0.04) | 53.30 (±2.88) | 28.53 (±7.91) |
F8 | 147.8 (±6.30) | 0.39 (±0.04) | 24.18 (±5.56) | 29.63 (±3.95) |
F9 | 226.9 (±16.08) | 0.37 (±0.04) | 14.86 (±0.56) | 24.34 (±3.04) |
Formulation | Niosomes Size– d nm (±SD) | PDI (±SD) | %EE (for HCl) | %EE (for Citric Acid) | ||
---|---|---|---|---|---|---|
15 min * (±SD) | 60 min ** (±SD) | 15 min * (±SD) | 60 min ** (±SD) | |||
F10 | 283.4 ± 34.08 | 0.38 ± 0.07 | 53.19 ± 2.90 | 72.85 ± 2.72 | - | - |
F11 | 283.4 ± 34.08 | 0.38 ± 0.07 | - | - | 25.92 ± 1.29 | 31.08 ± 1.27 |
Physical Property | HEPES | Trizma |
---|---|---|
Molar mass | 238.30 g/mol | 121.14 g/mol |
Water solubility | 70.36 g/100 mL | 67.80 g/100 mL |
Number of ionisable functional groups | 3 | 1 |
pKa of base | 7.5 and 3.0 | 8.1 |
pKa of acid | Always ionised | N/A |
Ionisation state at pH > 5.4 | At pH 8 > 50% of HEPES will be negatively charged, and the other 50% will be zwitterionic (neutral) | At pH 9, only ~10% will be ionised |
Ionisation state at pH < 3.8 | At pH 2.8–3.36 (i.e., after adding HCl or Citric acid), around 50% of HEPES will be positively charged, and the other 50% will be zwitterionic (neutral) | At pH < 3.8, 100% will be ionised |
Partition coefficient Octanol-water (Log Pow) | −3.85 | −2.31 |
Formulation | Niosomes Size– d nm (±SD) | PDI (±SD) | %EE (for HCl) at 40 °C | %EE (for Citric Acid) at 40 °C | ||
---|---|---|---|---|---|---|
10 min * (±SD) | 40 min ** (±SD) | 10 min * (±SD) | 40 min ** (±SD) | |||
F6 | 147.8 ± 6.30 | 0.39 ± 0.04 | 11.19 ± 2.49 | 2.46 ± 1.0 | - | - |
F7 | 226.9 ± 16.08 | 0.37 ± 0.04 | 19.59 ± 6.77 | 4.52 ± 5.34 | - | - |
F8 | 147.8 ± 6.30 | 0.39 ± 0.04 | - | - | 40.44 ± 7.79 | 23.56 ± 1.62 |
F9 | 226.90 ± 16.08 | 0.37 ± 0.04 | - | - | 26.60 ± 1.42 | 21.00 ± 1.10 |
Formulation | Before Sonication | After Sonication | %EE (for HCl) After Sonication | |||
---|---|---|---|---|---|---|
Niosomes Size– d nm (±SD) | PDI (±SD) | Niosomes Size– d nm (±SD) | PDI (±SD) | 15 min * (±SD) | 60 min ** (±SD) | |
F12 | 1394 ± 68.25 | 0.60 ± 0.12 | 320.9 ± 20.64 | 0.53 ± 0.10 | 66.52 ± 1.4 | 53.11 ± 4.86 |
F13 | 1390 ± 87.54 | 0.45 ± 0.16 | 148.4 ± 9.65 | 0.35 ± 0.07 | 59.77 ± 3.46 | 27.06 ± 6.50 |
Formulation | Niosomes’ Size After Sonication and Before Entrapment d nm (±SD) | PDI | Measuring Size and %EE at RT | Measuring Size and %EE at 60 °C | ||||||
---|---|---|---|---|---|---|---|---|---|---|
%EE (After 30 min) (±SD) | %EE (After 60 min) (±SD) | Niosomes Size– d nm (±SD) (After 60 min) | PDI (After 60 min) (±SD) | %EE (After 30 min) (±SD) | %EE (After 60 min) (±SD) | Niosomes Size– d nm (±SD) (After 60 min) | PDI (After 60 min) (±SD) | |||
F2-D | 384.6 ± 10.8 | 0.45 ± 0.08 | 28.07% ± 0.57 | 28.07 ± 0.57 | 389.2 ±48.3 | 0.35 ± 0.03 | 21.55 ± 2.41 | 22.33 ± 2.40 | 413.0 ± 31.82 | 0.36 (±0.05) |
F3-D | 360.0 ± 2.54 | 0.44 ± 0.02 | 55.44 ± 2.41 | 57.14 ± 3.85 | 367.3 ±18.8 | 0.46 ± 0.02 | 26.53 ± 3.85 | 32.31 ± 4.33 | 380.8 ± 10.59 | 0.37 (±0.04) |
Formulation | Niosomes’ Size After Sonication and Before Entrapment d nm (±SD) | PDI | Measuring Size and %EE at RT | Measuring Size and %EE at 60 °C | ||||||
---|---|---|---|---|---|---|---|---|---|---|
%EE (After 30 min) (±SD) | %EE (After 60 min) (±SD) | Niosomes Size– d nm (±SD) (After 60 min) | PDI (After 60 min) (±SD) | %EE (After 30 min) (±SD) | %EE (After 60 min) (±SD) | Niosomes Size– d nm (±SD) (After 60 min) | PDI (After 60 min) (±SD) | |||
F4-D | 389.1 (±30.26) | 0.51 ± 0.04 | 56.76 ± 0.42 | 56.47 ± 0 | 543.6 ± 8.752 | 0.44 ± 0.06 | 25.96 ± 3.44 | 27.56 ± 2.98 | 693.1 ± 29.68 | 0.45 (±0.05) |
Formulation | Niosomes’ Size After Sonication and Before Entrapment d nm (±SD) | PDI | Without Mixing | With Mixing | ||||||
---|---|---|---|---|---|---|---|---|---|---|
%EE (After 30 min) (±SD) | %EE (After 60 min) (±SD) | Niosomes Size– d nm (±SD) (After 60 min) | PDI (After 60 min) (±SD) | %EE (After 30 min) (±SD) | %EE (After 60 min) (±SD) | Niosomes Size– d nm (±SD) (After 60 min) | PDI (After 60 min) (±SD) | |||
F5-D | 473.5 ± 37.80 | 0.48 ± 0.08 | 64.93 ± 5.28 | 64.93 ± 5.28 | 464.8 ± 82.76 | 0.54 ± 0.09 | 62.69 ± 2.11 | 63.43 ± 3.17 | 456.9 ± 19.9 | 0.50 ± 0.03 |
Formulation | Niosomes’ Size After Extrusion d nm (±SD) | PDI | %EE After 60 min | Niosomes Size– d nm (±SD) (After 60 min) | PDI After 60 min |
---|---|---|---|---|---|
F5-D-E | 241.1 ± 1.65 | 0.18 ± 0.03 | 68.28 ± 0.53 | 265.8 ± 10.05 | 0.22 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altaee, M.; Faheem, A.M.; Elkordy, A.A. pH Gradient-Driven Loading of Doxorubicin into Niosomes: A Comparative Study Using Bromocresol Green as a Visual Indicator. Pharmaceutics 2025, 17, 862. https://doi.org/10.3390/pharmaceutics17070862
Altaee M, Faheem AM, Elkordy AA. pH Gradient-Driven Loading of Doxorubicin into Niosomes: A Comparative Study Using Bromocresol Green as a Visual Indicator. Pharmaceutics. 2025; 17(7):862. https://doi.org/10.3390/pharmaceutics17070862
Chicago/Turabian StyleAltaee, Mohammed, Ahmed Mostafa Faheem, and Amal Ali Elkordy. 2025. "pH Gradient-Driven Loading of Doxorubicin into Niosomes: A Comparative Study Using Bromocresol Green as a Visual Indicator" Pharmaceutics 17, no. 7: 862. https://doi.org/10.3390/pharmaceutics17070862
APA StyleAltaee, M., Faheem, A. M., & Elkordy, A. A. (2025). pH Gradient-Driven Loading of Doxorubicin into Niosomes: A Comparative Study Using Bromocresol Green as a Visual Indicator. Pharmaceutics, 17(7), 862. https://doi.org/10.3390/pharmaceutics17070862