Nanoemulsion of Gomortega keule Essential Oil: Characterization, Chemical Composition, and Anti-Yeast Activity Against Candida spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essential Oil
2.3. Characterization of Essential Oil
2.4. Nanoemulsions
2.4.1. Preparation of the Nanoemulsion
2.4.2. Determination of Particle Size and Zeta Potential
2.4.3. Encapsulation Efficiency (EE)
2.4.4. Morphological Analysis
2.5. Biological Assay
2.5.1. Strains
2.5.2. Anti-Yeast Assay
3. Results and Discussion
3.1. Oil Composition
3.2. Nanoemulsion Formulation
3.3. Nanoemulsion Characterization
3.4. Morphology
3.5. Antifungal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- R, A.N.; Rafiq, N.B. Candidiasis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Garnacho-Montero, J.; Barrero-García, I.; León-Moya, C. Fungal infections in immunocompromised critically ill patients. J. Intensive Care Med. 2024, 4, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Rajendra Santosh, A.B.; Muddana, K.; Bakki, S.R. Fungal Infections of Oral Cavity: Diagnosis, Management, and Association with COVID-19. SN Compr. Clin. Med. 2021, 3, 1373–1384. [Google Scholar] [CrossRef]
- Pekmezovic, M.; Hovhannisyan, H.; Gresnigt, M.S.; Iracane, E.; Oliveira-Pacheco, J.; Siscar-Lewin, S.; Hube, B. Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells. Nat. Microbiol. 2021, 6, 643–657. [Google Scholar] [CrossRef]
- Anam, P.R.; Prakash, V.; Verma, D.; Myneni, R.B. Prevalence of Candida species and their Susceptibility to Triazoles in Clinical Isolates from a Tertiary Care Hospital. J. Pure Appl. Microbiol. 2023, 17, 2437–2442. [Google Scholar] [CrossRef]
- Fang, J.; Huang, B.; Ding, Z. Efficacy of antifungal drugs in the treatment of oral candidiasis: A Bayesian network meta-analysis. J. Prosthet. Dent. 2021, 125, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Rodrigues, C.F.; Rodrigues, M.E.; Henriques, M.C. Promising alternative therapeutics for oral candidiasis. Curr. Med. Chem. 2019, 26, 2515–2528. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Ribeiro, R.; Costa, R.; Henriques, M.; Rodrigues, M.E. Essential Oils as a Good Weapon against Drug-Resistant Candida auris. Antibiotics 2022, 11, 977. [Google Scholar] [CrossRef]
- Sosa, L.; Espinoza, L.C.; Valarezo, E.; Bozal, N.; Calpena, A.; Fábrega, M.-J.; Baldomà, L.; Rincón, M.; Mallandrich, M. Therapeutic Applications of Essential Oils from Native and Cultivated Ecuadorian Plants: Cutaneous Candidiasis and Dermal Anti-Inflammatory Activity. Molecules 2023, 28, 5903. [Google Scholar] [CrossRef]
- Muñoz-Concha, D.; Garrido-Werner, A. Ethnobotany of Gomortega keule, an endemic and endangered Chilean tree. N. Z. J. Bot. 2011, 49, 509–513. [Google Scholar] [CrossRef]
- Bittner, M.L.; Casanueva, M.E.; Arbert, C.C.; Aguilera, M.A.; Hernández, V.J.; Becerra, J.V. Effects of essential oils from five plant species against the granary weevils Sitophilus zeamais and Acanthoscelides obtectus (Coleoptera). J. Chil. Chem. Soc. 2008, 53, 1444–1448. [Google Scholar] [CrossRef]
- Becerra, J.; Bittner, M.; Hernández, V.; Brintrup, C.; Becerra, J.; Silva, M. Actividad de aceites esenciales de Canelo, Queule, Bailahuen y Culén frente a hongos fitopatógenos. Bol. Latinoam. Caribe Plantas Med. Aromát. 2010, 9, 212–215. Available online: https://www.redalyc.org/articulo.oa?id=85615232008 (accessed on 3 March 2025).
- Lin, Y.T.; Tsai, W.C.; Lu, H.Y.; Fang, S.Y.; Chan, H.W.; Huang, C.H. Enhancing Therapeutic Efficacy of Cinnamon Essential Oil by Nanoemulsification for Intravaginal Treatment of Candida vaginitis. Int. J. Nanomed. 2024, 19, 4941–4956. [Google Scholar] [CrossRef] [PubMed]
- Cid-Chevecich, C.; Müller-Sepúlveda, A.; Jara, J.A.; López-Muñoz, R.; Santander, R.; Budini, M.; Escobar, A.; Quijada, R.; Criollo, A.; Díaz-Dosque, M.; et al. Origanum vulgare L. essential oil inhibits virulence patterns of Candida spp. and potentiates the effects of fluconazole and nystatin in vitro. BMC Complement. Med. Ther. 2022, 22, 39. [Google Scholar] [CrossRef]
- Maruno, M.; Rocha-Filho, P.A. O/W nanoemulsion after 15 years of preparation: A suitable vehicle for pharmaceutical and cosmetic applications. J. Dispers. Sci. Technol. 2009, 31, 17–22. [Google Scholar] [CrossRef]
- Lin, L.; Chen, W.; Li, C.; Cui, H. Enhancing stability of Eucalyptus citriodora essential oil by solid nanoliposomes encapsulation. Ind. Crops Prod. 2019, 140, 111615. [Google Scholar] [CrossRef]
- Madrid, A.; Espinoza, L.; González, C.; Mellado, M.; Villena, J.; Santander, R.; Silva, V.; Montenegro, I. Antifungal study of the resinous exudate and of meroterpenoids isolated from Psoralea glandulosa (Fabaceae). J. Ethnopharmacol. 2012, 144, 809–811. [Google Scholar] [CrossRef]
- CLSI M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. Available online: https://clsi.org/shop/standards/m27/ (accessed on 5 June 2025).
- Brito, M.; Maturana, A.; Montenegro, I.; Said, B.; Morales, A.; Calderon, V.; Flores, S.; Martínez, M.; Madrid, A. Comparative study of the antifungal activity of sequential extracts of Fuchsia lycioides against Candida sp. Bol. Latinoam. Caribe Plant Med. Aromat. 2022, 21, 123–130. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Boyken, L.; Hollis, R.J.; Messer, S.A.; Tendolkar, S.; Diekema, D.J. In Vitro Susceptibility of Invasive Isolates of Candida spp. to Anidulafungin, Caspofungin, and Micafungin: Six Years of Global Surveillance. J. Clin. Microbiol. 2008, 46, 150–156. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Title 21—Food and Drugs Chapter I—Food and Drug Administration, Department of Health and Human Services Subchapter B—Food for Human Consumption. Part 172 Food Additives Permitted for Direct Addition to Food for Human Consumption. Available online: https://www.ecfr.gov/current/title-21/part-172 (accessed on 3 June 2025).
- Environmental Protection Agency (EPA). 40 CFR Part 180 [EPA–HQ–OPP–2014–0353; FRL–9924–81]. 1-Octanol; Exemption From the Requirement of a Tolerance. Available online: https://www.federalregister.gov/d/2015-10364 (accessed on 3 June 2025).
- Api, A.M.; Bartlett, A.; Belsito, D.; Botelho, D.; Bruze, M.; Bryant-Friedrich, A.; Burton, G.A.; Cancellieri, M.A.; Chon, H.; Cronin, M.; et al. RIFM fragrance ingredient safety assessment, 1-octanol, CAS Registry Number 111-87-5. Food Chem. Toxicol. 2025, 201, 115465. [Google Scholar] [CrossRef]
- Louis, E.D. Essential tremor. Clin. Geriatr. Med. 2006, 22, 843–857. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.; Andrade, S.; Arantes, E.; Rocha, P.; Mafra, L.; Ferrari, M. Production and Characterization of Cosmetic Nanoemulsions Containing Opuntia ficus-indica (L.) Mill Extract as Moisturizing Agent. Molecules 2015, 20, 2492–2509. [Google Scholar] [CrossRef] [PubMed]
- Gubelin, H.W.; de la Parra, C.R.; Giesen, F.L. Micosis superficiales. Rev. Méd Clín Condes 2011, 22, 804–812. Available online: https://www.clinicalascondes.cl/Dev_CLC/media/Imagenes/PDF%20revista%20m%C3%A9dica/2011/6%20nov/11_Micosis_superficiales-14.pdf (accessed on 9 March 2025).
- Barradas, T.N.; de Holanda e Silva, K.G. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review. Environ. Chem. Lett. 2021, 19, 1153–1171. [Google Scholar] [CrossRef]
- Kaur, R.; Ajitha, M. Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity. Eur. J. Pharm. Sci. 2019, 136, 104956. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, B.; Mei, H.; Liu, T.; Lin, H.; Lee, C. Evaluating the effects of surfactant types on the properties and stability of oil-in-water Rhodiola rosea nanoemulsion. Colloids Surf. B Biointerfaces 2024, 234, 113692. [Google Scholar] [CrossRef]
- Bu, G.; Zhao, C.; Wang, M.; Yu, Z.; Yang, H.; Zhu, T. The development and properties of nanoemulsions stabilized with glycated soybean protein for carrying β-carotene. J. Food Eng. 2023, 345, 111411. [Google Scholar] [CrossRef]
- E3247-20; Standard Test Method for Measuring the Size of Nanoparticles in Aqueous Media Using Dynamic Light Scattering (DLS). ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://store.astm.org/e3247-20.html (accessed on 21 May 2025).
- U.S. Food and Drug Administration (FDA). FY2016 Regulatory Science Report: Nanotechnology: Physiochemical Characterization of Nano-Sized Drug Products. 2016. Available online: https://www.fda.gov/industry/generic-drug-user-fee-amendments/fy2016-regulatory-science-report-nanotechnology-physiochemical-characterization-nano-sized-drug (accessed on 21 May 2025).
- Żołnowska, B.; Sławiński, J.; Garbacz, K.; Jarosiewicz, M.; Kawiak, A. N-(2-Arylmethylthio-4-Chloro-5-Methylbenzenesulfonyl)Amide Derivatives as Potential Antimicrobial Agents—Synthesis and Biological Studies. Int. J. Mol. Sci. 2019, 21, 210. [Google Scholar] [CrossRef]
- Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Soković, M. Camphor and Eucalyptol—Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. Int. J. Mol. Sci. 2021, 22, 483. [Google Scholar] [CrossRef]
- Hoch, C.C.; Petry, J.; Griesbaum, L.; Weiser, T.; Werner, K.; Ploch, M.; Verschoor, A.; Multhoff, G.; Dezfouli, A.B.; Wollenberg, B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed. Pharmacother. 2023, 167, 115467. [Google Scholar] [CrossRef]
- Mondello, F.; Fontana, S.; Scaturro, M.; Girolamo, A.; Colone, M.; Stringaro, A.; Vito, M.D.; Ricci, M.L. Terpinen-4-ol, the Main Bioactive Component of Tea Tree Oil, as an Innovative Antimicrobial Agent against Legionella pneumophila. Pathogens 2022, 11, 682. [Google Scholar] [CrossRef] [PubMed]
- Mondello, F.; De Bernardis, F.; Girolamo, A.; Cassone, A.; Salvatore, G. In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and-resistant human pathogenic Candida species. BMC Infect. Dis. 2006, 6, 158. [Google Scholar] [CrossRef] [PubMed]
- Tonon, C.C.; Francisconi, R.S.; Bordini, E.A.F.; Huacho, P.M.M.; Sardi, J.D.C.O.; Spolidorio, D.M.P. Interactions between Terpinen-4-ol and Nystatin on biofilm of Candida albicans and Candida tropicalis. Braz. Dent. J. 2018, 29, 359–367. [Google Scholar] [CrossRef]
- Vaičiulytė, V.; Ložienė, K.; Švedienė, J.; Raudonienė, V.; Paškevičius, A. 4-Terpinyl Acetate: Occurrence in Essential Oils Bearing Thymus pulegioides, Phytotoxicity, and Antimicrobial Effects. Molecules 2021, 26, 1065. [Google Scholar] [CrossRef]
- de Souza Borges, M.H.; Cezar Rodrigues, N.; Muniz Brito, A.C.; Morais Bezerra, I.; Dantas de Almeida, L.D.F. Cinamaldehído y terpineol como inhibidores de biopelículas de Candida albicans y Enterococcus faecalis. Rev. Cubana De Estomatol. 2021, 58, e3026. Available online: https://revestomatologia.sld.cu/index.php/est/article/view/3026 (accessed on 6 March 2025).
- Maione, A.; La Pietra, A.; de Alteriis, E.; Mileo, A.; De Falco, M.; Guida, M.; Galdiero, E. Effect of Myrtenol and Its Synergistic Interactions with Antimicrobial Drugs in the Inhibition of Single and Mixed Biofilms of Candida auris and Klebsiella pneumoniae. Microorganisms 2022, 10, 1773. [Google Scholar] [CrossRef] [PubMed]
- Bozzini, M.F.; Pieracci, Y.; Ascrizzi, R.; Najar, B.; D’Antraccoli, M.; Ciampi, L.; Peruzzi, L.; Turchi, B.; Pedonese, F.; Alleva, A.; et al. Chemical Composition and Antimicrobial Activity against the Listeria monocytogenes of Essential Oils from Seven Salvia Species. Foods 2023, 12, 4235. [Google Scholar] [CrossRef]
- Božović, M.; Mladenović, M.; Ragno, R. Editorial: Chemical composition and antimicrobial activity of essential oils. Front. Pharmacol. 2023, 14, 1120756. [Google Scholar] [CrossRef]
- Omidian, H.; Cubeddu, L.X.; Gill, E.J. Harnessing Nanotechnology to Enhance Essential Oil Applications. Molecules 2025, 30, 520. [Google Scholar] [CrossRef]
- Nieto Marín, V.; Buccini, D.F.; Gomes da Silva, V.; Fernandez Soliz, I.A.; Franco, O.L. Nanoformulations of bioactive compounds derived from essential oils with antimicrobial activity. Nano Trends 2025, 9, 100070. [Google Scholar] [CrossRef]
- Tavakoli, M.; Barzegar, M.; Khorasany, S. Encapsulation of Rosa damascena Mill. essential oil in nanoliposomes: Physicochemical and antioxidant activity features. JAST 2023, 25, 1371–1385. [Google Scholar] [CrossRef]
- Kaur, P.; Gupta, S.; Kaur, K.; Kaur, N.; Kumar, R.; Bhullar, M.S. Nanoemulsion of Foeniculum vulgare essential oil: A propitious striver against weeds of Triticum aestivum. Ind. Crops Prod. 2021, 168, 113601. [Google Scholar] [CrossRef]
Compound Name | Cas No. | RT | RI a | Area % | Identification | |
---|---|---|---|---|---|---|
1 | Sabinene | 3387-41-5 | 17.89 | 978.83 | 0.12 | RI b, MS |
2 | β-pinene | 18172-67-3 | 18.00 | 981.69 | 0.21 | RI b, MS |
3 | α-terpinolene | 99-86-5 | 19.47 | 1023.93 | 0.11 | RI b, MS |
4 | p-cymene | 99-87-6 | 19.66 | 1029.84 | 1.83 | RI b, MS |
5 | Eucalyptol | 470-82-6 | 19.89 | 1036.93 | 21.41 | RI b, MS |
6 | γ-terpinene | 99-85-4 | 20.86 | 1065.93 | 0.21 | RI b, MS |
7 | Unknown | - | 21.30 | 1078.65 | 0.30 | - |
8 | Isoterpinolene | 586-63-0 | 21.85 | 1094.17 | 0.37 | RI b, MS |
9 | Linalool | 78-70-6 | 22.10 | 1101.38 | 1.51 | RI b, MS |
10 | Thujone | 546-80-5 | 22.42 | 1112.35 | 0.50 | RI b, MS |
11 | trans-2-menthenol | 29803-81-4 | 22.96 | 1130.50 | 0.14 | RI b, MS |
12 | Camphenol | 3570-04-5 | 23.09 | 1134.81 | 0.10 | RI b, MS |
13 | Unknown | - | 23.13 | 1136.13 | 0.10 | - |
14 | L-trans-pinocarveol | 547-61-5 | 23.55 | 1149.86 | 2.38 | RI b, MS |
15 | α-phellandrene-8-ol | 1686-20-0 | 23.85 | 1159.51 | 0.14 | RI b, MS |
16 | Unknown | - | 24.06 | 1166.20 | 0.13 | - |
17 | Sabina ketone | 513-20-2 | 24.13 | 1168.42 | 0.33 | RI b, MS |
18 | Pinocarvone | 30460-92-5 | 24.28 | 1173.14 | 0.93 | RI b, MS |
19 | Unknown | - | 24.41 | 1177.22 | 0.25 | - |
20 | 4-terpineol | 20126-76-5 | 24.69 | 1185.92 | 19.62 | RI b, MS |
21 | Unknown | - | 24.94 | 1193.60 | 0.29 | - |
22 | α-terpineol | 98-55-5 | 25.09 | 1198.18 | 4.27 | RI b, MS |
23 | Myrtenal | 564-94-3 | 25.32 | 1206.19 | 2.38 | RI b, MS |
24 | Berbenone | 80-57-9 | 25.73 | 1220.96 | 0.54 | RI b, MS |
25 | (Z)-Carveol | 1197-06-4 | 26.09 | 1233.73 | 0.12 | RI b, MS |
26 | Carvone | 99-49-0 | 26.80 | 1258.42 | 0.29 | RI b, MS |
27 | Unknown | - | 27.03 | 1266.27 | 0.15 | - |
28 | Bornyl acetate | 76-49-3 | 27.84 | 1293.42 | 1.31 | RI b, MS |
29 | δ-terpinyl acetate | 93836-50-1 | 28.67 | 1324.17 | 0.33 | RI b, MS |
30 | Hydroxycineyl acetate | 57709-95-2 | 29.35 | 1349.67 | 1.35 | RI b, MS |
31 | α-terpinyl acetate | 80-26-2 | 29.54 | 1356.69 | 13.89 | RI b, MS |
32 | β-elemene | 515-13-9 | 30.81 | 1402.88 | 0.11 | RI b, MS |
33 | Caryophyllene | 87-44-5 | 31.69 | 1438.48 | 0.21 | RI b, MS |
34 | Unknown | - | 32.21 | 1459.06 | 0.12 | - |
35 | Selina-5,11-diene | 52026-55-8 | 32.28 | 1461.81 | 0.25 | RI b, MS |
36 | Ishwaran | 26620-70-2 | 32.93 | 1487.01 | 1.61 | RI b, MS |
37 | Aristolochene | 26620-71-3 | 33.34 | 1503.01 | 0.21 | RI b, MS |
38 | Unknown | - | 33.42 | 1506.43 | 0.26 | - |
39 | Unknown | - | 33.60 | 1514.11 | 0.71 | - |
40 | δ-cadinene | 483-76-1 | 34.16 | 1537.75 | 3.40 | RI b, MS |
41 | α-calacorene | 21391-99-1 | 34.74 | 1561.82 | 6.49 | RI b, MS |
42 | β-calacorene | 50277-34-4 | 35.25 | 1582.66 | 0.80 | RI b, MS |
43 | Unknown | - | 35.47 | 1591.56 | 0.11 | - |
44 | Spathulenol | 6750-60-3 | 35.67 | 1599.60 | 0.58 | RI b, MS |
45 | (-)-globulol | 489-41-8 | 35.84 | 1607.25 | 0.34 | RI b, MS |
46 | Unknown | - | 36.05 | 1616.73 | 0.22 | - |
47 | α-corocalene | 20129-39-9 | 36.59 | 1640.83 | 1.11 | RI b, MS |
48 | Di-epi-1,10-cubenol | 73365-77-2 | 36.79 | 1649.67 | 0.24 | RI b, MS |
49 | Unknown | - | 37.04 | 1660.65 | 0.16 | - |
50 | Epicubenol | 19912-67-5 | 37.12 | 1664.15 | 0.32 | RI b, MS |
51 | Unknown | - | 37.39 | 1675.90 | 0.11 | - |
52 | Cadalene | 483-78-3 | 37.87 | 1696.58 | 2.19 | RI b, MS |
53 | Unknown | - | 38.22 | 1712.86 | 0.10 | - |
54 | Unknown | - | 38.63 | 1732.23 | 0.28 | - |
55 | Unknown | - | 43.32 | 1960.24 | 0.72 | - |
56 | Pimaradiene | 1686-56-2 | 43.78 | 1983.48 | 0.19 | RI b, MS |
57 | Kaur-16-ene | 562-28-7 | 45.28 | 2059.83 | 3.15 | RI b, MS |
58 | Unknown | - | 45.75 | 2086.87 | 0.42 | - |
Sample | Particle Size (nm) | PDI | PH | ZP (mV) | EE (%) |
---|---|---|---|---|---|
Nanoformulated GKEO | 22.00 ± 7.3 | 0.484 ± 0.19 | 6.92 | −4.27 ± 0.3 | 82.51 |
Nanoformulated without GKEO | 23.80 ± 7.4 | 0.476 ± 0.22 | 6.89 | −4.56 ± 0.4 | 0 |
Sample | Strain | ||
---|---|---|---|
C. albicans | C. glabrata | C. guilliermondii | |
GKEO | 32 | 8 | 0.5 |
Nanoformulated GKEO | 16 | 16 | 8 |
Fluconazole | 2 | 32 | 16 |
Voriconazole | 0.03 | 4 | 8 |
Itraconazole | 4 | 1 | 0.5 |
DMSO | I | I | I |
Tween 80 | I | I | I |
Pluronic F127 | I | I | I |
Sample | Strain | ||||||||
---|---|---|---|---|---|---|---|---|---|
C. albicans | C. glabrata | C. guilliermondii | |||||||
MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | |
GKEO | 128 | 256 | 2 | 64 | 128 | 2 | 4 | 16 | 2 |
Nanoformulated GKEO | 32 | 64 | 2 | 32 | 64 | 2 | 16 | 16 | 1 |
Nanoformulated without GKEO | I | I | I | ||||||
Fluconazole | 4 | 8 | 2 | 64 | 128 | 2 | 16 | 32 | 2 |
Voriconazole | 0.125 | 0.125 | 1 | 16 | 64 | 4 | 16 | 16 | 1 |
Itraconazole | 16 | 32 | 2 | 2 | 4 | 2 | 1 | 4 | 4 |
DMSO | I | I | I | ||||||
Tween 80 | I | I | I | ||||||
Pluronic F127 | I | I | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montenegro, I.; Fuentes, B.; Silva, V.; Valdés, F.; Werner, E.; Santander, R.; Moraga-Espinoza, D.; Madrid, A. Nanoemulsion of Gomortega keule Essential Oil: Characterization, Chemical Composition, and Anti-Yeast Activity Against Candida spp. Pharmaceutics 2025, 17, 755. https://doi.org/10.3390/pharmaceutics17060755
Montenegro I, Fuentes B, Silva V, Valdés F, Werner E, Santander R, Moraga-Espinoza D, Madrid A. Nanoemulsion of Gomortega keule Essential Oil: Characterization, Chemical Composition, and Anti-Yeast Activity Against Candida spp. Pharmaceutics. 2025; 17(6):755. https://doi.org/10.3390/pharmaceutics17060755
Chicago/Turabian StyleMontenegro, Iván, Bastián Fuentes, Valentina Silva, Francisca Valdés, Enrique Werner, Rocío Santander, Daniel Moraga-Espinoza, and Alejandro Madrid. 2025. "Nanoemulsion of Gomortega keule Essential Oil: Characterization, Chemical Composition, and Anti-Yeast Activity Against Candida spp." Pharmaceutics 17, no. 6: 755. https://doi.org/10.3390/pharmaceutics17060755
APA StyleMontenegro, I., Fuentes, B., Silva, V., Valdés, F., Werner, E., Santander, R., Moraga-Espinoza, D., & Madrid, A. (2025). Nanoemulsion of Gomortega keule Essential Oil: Characterization, Chemical Composition, and Anti-Yeast Activity Against Candida spp. Pharmaceutics, 17(6), 755. https://doi.org/10.3390/pharmaceutics17060755