A Natural Latex-Based Smart Dressing for Curcumin Delivery Combined with LED Phototherapy in Diabetic Foot Ulcers: A Pilot Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Study Design
2.2.2. Clinical and Demographic Analysis
2.2.3. Hematological and Biochemical Analysis
2.2.4. Analysis of Wound Healing
2.2.5. Reactive Oxygen Species Quantification in Human Blood and Tissue
2.3. Statistical Analysis
3. Results
3.1. Clinical and Demographic Analysis
3.2. Hematological and Biochemical Analysis
3.3. Wound Healing Analysis
3.4. ROS Quantification in Blood and Tissues
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFU | Diabetic foot ulcers |
WIfI | Wound, ischemia, and foot infection |
MMP | Matrix metalloproteinases |
ROS | Reactive oxygen species |
AGEs | Advanced glycation end products |
NLB | Natural latex biomembrane |
PBM | Photobiomodulation |
LED | Light-emitting diode |
ATP | Adenosine triphosphate |
CG | Control group |
EG1 | Experimental group 1 |
EG2 | Experimental group 2 |
BMI | Body mass index |
HbA1c | Glycated hemoglobin |
ROI | Regions of interest |
EPR | Electron paramagnetic resonance |
CMH | 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine |
KHB | Krebs HEPES buffer |
DETC | Sodium diethyldithiocarbamate trihydrate |
CP• | 3-carboxy-proxyl nitroxide |
CM• | 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl |
DM | Diabetes mellitus |
MCV | Mean corpuscular volume |
MCH | Mean corpuscular hemoglobin |
MCHC | Mean corpuscular hemoglobin concentration |
RDW | Red cell distribution width |
MPV | Mean platelet volume |
CRP | C-reactive protein |
AST | Aspartate Aminotransferase |
ALT | Alanine Aminotransferase |
WCP | Wound closure percentage |
BUHS | Brazilian Unified Health System |
FBN-1 | Fibrillin-1 |
SBD | Brazilian diabetes society |
SD | Standard deviation |
SBACV | Brazilian Society of Angiology and Vascular Surgery |
References
- Netten, J.J.; Bus, S.A.; Apelqvist, J.; Lipsky, B.A.; Hinchliffe, R.J.; Game, F.; Rayman, G.; Lazzarini, P.A.; Forsythe, R.O.; Peters, E.J.G.; et al. Definitions and criteria for diabetic foot disease. Diabetes. Metab. Res. Rev. 2020, 36, e3268. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zeng, Y.-E.; Li, C.; Wang, K.; Yu, D.-G. Enhancing diabetic wound healing: Advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front. Bioeng. Biotechnol. 2024, 12, 1354286. [Google Scholar] [CrossRef] [PubMed]
- McDermott, K.; Fang, M.; Boulton, A.J.M.; Selvin, E.; Hicks, C.W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care 2023, 46, 209–221. [Google Scholar] [CrossRef]
- Borderie, G.; Foussard, N.; Larroumet, A.; Blanco, L.; Barbet-Massin, M.-A.; Ducos, C.; Rami-Arab, L.; Domenge, F.; Mohammedi, K.; Ducasse, E.; et al. The skin autofluorescence of advanced glycation end-products relates to the development of foot ulcers in type 2 diabetes: A longitudinal observational study. J. Diabetes Complicat. 2023, 37, 108595. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Lv, G.; Cheng, X.; Ma, X.; Wang, W.; Gui, J.; Hu, J.; Lu, M.; Chu, G.; Chen, J.; et al. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition). Burn. Trauma 2020, 8, tkaa017. [Google Scholar] [CrossRef]
- Thirumalai, A.; Girigoswami, K.; Harini, K.; Kiran, V.; Durgadevi, P.; Girigoswami, A. Natural polymer derivative-based pH-responsive nanoformulations with entrapped diketo-tautomers of 5-fluorouracil for enhanced cancer therapy. ADMET DMPK 2025, 13, 2554. [Google Scholar] [CrossRef]
- Downer, M.; Berry, C.E.; Parker, J.B.; Kameni, L.; Griffin, M. Current Biomaterials for Wound Healing. Bioengineering 2023, 10, 1378. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, X.; Cao, X.; Wang, Y.; Wang, J.; Zhao, Y. Developing natural polymers for skin wound healing. Bioact. Mater. 2024, 33, 355–376. [Google Scholar] [CrossRef]
- Berthelot, K.; Lecomte, S.; Estevez, Y.; Peruch, F. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An overview on rubber particle proteins. Biochimie 2014, 106, 1–9. [Google Scholar] [CrossRef]
- Habib, M.A.H.; Ismail, M.N. Hevea brasiliensis latex proteomics: A review of analytical methods and the way forward. J. Plant Res. 2021, 134, 43–53. [Google Scholar] [CrossRef]
- Leite, M.N.; Leite, S.N.; Caetano, G.F.; Andrade, T.A.M.; Fronza, M.; Frade, M.A.C. Healing effects of natural latex serum 1% from Hevea brasiliensis in an experimental skin abrasion wound model. An. Bras. Dermatol. 2020, 95, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Guerra, N.B.; Sant’Ana Pegorin, G.; Boratto, M.H.; Barros, N.R.; Oliveira Graeff, C.F.; Herculano, R.D. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. Mater. Sci. Eng. C 2021, 126, 112126. [Google Scholar] [CrossRef] [PubMed]
- Herculano, R.D.; Mussagy, C.U.; Guerra, N.B.; Sant’Ana Pegorin Brasil, G.; Floriano, J.F.; Burd, B.S.; Su, Y.; da Silva Sasaki, J.C.; Marques, P.A.C.; Scontri, M.; et al. Recent advances and perspectives on natural latex serum and its fractions for biomedical applications. Biomater. Adv. 2024, 157, 213739. [Google Scholar] [CrossRef]
- Rosa, S.S.R.F.; Rosa, M.F.F.; Fonseca, M.A.M.; Luz, G.V.S.; Avila, C.F.D.; Domínguez, A.G.D.; Dantas, A.G.D.; Richter, V.B. Evidence in practice of tissue healing with latex biomembrane: Integrative review. J. Diabetes Res. 2019, 2019, 7457295. [Google Scholar] [CrossRef]
- Karri, V.V.S.R.; Kuppusamy, G.; Talluri, S.V.; Mannemala, S.S.; Kollipara, R.; Wadhwani, A.D.; Mulukutla, S.; Raju, K.R.S.; Malayandi, R. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 2016, 93, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Kant, V.; Gopal, A.; Pathak, N.N.; Kumar, P.; Tandan, S.K.; Kumar, D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int. Immunopharmacol. 2014, 20, 322–330. [Google Scholar] [CrossRef]
- Cas, M.D.; Ghidoni, R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients 2019, 11, 2147. [Google Scholar] [CrossRef]
- Dutt, Y.; Pandey, R.P.; Dutt, M.; Gupta, A.; Vibhuti, A.; Raj, V.S.; Chang, C.M.; Priyadarshini, A. Liposomes and phytosomes: Nanocarrier systems and their applications for the delivery of phytoconstituents. Coord. Chem. Rev. 2023, 491, 215251. [Google Scholar] [CrossRef]
- Ambreen, G.; Duse, L.; Tariq, I.; Ali, U.; Ali, S.; Pinnapireddy, S.R.; Bette, M.; Bakowsky, U.; Mandic, R. Sensitivity of Papilloma Virus-Associated Cell Lines to Photodynamic Therapy with Curcumin-Loaded Liposomes. Cancers 2020, 12, 3278. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Vu, N.B.D.; Nguyen, T.H.N.; Le, H.S.; Le, H.T.; Tran, T.T.; Le, X.C.; Le, V.T.; Nguyen, T.T.; Bui, C.B.; et al. In vivo comparison of wound healing and scar treatment effect between curcumin–oligochitosan nanoparticle complex and oligochitosan-coated curcumin-loaded-liposome. J. Microencapsul. 2019, 36, 156–168. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 195–206. [Google Scholar] [CrossRef]
- Silva, F.M. Desenvolvimento e Aplicação de Terapia Baseada No Uso de Biomembranas a Base de Látex (Hevea brasiliensis) Contendo Lipossoma Com Curcumina (Curcuma longa) e Papaína (Carica papaya) e LEDterapia No Tratamento de Feridas Em Ratos Wistar (Rattus norvegicus). Master’s Thesis, Universidade de Brasilia, Brasilia, Brazil, 2020. [Google Scholar]
- Frangez, I.; Cankar, K.; Ban Frangez, H.; Smrke, D.M. The effect of LED on blood microcirculation during chronic wound healing in diabetic and non-diabetic patients—A prospective, double-blind randomized study. Lasers Med. Sci. 2017, 32, 887–894. [Google Scholar] [CrossRef]
- Baracho, V.S.; Silva, N.C.; Peixoto, M.F.D.; Sampaio, K.H.; Cordeiro, C.A.F.; Lucas, T.C. LED phototherapy in tissue repair of chronic wounds in people with diabetes: A systematic review. Rev. Gaúcha Enferm. 2023, 44, e20220274. [Google Scholar] [CrossRef]
- Mendes-Costa, L.S.; Lima, V.G.; Barbosa, M.P.R.; Santos, L.E.; Rosa, S.S.R.F.; Tatmatsu-Rocha, J.C. Photobiomodulation: Systematic review and meta-analysis of the most used parameters in the resolution diabetic foot ulcers. Lasers Med. Sci. 2021, 36, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Bule, M.L.; Naharro-Rodríguez, J.; Bacci, S.; Fernández-Guarino, M. Unlocking the Power of Light on the Skin: A Comprehensive Review on Photobiomodulation. Int. J. Mol. Sci. 2024, 25, 4483. [Google Scholar] [CrossRef] [PubMed]
- Maghfour, J.; Ozog, D.M.; Mineroff, J.; Jagdeo, J.; Kohli, I.; Lim, H.W. Photobiomodulation CME part I: Overview and mechanism of action. J. Am. Acad. Dermatol. 2024, 91, 793–802. [Google Scholar] [CrossRef]
- López-Delis, A.; Rosa, S.S.R.F.; Souza, P.E.N.; Carneiro, M.L.B.; Rosa, M.F.F.; Macedo, Y.C.L.; Veiga-Souza, F.H.; Rocha, A.F. Characterization of the Cicatrization Process in Diabetic Foot Ulcers Based on the Production of Reactive Oxygen Species. J. Diabetes Res. 2018, 2018, 4641364. [Google Scholar] [CrossRef]
- Santana, T.F.; Oliveira, R.H.M.; Santos, L.E.; Lima, E.P.N.; Faria, S.d.S.; Fonseca, M.A.M.; Silva, J.R.; Tatmatsu-Rocha, J.C.; Gomes, M.M.F.; Rosa, M.F.F.; et al. Effect of exposure to a light-emitting diode (LED) on the physicochemical characteristics of natural latex biomembranes used to treat diabetic ulcers. Res. Biomed. Eng. 2022, 38, 901–911. [Google Scholar] [CrossRef]
- Rosa, S.S.R.F.; Rosa, M.F.F.; Marques, M.P.; Guimarães, G.A.; Motta, B.C.; Macedo, Y.C.L.; Inazawa, P.; Dominguez, A.; Macedo, F.S.; Lopes, C.A.P.; et al. Regeneration of diabetic foot ulcers based on therapy with red LED light and a natural latex biomembrane. Ann. Biomed. Eng. 2019, 47, 1153–1164. [Google Scholar] [CrossRef]
- Nogueira, V.F.; Rocha, A.F.; Rosa, S.S.; Nogueira, O.S.; Rosa, M.F. Development and application of the Rapha® device for the treatment of diabetic foot ulcers. Am. J. Transl. Res. 2024, 16, 1044–1061. [Google Scholar] [CrossRef] [PubMed]
- Nunes, G.A.M.A.; Reis, M.C.; Rosa, M.F.F.; Peixoto, L.R.T.; Rocha, A.F.; Rosa, S.S.R.F. A system for treatment of diabetic foot ulcers using led irradiation and natural latex. Res. Biomed. Eng. 2016, 32, 3–13. [Google Scholar] [CrossRef]
- Mohammed, A.R.; Weston, N.; Coombes, A.G.A.; Fitzgerald, M.; Perrie, Y. Liposome formulation of poorly water soluble drugs: Optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm. 2004, 285, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Santa, T.; Joanitti, G.; Germano, E.; Germano, R.; Espindola, T.; Ferreira, L.; Luz, G.; Fleury Rosa, M.; Fleury Rosa, S.; Carneiro, M. Rapha®—Sistema móvel de neoformação tecidual. In Interdisciplinaridade no Contexto das Doenças dos Pés no Diabetes [Recurso Eletrônico]: Tratamentos Clínicos, Políticas Públicas e Tecnologia em Saúde; Leite, C., Parisi, M.C., Rosa, M.F., Eds.; EDUERN: Mossoró, RN, Brazil, 2021; pp. 45–96. [Google Scholar]
- Monteiro-Soares, M.; Boyko, E.J.; Jeffcoate, W.; Mills, J.L.; Russell, D.; Morbach, S.; Game, F. Diabetic foot ulcer classifications: A critical review. Diabetes. Metab. Res. Rev. 2020, 36 (Suppl. 1), e3272. [Google Scholar] [CrossRef]
- Rosenfeld, L.G.; Malta, D.C.; Szwarcwald, C.L.; Bacal, N.S.; Cuder, M.A.M.; Pereira, C.A.; Figueiredo, A.W.; da Silva, A.G.; Machado, Í.E.; da Silva, W.A.; et al. Reference values for blood count laboratory tests in the Brazilian adult population, national health survey. Rev. Bras. Epidemiol. 2019, 22, 147–2018. [Google Scholar] [CrossRef]
- Burihan, M.C. Consenso no Tratamento e Prevenção do Pé Diabético; SBACV: São Paulo, Brazil, 2020; ISBN 9788527736589. [Google Scholar]
- Saleem, S.; Hayat, N.; Ahmed, I.; Ahmed, T.; Rehan, A.G. Risk factors associated with poor outcome in diabetic foot ulcer patients. Turkish J. Med. Sci. 2017, 47, 826–831. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, J.; Jing, Y.; Tang, S.; Zhu, D.; Bi, Y. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis. Ann. Med. 2017, 49, 106–116. [Google Scholar] [CrossRef]
- Moura Neto, A.; Zantut-Wittmann, D.E.; Fernandes, T.D.; Nery, M.; Parisi, M.C.R. Risk factors for ulceration and amputation in diabetic foot: Study in a cohort of 496 patients. Endocrine 2013, 44, 119–124. [Google Scholar] [CrossRef]
- Cortez, D.N.; Moraes, J.T.; Ferreira, I.R.; Silva, E.L.; Lanza, F.M. Costs of treating skin lesions in Primary Health Care. Estima Braz. J. Enteros. Ther. 2019, 17, 824. [Google Scholar] [CrossRef]
- Squizatto, R.H.; Braz, R.M.; Lopes, A.O.; Rafaldini, B.P.; Almeida, D.B.; Poletti, N.A.A. Profile of users attended at a wound care outpatient clinic. Cogitare Enferm. 2017, 22, 48472. [Google Scholar] [CrossRef]
- AlGoblan, A.; Alrasheedi, I.; Haider, K.; Basheir, O. Prediction of diabetic foot ulcer healing in type 2 diabetic subjects using routine clinical and laboratory parameters. Res. Rep. Endocr. Disord. 2016, 6, 11–16. [Google Scholar] [CrossRef]
- Maity, S.; Leton, N.; Nayak, N.; Jha, A.; Anand, N.; Thompson, K.; Boothe, D.; Cromer, A.; Garcia, Y.; Al-Islam, A.; et al. A systematic review of diabetic foot infections: Pathogenesis, diagnosis, and management strategies. Front. Clin. Diabetes Healthc. 2024, 5, 1393309. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; DiPietro, L.A. Critical review in oral biology & medicine: Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Rolim, L.C.; Thyssen, P.J.; Flumignan, R.L.; Andrade, D.C.; Dib, S.A.; Bertoluci, M. Diagnóstico e tratamento da neuropatia periférica diabética. In Diretriz Oficial da Sociedade Brasileira de Diabetes; Conectando Pessoas: Brasilia, Brazil, 2022. [Google Scholar]
- Rodacki, M.; Cobas, R.A.; Zajdenverg, L.; Silva Júnior, W.S.; Giacaglia, L.; Calliari, L.E.; Memoriam, R.M.N.; Valerio, C.; Custódio, J.; Scharf, M.; et al. Diagnóstico de diabetes mellitus. In Diretriz da Sociedade Brasileira de Diabetes; Conectando Pessoas: Brasilia, Brazil, 2024. [Google Scholar]
- Egan, A.M.; Dinneen, S.F. What is diabetes? Medicine 2019, 47, 1–4. [Google Scholar] [CrossRef]
- Reddy, S.S.K. Diagnosis of Diabetes Mellitus in Older Adults. Clin. Geriatr. Med. 2020, 36, 379–384. [Google Scholar] [CrossRef]
- Xiang, J.; Wang, S.; He, Y.; Xu, L.; Zhang, S.; Tang, Z. Reasonable Glycemic Control Would Help Wound Healing During the Treatment of Diabetic Foot Ulcers. Diabetes Ther. 2019, 10, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Mukhopadhyay, S.; Sahoo, J.P.; Mennon, A.; Ghosh, A.; Jha, S.; Bal, A. Intensive Glycemic Control for Diabetic Foot Ulcer Healing: A Multicentric, Randomized, Parallel Arm, Single-Blind, Controlled Study Protocol (INGLOBE Study). Int. J. Low. Extrem. Wounds 2020, 21, 443–449. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Ichioka, S.; Sekiya, N. Hydroxyurea-induced foot ulcer in a case of essential thrombocythaemia. J. Wound Care 2010, 19, 361–364. [Google Scholar] [CrossRef]
- Alamri, B.N.; Bahabri, A.; Aldereihim, A.A.; Alabduljabbar, M.; Alsubaie, M.M.; Alnaqeb, D.; Almogbel, E.; Metias, N.S.; Alotaibi, O.A.; Al-Rubeaan, K. Hyperglycemia effect on red blood cells indices. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2139–2150. [Google Scholar] [CrossRef]
- Qing, C. The molecular biology in wound healing & non-healing wound. Chin. J. Traumatol. 2017, 20, 189–193. [Google Scholar] [CrossRef]
- Al-Shura, A.N. Immune System 1. In Hematology in Traditional Chinese Medicine Cardiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 29–31. [Google Scholar]
- Kim, M.H.; Liu, W.; Borjesson, D.L.; Curry, F.R.E.; Miller, L.S.; Cheung, A.L.; Liu, F.T.; Isseroff, R.R.; Simon, S.I. Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging. J. Investig. Dermatol. 2008, 128, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Rothenberg, M.E. The Regulatory Function of Eosinophils. In Myeloid Cells in Health and Disease; American Society of Microbiology: Washington, DC, USA, 2016; Volume 4, pp. 257–269. [Google Scholar]
- Kanda, A.; Yasutaka, Y.; van Bui, D.; Suzuki, K.; Sawada, S.; Kobayashi, Y.; Asako, M.; Iwai, H. Multiple biological aspects of eosinophils in host defense, eosinophil-associated diseases, immunoregulation, and homeostasis: Is their role beneficial, detrimental, regulator, or bystander? Biol. Pharm. Bull. 2020, 43, 20–30. [Google Scholar] [CrossRef]
- Strandmark, J.; Rausch, S.; Hartmann, S. Eosinophils in homeostasis and their contrasting roles during inflammation and helminth infections. Crit. Rev. Immunol. 2016, 36, 193–238. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhou, X.; Sun, P.; Yu, X.; Wang, S.; Qu, L.; Zhang, F.; Ma, Y.; Lv, J.; Liu, G.; et al. Interstitial eosinophilic infiltration in diabetic nephropathy is indicative of poor prognosis, with no therapy benefit from steroid. J. Diabetes 2020, 12, 881–894. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cai, R.; Sun, J.; Dong, X.; Huang, R.; Tian, S.; Wang, S. Diabetes mellitus as a risk factor for incident chronic kidney disease and end-stage renal disease in women compared with men: A systematic review and meta-analysis. Endocrine 2017, 55, 66–76. [Google Scholar] [CrossRef]
- Evans, M.; Morgan, A.R.; Patel, D.; Dhatariya, K.; Greenwood, S.; Newland-Jones, P.; Hicks, D.; Yousef, Z.; Moore, J.; Kelly, B.; et al. Risk Prediction of the Diabetes Missing Million: Identifying Individuals at High Risk of Diabetes and Related Complications. Diabetes Ther. 2020, 1–19. [Google Scholar] [CrossRef]
- Rhou, Y.J.J.; Henshaw, F.R.; McGill, M.J.; Twigg, S.M. Congestive heart failure presence predicts delayed healing of foot ulcers in diabetes: An audit from a multidisciplinary high-risk foot clinic. J. Diabetes Complicat. 2015, 29, 556–562. [Google Scholar] [CrossRef]
- Momen-Heravi, M.; Barahimi, E.; Razzaghi, R.; Bahmani, F.; Gilasi, H.R.; Asemi, Z. The effects of zinc supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. Wound Repair Regen. 2017, 25, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Calle, M.C.; Fernandez, M.L. Inflammation and type 2 diabetes. Diabetes Metab. 2012, 38, 183–191. [Google Scholar] [CrossRef]
- Cao, M.; Duan, Z.; Wang, X.; Gong, P.; Zhang, L.; Ruan, B. Curcumin promotes diabetic foot ulcer wound healing by inhibiting mirR-152-3p and activating the FBN1/TGF-β pathway. Mol. Biotechnol. 2024, 66, 1266–1278. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, S.; Merwe, L.V.; Dai, W.; Lin, C. Efficacy of curcumin for wound repair in diabetic rats/mice: A systematic review and meta-analysis of preclinical studies. Curr. Pharm. Des. 2022, 28, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Long, T.; Wan, Y.; Li, B.; Xu, Z.; Zhao, L.; Mu, C.; Ge, L.; Li, D. Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing. Carbohydr. Polym. 2023, 312, 120824. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Deng, L.; Yin, L.; Mao, Z.; Gao, X. Curcumin promotes skin wound healing by activating Nrf2 signaling pathways and inducing apoptosis in mice. Turk. J. Med. Sci. 2023, 53, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Huang, J.; Zhang, W.; Su, Z.; Li, J.; Wu, Z.; Zhang, P. A multifunctional, tough, stretchable, and transparent curcumin hydrogel with potent antimicrobial, antioxidative, anti-inflammatory, and angiogenesis capabilities for diabetic wound healing. ACS Appl. Mater. Interfaces 2024, 16, 9749–9767. [Google Scholar] [CrossRef]
- Nouvong, A.; Ambrus, A.M.; Zhang, E.R.; Hultman, L.; Coller, H.A. Reactive oxygen species and bacterial biofilms in diabetic wound healing. Physiol. Genom. 2016, 48, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Mobashery, S.; Chang, M. Roles of matrix metalloproteinases in cutaneous wound healing. In Wound Healing—New Insights into Ancient Challenges; InTech: London, UK, 2016. [Google Scholar]
- Wlaschek, M.; Scharffetter-Kochanek, K. Oxidative stress in chronic venous leg ulcers. Wound Repair Regen. 2005, 13, 452–461. [Google Scholar] [CrossRef]
- Dissemond, J.; Goos, M.; Wagner, S.N. Die bedeutung von oxidativem stress in der genese und therapie chronischer Wunden. Der Hautarzt 2002, 53, 718–723. [Google Scholar] [CrossRef]
- Kordestani, S. Wound healing process. In Atlas of Wound Healing. A Tissue Regeneration Approach; Kordestani, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 11–22. [Google Scholar]
- Kunkemoeller, B.; Kyriakides, T.R. Redox signaling in diabetic wound healing regulates extracellular matrix deposition. Antioxid. Redox Signal. 2017, 27, 823–838. [Google Scholar] [CrossRef]
- Ministério da Saúde. Manual de Condutas Para Úlceras Neurotróficas e Traumáticas; Ministério da Saúde: Brasilia, Brazil, 2002; ISBN 8533405626. [Google Scholar]
- Alavi, A.; Sibbald, R.G.; Mayer, D.; Goodman, L.; Botros, M.; Armstrong, D.G.; Woo, K.; Boeni, T.; Ayello, E.A.; Kirsner, R.S. Diabetic Foot Ulcers: Part I. Pathophysiology and Prevention. J. Am. Acad. Dermatol. 2014, 70, e1–e20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, T.F.S.; Guimarães, N.C.; Abreu, L.P.G.C.; Silva, G.d.O.; da Silva, V.R.P.; da Silva, F.d.M.; Veiga-Souza, F.H.; de Souza, P.E.N.; Rosa, M.F.F.; Joanitti, G.A.; et al. A Natural Latex-Based Smart Dressing for Curcumin Delivery Combined with LED Phototherapy in Diabetic Foot Ulcers: A Pilot Clinical Study. Pharmaceutics 2025, 17, 772. https://doi.org/10.3390/pharmaceutics17060772
Gomes TFS, Guimarães NC, Abreu LPGC, Silva GdO, da Silva VRP, da Silva FdM, Veiga-Souza FH, de Souza PEN, Rosa MFF, Joanitti GA, et al. A Natural Latex-Based Smart Dressing for Curcumin Delivery Combined with LED Phototherapy in Diabetic Foot Ulcers: A Pilot Clinical Study. Pharmaceutics. 2025; 17(6):772. https://doi.org/10.3390/pharmaceutics17060772
Chicago/Turabian StyleGomes, Thamis Fernandes Santana, Natália Carvalho Guimarães, Ludmilla Pinto Guiotti Cintra Abreu, Gabriella de Oliveira Silva, Vitória Regina Pereira da Silva, Franciéle de Matos da Silva, Fabiane Hiratsuka Veiga-Souza, Paulo Eduardo Narcizo de Souza, Mário Fabrício Fleury Rosa, Graziella Anselmo Joanitti, and et al. 2025. "A Natural Latex-Based Smart Dressing for Curcumin Delivery Combined with LED Phototherapy in Diabetic Foot Ulcers: A Pilot Clinical Study" Pharmaceutics 17, no. 6: 772. https://doi.org/10.3390/pharmaceutics17060772
APA StyleGomes, T. F. S., Guimarães, N. C., Abreu, L. P. G. C., Silva, G. d. O., da Silva, V. R. P., da Silva, F. d. M., Veiga-Souza, F. H., de Souza, P. E. N., Rosa, M. F. F., Joanitti, G. A., Fleury Rosa, S. d. S. R., & Carneiro, M. L. B. (2025). A Natural Latex-Based Smart Dressing for Curcumin Delivery Combined with LED Phototherapy in Diabetic Foot Ulcers: A Pilot Clinical Study. Pharmaceutics, 17(6), 772. https://doi.org/10.3390/pharmaceutics17060772