Exploring the Phytochemical Profile and Therapeutic Potential of Saudi Native Santolina chamaecyparissus L. Essential Oil
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Plant Essential Oil (EOSC)
2.3. Phytochemical Analysis
2.3.1. Total Bioactive Content
Total Phenolic Content (TPC)
2.3.2. Gas Chromatography–Mass Spectrometry Analysis (GC-MS)
2.4. Biological Activities
2.4.1. Antioxidant Activities
Measuring Total Antioxidant Capacity (TAC) Using Phosphomolybdenum Method
2,2-Diphenyl-1-picrylhydrazyl Assay (DPPH)
2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Assay
Ferric Reducing Antioxidant Power (FRAP) Assay
Nitric Oxide Scavenging (NOS) Assay
2.4.2. Enzyme Inhibition Activities
Lipoxygenase Inhibitory Activity
2.4.3. Hemolytic Activity
2.4.4. MTT Assay Using HepG2 (Liver Cancer) Cells
HepG2 Cell Line
Culturing HepG2 Cell Line
Treatment of HepG2 Cell Line with EOSC
MTT Assay to Measure EOSC Cytotoxicity
2.5. In Silico Studies
2.5.1. Molecular Docking
2.5.2. ADME Analysis
2.5.3. Toxicity Evaluation
3. Results
3.1. Phytochemical Analysis
3.1.1. Total Phenolic Content (TPC)
3.1.2. GC-MS
3.2. Biological Activities of EOSC
3.2.1. Antioxidant Activities
3.2.2. Enzyme Inhibition Activities
3.2.3. Hemolytic Activity
3.2.4. MTT Assay to Measure EOSC Cytotoxicity
3.3. In Silico Studies
3.3.1. Molecular Docking
3.3.2. ADME Analysis
3.3.3. Toxicity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elsharkawy, E.R. Antitcancer effect and seasonal variation in oil constituents of Santolina chamaecyparissus. Chem. Mater. Res. 2014, 6, 85–91. [Google Scholar]
- Salah-Fatnassi, K.B.H.; Hassayoun, F.; Cherif, I.; Khan, S.; Jannet, H.B.; Hammami, M.; Aouni, M.; Harzallah-Skhiri, F. Chemical composition, antibacterial and antifungal activities of flowerhead and root essential oils of Santolina chamaecyparissus L., growing wild in Tunisia. Saudi J. Biol. Sci. 2017, 24, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, T.; Faustino-Rocha, A.I.; Barros, L.; Finimundy, T.C.; Matos, M.; Oliveira, P.A. Santolina chamaecyparissus L.: A brief overview of its medicinal properties. Med. Sci. Forum 2023, 21, 8. [Google Scholar] [CrossRef]
- Lončar, B.; Cvetković, M.; Rat, M.; Jeremić, J.S.; Filipović, J.; Pezo, L.; Aćimović, M. Chemical composition, chemometric analysis, and sensory profile of Santolina chamaecyparissus L.(asteraceae) essential oil: Insights from a case study in Serbia and literature-based review. Separations 2025, 12, 115. [Google Scholar] [CrossRef]
- Škrovánková, S.; Mišurcová, L.; Machů, L. Antioxidant activity and protecting health effects of common medicinal plants. Adv. Food Nutr. Res. 2012, 67, 75–139. [Google Scholar] [CrossRef]
- Khan, R.A.R.; Afzal, S.; Aati, H.Y.; Aati, S.; Rao, H.; Ahmad, S.; Hussain, M.J.H. Phytochemical characterization of Thevetia peruviana (lucky nut) bark extracts by GC-MS analysis, along with evaluation of its biological activities, and molecular docking study. Heliyon 2024, 10, e33151. [Google Scholar] [CrossRef]
- Dilshad, R.; Ahmad, S.; Aati, H.; Al-qahtani, J.H.; Sherif, A.E.; Hussain, M.; Ghalloo, B.A.; Tahir, H.; Basit, A.; Ahmed, M. Phytochemical profiling, in vitro biological activities, and in-silico molecular docking studies of Typha domingensis. AJOC 2022, 15, 104133. [Google Scholar] [CrossRef]
- Ghalloo, B.A.; Khan, K.-u.-R.; Ahmad, S.; Aati, H.Y.; Al-Qahtani, J.H.; Ali, B.; Mukhtar, I.; Hussain, M.; Shahzad, M.N.; Ahmed, I. Phytochemical profiling, in vitro biological activities, and in silico molecular docking studies of Dracaena reflexa. Molecules 2022, 27, 913. [Google Scholar] [CrossRef]
- Rizvi, S.N.R.; Afzal, S.; Khan, K.-u.-R.; Aati, H.Y.; Rao, H.; Ghalloo, B.A.; Shahzad, M.N.; Khan, D.A.; Esatbeyoglu, T.; Korma, S.A. Chemical characterisation, antidiabetic, antibacterial, and in silico studies for different extracts of Haloxylon stocksii (boiss.) benth: A promising halophyte. Molecules 2023, 28, 3847. [Google Scholar] [CrossRef]
- Dilshad, R.; Dilshad, R.; Ahmad, S.; Rao, H.; Khurshid, U.; Ahmad, S.; Ahmad, M.; Abid, H.M.U.; Zaman, M.K.; Nisar, R.; et al. Comprehensive chemical profiling with UHPLC-MS, in-vitro, in-silico, and in-vivo antidiabetic potential of Typha domingensis pers; a novel source of bioactive compounds. S. Afr. J. Bot. 2024, 171, 185–198. [Google Scholar] [CrossRef]
- Dilshad, R.; Ahmad, S.; Mohammad, A.A.S.; Sherif, A.E.; Rao, H.; Ahmad, M.; Ghalloo, B.A.; Begum, M.Y. Phytochemical characterization of Typha domingensis and the assessment of therapeutic potential using in vitro and in vivo biological activities and in silico studies. Front. Chem. 2023, 11, 1273191. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, A.; Ahmad, S.; Khan, K.-u.-R.; Tousif, M.I.; Aati, H.Y.; Ovatlarnporn, C.; Rao, H.; Khurshid, U.; Ghalloo, B.A.; Tabassum, S. Efficacy of phytochemicals derived from roots of Rondeletia odorata as antioxidant, antiulcer, diuretic, skin brightening and hemolytic agents—A comprehensive biochemical and in silico study. Molecules 2022, 27, 4204. [Google Scholar] [CrossRef]
- Maqbool, T.; Hadi, F.; Razzaq, S.; Naz, S.; Aftab, S.; Khurshid, S.; Awan, S.J.; Nawaz, A.; Abid, F.; Malik, A. Synergistic effect of Barbadensis miller and Marsdenia condurango extracts induces apoptosis, promotes oxidative stress by limiting proliferation of cervical cancer and liver cancer cells. Asian Pac. J. Cancer Prev. 2021, 22, 843–852. [Google Scholar] [CrossRef]
- Yousuf, M.; Khan, H.M.S.; Rasool, F.; Usman, F.; Ghalloo, B.A.; Umair, M.; Babalghith, A.O.; Kamran, M.; Aadil, R.M.; Al Jaouni, S.K.; et al. Chemical profiling, formulation development, in vitro evaluation and molecular docking of Piper nigrum seeds extract loaded emulgel for anti-aging. Molecules 2022, 27, 5990. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.A.; Shahid, A.; Sherif, A.E.; Aati, H.Y.; Abdullah, M.; Mehmood, K.; Hussain, M.; Basit, A.; Ghalloo, B.A.; Khan, K.-u.-R. A detailed biochemical characterization, toxicological assessment and molecular docking studies of Launaea fragilis: An important medicinal xero-halophyte. Saudi Pharm. J. 2023, 31, 1047–1060. [Google Scholar] [CrossRef]
- Sengul, M.; Yildiz, H.; Gungor, N.; Cetin, B.; Eser, Z.; Ercisli, S. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak. J. Pharm. Sci. 2009, 22, 102–106. [Google Scholar]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods. 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Atanassova, M.; Georgieva, S.; Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Univ. Chem. Technol. Metall. 2011, 46, 81–88. [Google Scholar]
- Ramazani, E.; Akaberi, M.; Emami, S.A.; Tayarani-Najaran, Z. Pharmacological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms. Life Sci. 2022, 304, 120728. [Google Scholar] [CrossRef]
- Barras, B.J.; Ling, T.; Rivas, F. Recent advances in chemistry and antioxidant/anticancer biology of monoterpene and meroterpenoid natural products. Molecules 2024, 29, 279. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. In Medicinal Plants; Springer: Cham, Switzerland, 2019; pp. 333–359. [Google Scholar] [CrossRef]
- Wisastra, R.; Dekker, F.J. Inflammation, cancer and oxidative lipoxygenase activity are intimately linked. Cancers 2014, 6, 1500–1521. [Google Scholar] [CrossRef] [PubMed]
- Sowemimo-Coker, S.O. Red blood cell hemolysis during processing. Transfus. Med. Rev. 2002, 16, 46–60. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils–a review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Zuzarte, M.; Salgueiro, L. Essential oils chemistry. In Bioactive Essential Oils and Cancer; Springer: Cham, Switzerland, 2015; pp. 19–61. [Google Scholar] [CrossRef]
- Aati, H.Y.; Anwar, M.; Al-Qahtani, J.; Al-Taweel, A.; Khan, K.-u.-R.; Aati, S.; Usman, F.; Ghalloo, B.A.; Asif, H.M.; Shirazi, J.H.; et al. Phytochemical profiling, in vitro biological activities, and in-silico studies of Ficus vasta Forssk.: An unexplored plant. Antibiotics 2022, 11, 1155. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ali, A.; Warsi, M.H.; Ahmad, W. Chemical characterization, antidiabetic and anticancer activities of Santolina chamaecyparissus. Saudi J. Biol. Sci. 2021, 28, 4575–4580. [Google Scholar] [CrossRef] [PubMed]
- Djeddi, S.; Djebile, K.; Hadjbourega, G.; Achour, Z.; Argyropoulou, C.; Skaltsa, H. In vitro antimicrobial properties and chemical composition of Santolina chamaecyparissus essential oil from Algeria. Nat. Prod. Commun. 2012, 7, 937–940. [Google Scholar] [CrossRef]
- Nikolić, M.; Radulović, N. Chemical composition of the essential oil from the aboveground parts of Santolina chamaecyparissus L. from Greece: NMR determination of the exocyclic double bond geometry of the major spiroketal-enol ether polyynic constituent. Facta Univ. Ser. Phys. Chem. Technol. 2018, 16, 130. [Google Scholar]
- Demirci, B.; Özek, T.; Baser, K.H.C. Chemical composition of Santolina chamaecyparissus L. essential oil. J. Essent. Oil Res. 2000, 12, 625–627. [Google Scholar] [CrossRef]
- Boudoukha, C.; Bouriche, H.; Elmastas, M.; Aksit, H.; Kayir, O.; Genc, N. Antioxidant activity of polyphenolic leaf extract from Santolina chamaecyparissus L. (Asteraceae) and the isolated luteolin-7-O-glucoside. Pharmacogn. Res. 2018, 22, 1–12. [Google Scholar] [CrossRef]
Sample | TPC (mg GAE/g E.O) |
---|---|
EOSC | 839.50 ± 5.0 |
# | Retention Time | % Area | Compound Name |
---|---|---|---|
1. | 13.51 | 0.3 | Santolinatriene |
2. | 15.12 | 0.2 | α-Pinene |
3. | 15.90 | 0.6 | Camphene |
4. | 16.96 | 0.5 | Sabinene |
5. | 17.26 | 1.0 | β-pinene |
6. | 17.55 | 4.2 | Myrcene |
7. | 17.79 | 0.6 | Yomogi alcohol |
8. | 18.48 | 0.1 | α-Phellandrene |
9. | 19.08 | 0.1 | α-Terpinene |
10. | 19.42 | 0.1 | p-Cymene |
11. | 19.70 | 0.2 | Limonene |
12. | 19.78 | 3.0 | β-Phellandrene |
13. | 20.98 | 15.5 | Artemisia ketone |
14. | 21.14 | 0.2 | γ-Terpinene |
15. | 22.15 | 0.4 | Artemisia alcohol |
16. | 22.67 | 0.7 | Terpinolene |
17. | 25.38 | 0.1 | trans-Pinocarveol |
18. | 25.61 | 3.8 | Camphor |
19. | 25.85 | 0.2 | Chrysanthemol |
20. | 26.27 | 0.2 | Lavandulol |
21. | 26.66 | 0.4 | Borneol |
22. | 27.15 | 0.3 | Terpinen-4-ol |
23. | 27.51 | 0.1 | Cryptone |
24. | 28.06 | 0.2 | Myrtenal |
25. | 34.81 | 0.6 | δ-Elemene |
26. | 35.74 | 0.2 | α-Longipinene |
27. | 36.71 | 0.2 | α-Copaene |
28. | 38.65 | 0.1 | β-Ylangene |
29. | 38.77 | 0.4 | β-Caryophyllene |
30. | 39.09 | 0.3 | β-Copaene |
31. | 39.28 | 0.1 | Sesquisabinene B |
32. | 39.54 | 1.4 | (E)-β-Farnesene |
33. | 40.25 | 0.2 | α-Caryophyllene |
34. | 40.82 | 13.6 | γ-Curcumene |
35. | 41.32 | 9.6 | Germacrene D |
36. | 41.48 | 0.5 | γ-Humulene |
37. | 41.60 | 0.2 | β-Seliene |
38. | 41.94 | 1.4 | Bicyclogermacrene |
39. | 42.60 | 0.3 | γ-Cadinene |
40. | 42.65 | 1.2 | Sesquiphellandrene |
41. | 42.78 | 1.0 | δ-Cadinene |
42. | 43.03 | 0.1 | Isohumbertiol B |
43. | 43.28 | 4.7 | trans-α-Bisabolene |
44. | 43.96 | 0.7 | (E)-Nerolidol |
45. | 45.29 | 0.2 | Spathulenol |
46. | 45.56 | 0.2 | Caryophyllene oxide |
47. | 47.57 | 0.6 | τ-Muurolol |
48. | 46.63 | 1.2 | Dillapiole |
49. | 48.12 | 6.2 | Vulgarone B |
50. | 48.90 | 11.3 | α-Bisabolol |
Oxygenated monoterpenes | 6.0% | ||
Hydrocarbon monoterpenes | 11.0% | ||
Oxygenated sesquiterpenes | 19.7% | ||
Hydrocarbon sesquiterpenes | 36.0% | ||
Other | 16.8% | ||
Total % | 89.5% |
Sample | ABTS | DPPH | FRAP | TAC | NOS |
---|---|---|---|---|---|
EOSC | 72.83 ± 1.94 | 234.50 ± 5.0 | 33.77 ± 1.66 | 1126.66 ± 0.66 | 16.72 ± 0.20 |
Sample | Lipoxygenase Enzyme Inhibition IC50 µM |
---|---|
EOSC | 475.61 ± 0.19 |
Quercetin | 263.83 ± 0.22 |
Group | Cell Viability Value (Mean ± SD) |
---|---|
Untreated | 1.18 ± 0.04 |
Treated with EOSC (25 µg/mL) | 1.02 ± 0.02 |
Treated with EOSC (50 µg/mL) | 0.96 ± 0.02 |
Treated with EOSC (100 µg/mL) | 0.78 ± 0.09 |
Treated with EOSC (500 µg/mL) | 0.61 ± 0.01 |
Treated with EOSC (1000 µg/mL) | 0.63 ± 0.03 |
# | Compound Name | Binding Affinity for Lipoxygenase (Kcal/mol) | # | Compound Name | Binding Affinity for Lipoxygenase (Kcal/mol) |
---|---|---|---|---|---|
1. | Santolina triene | −5.0 | 26. | α-Longipinene | −7.1 |
2. | α-Pinene | −6.4 | 27. | α-Copaene | −7.2 |
3. | Camphene | −5.8 | 28. | β-Ylangene | −7.3 |
4. | Sabinene | −5.7 | 29. | β-Caryophyllene | −7.0 |
5. | β-pinene | −6.3 | 30. | β-Copaene | −7.3 |
6. | Myrcene | −5.5 | 31. | Sesquisabinene B | −6.1 |
7. | Yomogi alcohol | −5.4 | 32. | (E)-β-Farnesene | −5.9 |
8. | α-Phellandrene | −6.1 | 33. | α-Caryophyllene | −7.2 |
9. | α-Terpinene | −5.9 | 34. | γ-Curcumene | −7.4 |
10. | p-Cymene | −6.0 | 35. | Germacrene D | −7.5 |
11. | Limonene | −5.9 | 36. | γ-Humulene | −7.2 |
12. | β-Phellandrene | −5.9 | 37. | β-Seliene | −7.7 |
13. | Artemisia ketone | −5.2 | 38. | Bicyclogermacrene | −7.4 |
14. | γ-Terpinene | −6.0 | 39. | γ-Cadinene | −6.9 |
15. | Artemisia alcohol | −5.1 | 40. | Sesquiphellandrene | −5.7 |
16. | Terpinolene | −7.6 | 41. | δ-Cadinene | −7.7 |
17. | trans-Pinocarveol | −5.9 | 42. | Isohumbertiol B | −6.1 |
18. | Camphor | −5.9 | 43. | trans-α-Bisabolene | −7.8 |
19. | Chrysanthemol | −5.4 | 44. | (E)-Nerolidol | −6.1 |
20. | Lavandulol | −5.2 | 45. | Spathulenol | −7.5 |
21. | Borneol | −5.5 | 46. | Caryophyllene oxide | −7.3 |
22. | Terpinen-4-ol | −6.1 | 47. | τ-Muurolol | −7.2 |
23. | Cryptone | −5.6 | 48. | Dillapiole | −6.2 |
24. | Myrtenal | −5.8 | 49 | Vulgarone B | −7.5 |
25. | δ-Elemene | −6.8 | 50. | α-Bisabolol | −7.3 |
Standard (Quercetin) | −9.1 |
# | Compound Name | HBA | HBD | MWT | Lipophilicity | M.R | LR |
---|---|---|---|---|---|---|---|
1. | Terpinolene | 0 | 0 | 204.35 | 5.65 | 67.14 | Yes; 1 violation |
2. | Germacrene D | 0 | 0 | 204.35 | 4.53 | 70.68 | Yes; 0 violations |
3. | β-Seliene | 0 | 0 | 204.35 | 4.63 | 68.78 | Yes; 0 violations |
4. | δ-Cadinene | 0 | 0 | 204.35 | 4.63 | 69.04 | Yes; 0 violations |
5. | trans-α-Bisabolene | 0 | 0 | 204.35 | 4.53 | 70.68 | Yes; 0 violations |
6. | Spathulenol | 1 | 1 | 220.35 | 3.67 | 68.34 | Yes; 0 violations |
7. | Vulgarone B | 1 | 0 | 218.33 | 3.56 | 67.08 | Yes; 0 violations |
# | Compound | Predicted LD50 (mg/kg) | Predicted Toxicity Class | Hepatotoxicity | Carcinogenicity | Mutagenicity | Immunotoxicity | Cytotoxicity |
---|---|---|---|---|---|---|---|---|
1. | Terpinolene | 5000 | 5 | − | − | − | − | − |
2. | Germacrene D | 5300 | 5 | − | − | − | + | − |
3. | β-Seliene | 5000 | 5 | − | − | − | − | − |
4. | δ-Cadinene | 4390 | 5 | − | − | − | − | − |
5. | trans-α-Bisabolene | 4390 | 5 | − | − | − | − | − |
6. | Spathulenol | 3900 | 5 | − | − | − | − | − |
7. | Vulgarone B | 2300 | 5 | − | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aati, H.Y.; Sarawi, W.; Attia, H.; Ghazwani, R.; Aldmaine, L. Exploring the Phytochemical Profile and Therapeutic Potential of Saudi Native Santolina chamaecyparissus L. Essential Oil. Pharmaceutics 2025, 17, 830. https://doi.org/10.3390/pharmaceutics17070830
Aati HY, Sarawi W, Attia H, Ghazwani R, Aldmaine L. Exploring the Phytochemical Profile and Therapeutic Potential of Saudi Native Santolina chamaecyparissus L. Essential Oil. Pharmaceutics. 2025; 17(7):830. https://doi.org/10.3390/pharmaceutics17070830
Chicago/Turabian StyleAati, Hanan Y., Wedad Sarawi, Hala Attia, Rehab Ghazwani, and Lama Aldmaine. 2025. "Exploring the Phytochemical Profile and Therapeutic Potential of Saudi Native Santolina chamaecyparissus L. Essential Oil" Pharmaceutics 17, no. 7: 830. https://doi.org/10.3390/pharmaceutics17070830
APA StyleAati, H. Y., Sarawi, W., Attia, H., Ghazwani, R., & Aldmaine, L. (2025). Exploring the Phytochemical Profile and Therapeutic Potential of Saudi Native Santolina chamaecyparissus L. Essential Oil. Pharmaceutics, 17(7), 830. https://doi.org/10.3390/pharmaceutics17070830