Design of Geraniol-Loaded Nanocapsules for Use Against Salmonella Infantis: Evaluation in an In Vitro Poultry Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Conditions
2.2. Antimicrobial Activity of Geraniol Against S. Infantis by a Microplate Method
2.3. Development and Selection of Geraniol Formulations Based on Polymeric Nanocapsules
2.4. Physicochemical Characterization
2.4.1. Particle Size and PDI
2.4.2. Zeta Potential
2.4.3. Encapsulation Efficiency
2.5. Evaluation of the Antimicrobial Activity of the Formulations by Microplate Assays
2.6. Evaluation of the Antimicrobial Activity of the Formulations Using a Model That Simulates the Crop of Broiler Chickens
2.7. Interaction Studies of the Formulation Components
2.7.1. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)
2.7.2. Antimicrobial Activity in the Model That Simulates the Crop of Broiler Chickens
2.8. Statistical Analysis
3. Results
3.1. Antimicrobial Activity of Geraniol Against S. Infantis by a Microplate Method
3.2. Development and Selection of Geraniol Formulations Based on Polymeric Nanocapsules
3.3. Evaluation of the Antimicrobial Activity of the Formulations Obtained by Microplate Assays
3.4. Evaluation of the Antimicrobial Activity of Formulations in the Crop Assay
3.5. Interaction Studies of the Formulation Components
3.5.1. FTIR-ATR
3.5.2. In Vitro Crop Model to Evaluate the Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GRAS | Generally recognized as safe |
FDA | Food and Drug Administration |
NA | Nalidixic acid |
TSB | Tryptic soy broth |
XLT-4 | Xylose Lysine Tergitol-4 |
PDI | Polydispersity index |
DLS | Dynamic light scattering |
LDV | Laser Doppler velocimetry |
EE | Encapsulation efficacy |
ACN | Acetonitrile |
FTIR | Fourier Transform Infrared |
ANOVA | Analysis of variance |
SE | Standard error |
F3 | Formulation 3 |
F9 | Formulation 9 |
References
- Montoro-Dasi, L.; Lorenzo-Rebenaque, L.; Marco-Fuertes, A.; Vega, S.; Marin, C. Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms 2023, 11, 1765. [Google Scholar] [CrossRef]
- Alvarez, D.M.; Barrón-Montenegro, R.; Conejeros, J.; Rivera, D.; Undurraga, E.A.; Moreno-Switt, A.I. A review of the global emergence of multidrug-resistant Salmonella enterica subsp. enterica Serovar Infantis. Int. J. Food Microbiol. 2023, 403, 110297. [Google Scholar] [CrossRef]
- Mattock, J.; Chattaway, M.A.; Hartman, H.; Dallman, T.J.; Smith, A.M.; Keddy, K.; Petrovska, L.; Manners, E.J.; Duze, S.T.; Smouse, S.; et al. A One Health Perspective on Salmonella enterica Serovar Infantis, an Emerging Human Multidrug-Resistant Pathogen. Emerg. Infect. Dis. 2024, 30, 701–710. [Google Scholar] [CrossRef]
- Georganas, A.; Graziosi, G.; Catelli, E.; Lupini, C. Salmonella enterica Serovar Infantis in Broiler Chickens: A Systematic Review and Meta-Analysis. Animals 2024, 14, 3453. [Google Scholar] [CrossRef]
- Powell, M.R.; Williams, M.S. Trends in Salmonella Infantis human illness incidence and chicken carcass prevalence in the United States; 1996–2019. Risk Anal. 2024, 44, 2396–2402. [Google Scholar] [CrossRef]
- Kranjc, K.; Avberšek, J.; Šemrov, N.; Zorman-Rojs, O.; Barlič-Maganja, D. Salmonella Infantis Adhesion to Various Surfaces and In Vitro Antimicrobial Efficacy of Commercial Disinfectants. Pathogens 2024, 13, 999. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, S. Role of alternatives to antibiotics in mitigating the antimicrobial resistance crisis. Indian J. Med. Res. 2022, 156, 464–477. [Google Scholar] [CrossRef]
- Izah, S.C.; Joshua, M.T.; Torru, K.E.; Ngun, C.T.; Ogwu, M.C.; Hait, M. Antimicrobial resistance and the role of herbal medicine: Challenges, opportunities, and future prospects. In Herbal Medicine Phytochemistry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–26. [Google Scholar]
- Prakash, B.; Kumar, A.; Singh, P.P.; Songachan, L.S. 1—Antimicrobial and antioxidant properties of phytochemicals: Current status and future perspective. In Functional and Preservative Properties of Phytochemicals; Prakash, B., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–45. ISBN 978-0-12-818593-3. [Google Scholar]
- Omonijo, F.A.; Ni, L.; Gong, J.; Wang, Q.; Lahaye, L.; Yang, C. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. 2018, 4, 126–136. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Akshay Thanekar, P.; Lamprou, D.A.; Weaver, E.; Doran, O.; Stratakos, A.C. Development of Geraniol-Loaded Liposomal Nanoformulations against Salmonella Colonization in the Pig Gut. J. Agric. Food Chem. 2022, 70, 7004–7014. [Google Scholar] [CrossRef]
- Ghasemi-Gojani, E.; Kovalchuk, I.; Kovalchuk, O. Cannabinoids and terpenes for diabetes mellitus and its complications: From mechanisms to new therapies. Trends Endocrinol. Metab. 2022, 33, 828–849. [Google Scholar] [CrossRef]
- de Souza Rodrigues, H.L.; Kolososki, I.M.M.; Benevides, V.P.; Saraiva, M.M.S.; Berchieri Junior, A. Essential oils used in the poultry industry: Would it be an effective green alternative against Salmonella spp. dissemination and antimicrobial resistance? Microbe 2025, 6, 100248. [Google Scholar] [CrossRef]
- Han, J.J. FDA Modernization Act 2.0 allows for alternatives to animal testing. Artif. Organs 2023, 47, 449–450. [Google Scholar] [CrossRef]
- Gangwal, A.; Lavecchia, A. Artificial intelligence in preclinical research: Enhancing digital twins and organ-on-chip to reduce animal testing. Drug Discov. Today 2025, 30, 104360. [Google Scholar] [CrossRef]
- Dong, Y.; Iniguez, A.L.; Ahmer, B.M.M.; Triplett, E.W. Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl. Environ. Microbiol. 2003, 69, 1783–1790. [Google Scholar] [CrossRef]
- Wythe, L.A.; Dittoe, D.K.; Feye, K.M.; Olson, E.G.; Perry, L.M.; Ricke, S.C. Reduction of Salmonella Infantis on skin-on, bone-in chicken thighs by cetylpyridinium chloride application and the impact on the skin microbiota. Poult. Sci. 2022, 101, 101409. [Google Scholar] [CrossRef]
- Hernandez-Patlan, D.; Solis-Cruz, B.; Cano-Vega, M.A.; Beyssac, E.; Garrait, G.; Hernandez-Velasco, X.; Lopez-Arellano, R.; Tellez, G.; Rivera-Rodriguez, G.R. Development of Chitosan and Alginate Nanocapsules to Increase the Solubility, Permeability and Stability of Curcumin. J. Pharm. Innov. 2018, 14, 132–140. [Google Scholar] [CrossRef]
- Hernandez-Patlan, D.; Solis-Cruz, B.; Pontin, K.P.; Latorre, J.D.; Baxter, M.F.A.; Hernandez-Velasco, X.; Merino-Guzman, R.; Méndez-Albores, A.; Hargis, B.M.; Lopez-Arellano, R.; et al. Evaluation of a solid dispersion of curcumin with polyvinylpyrrolidone and boric acid against Salmonella Enteritidis infection and intestinal permeability in broiler chickens: A pilot study. Front. Microbiol. 2018, 9, 1289. [Google Scholar] [CrossRef]
- Sevilla-Navarro, S.; Torres-Boncompte, J.; Garcia-Llorens, J.; Bernabéu-Gimeno, M.; Domingo-Calap, P.; Catalá-Gregori, P. Fighting Salmonella Infantis: Bacteriophage-driven cleaning and disinfection strategies for broiler farms. Front. Microbiol. 2024, 15, 1401479. [Google Scholar] [CrossRef]
- AlMahdi, A.Y.; Alabed, A.A.A.; Chen, H.W.J.; Baobaid, M.F.; Ruhi, S.; Naidu, J.R.; Ashikeen, M.N.; AlGoshae, H.A.A.; AlSultan, I.I.; Abdulghani, M.A.M. Antibacterial activity of herbal essential oils against Gram-positive and Gram-negative bacteria with a potential for multidrug resistance. Integr. Biomed. Res. (Former J. Angiother.) 2024, 8, 1–7. [Google Scholar]
- Altay, Ö.; Özgün, K.; Işıl, İ.; Mehmet, K.; Figen Kaymak, E.; Jafari, S.M. Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 1139–1157. [Google Scholar] [CrossRef]
- Fajdek-Bieda, A.; Pawlińska, J.; Wróblewska, A.; Łuś, A. Evaluation of the Antimicrobial Activity of Geraniol and Selected Geraniol Transformation Products against Gram-Positive Bacteria. Molecules 2024, 29, 950. [Google Scholar] [CrossRef]
- Fine-Shamir, N.; Dahan, A. Methacrylate-copolymer Eudragit EPO as a solubility-enabling excipient for anionic drugs: Investigation of drug solubility, intestinal permeability, and their interplay. Mol. Pharm. 2019, 16, 2884–2891. [Google Scholar] [CrossRef]
- de Andrade, L.R.M.; Guilger-Casagrande, M.; Germano-Costa, T.; de Lima, R. Polymeric nanorepellent systems containing geraniol and icaridin aimed at repelling Aedes aegypti. Int. J. Mol. Sci. 2022, 23, 8317. [Google Scholar] [CrossRef]
- Yang, Z.-J.; Zhou, D.; Fang, Y.-X.; Ji, H.-B. Shape-selective separation of geraniol and nerol via noncovalent interactionswith β-cyclodextrin. Sep. Sci. Technol. 2016, 51, 168–180. [Google Scholar] [CrossRef]
- Babaei, P.; Farahpour, M.R.; Tabatabaei, Z.G. Fabrication of geraniol nanophytosomes loaded into polyvinyl alcohol: A new product for the treatment of wounds infected with methicillin-resistant Staphylococcus aureus. J. Tissue Viability 2024, 33, 116–125. [Google Scholar] [CrossRef]
- Sahu, M.; Reddy, V.R.; Kim, B.; Patro, B.; Park, C.; Kim, W.K.; Sharma, P. Fabrication of Cu2ZnSnS4 Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications. Materials 2022, 15, 1708. [Google Scholar] [CrossRef]
- Ma, Q.; Davidson, P.M.; Zhong, Q. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80. Int. J. Food Microbiol. 2016, 226, 20–25. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.-F.; Wei, Z.-F.; Jiang, J.-J.; Peng, J.-Q.; He, Q.-T.; Xu, W.-Y.; Liu, H.-M. Microemulsion of Cinnamon Essential Oil Formulated with Tea Polyphenols, Gallic Acid, and Tween 80: Antimicrobial Properties, Stability and Mechanism of Action. Microorganisms 2023, 11, 2. [Google Scholar] [CrossRef]
- Fratianni, F.; d’Acierno, A.; Ombra, M.N.; Amato, G.; De Feo, V.; Ayala-Zavala, J.F.; Coppola, R.; Nazzaro, F. Fatty acid composition, antioxidant, and in vitro anti-inflammatory activity of five cold-pressed Prunus seed oils, and their anti-biofilm effect against pathogenic bacteria. Front. Nutr. 2021, 8, 775751. [Google Scholar] [CrossRef]
- Sethi, A.; Ahmad, M.; Huma, T.; Ahmad, W. Pharmacokinetic variables of medium molecular weight cross linked chitosan nanoparticles to enhance the bioavailability of 5-fluorouracil and reduce the acute oral toxicity. Drug Deliv. 2021, 28, 1569–1584. [Google Scholar] [CrossRef]
- Ye, K.; Zhao, D.; Shi, X.; Lu, X. Use of caprylic/capric triglyceride in the encapsulation of dementholized peppermint fragrance leading to smaller and better distributed nanocapsules. RSC Adv. 2016, 6, 84119–84126. [Google Scholar] [CrossRef]
- Lima, A.L.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose. Methods 2022, 199, 54–66. [Google Scholar] [CrossRef]
- Deng, S.; Gigliobianco, M.R.; Censi, R.; Di Martino, P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities. Nanomaterials 2020, 10, 847. [Google Scholar] [CrossRef]
- Shirazi, A.N.; Imani, M.; Sharifi, S. Direct Condensation Reaction for Grafting of Polyethylene Glycol Monomethyl Ether on Poly (Methacrylic Acid-co-Methyl Methacrylate) for Application in Biomedical Engineering. Am. J. Biomed. Eng. 2012, 1, 13–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Salazar, K.S.; Leon-Solano, H.J.; Maguey-Gonzalez, J.A.; Latorre, J.D.; López-Arellano, R.; Morales Hipólito, E.A.; Díaz-Torres, R.; Morales Rodríguez, M.; Vázquez-Durán, A.; Tellez-Isaias, G.; et al. Design of Geraniol-Loaded Nanocapsules for Use Against Salmonella Infantis: Evaluation in an In Vitro Poultry Model. Pharmaceutics 2025, 17, 840. https://doi.org/10.3390/pharmaceutics17070840
Garcia-Salazar KS, Leon-Solano HJ, Maguey-Gonzalez JA, Latorre JD, López-Arellano R, Morales Hipólito EA, Díaz-Torres R, Morales Rodríguez M, Vázquez-Durán A, Tellez-Isaias G, et al. Design of Geraniol-Loaded Nanocapsules for Use Against Salmonella Infantis: Evaluation in an In Vitro Poultry Model. Pharmaceutics. 2025; 17(7):840. https://doi.org/10.3390/pharmaceutics17070840
Chicago/Turabian StyleGarcia-Salazar, Karla S., Hector J. Leon-Solano, Jesus A. Maguey-Gonzalez, Juan D. Latorre, Raquel López-Arellano, Elvia A. Morales Hipólito, Roberto Díaz-Torres, Miguel Morales Rodríguez, Alma Vázquez-Durán, Guillermo Tellez-Isaias, and et al. 2025. "Design of Geraniol-Loaded Nanocapsules for Use Against Salmonella Infantis: Evaluation in an In Vitro Poultry Model" Pharmaceutics 17, no. 7: 840. https://doi.org/10.3390/pharmaceutics17070840
APA StyleGarcia-Salazar, K. S., Leon-Solano, H. J., Maguey-Gonzalez, J. A., Latorre, J. D., López-Arellano, R., Morales Hipólito, E. A., Díaz-Torres, R., Morales Rodríguez, M., Vázquez-Durán, A., Tellez-Isaias, G., Méndez-Albores, A., Solis-Cruz, B., & Hernandez-Patlan, D. (2025). Design of Geraniol-Loaded Nanocapsules for Use Against Salmonella Infantis: Evaluation in an In Vitro Poultry Model. Pharmaceutics, 17(7), 840. https://doi.org/10.3390/pharmaceutics17070840