Unraveling Nature’s Pharmacy: Transforming Medicinal Plants into Modern Therapeutic Agents
Abstract
:1. Introduction
2. Methodology
3. Bridging Traditional Medicine and Modern Medicine
3.1. Traditional Medicine and MPs
3.2. NPs in Traditional Medicine
3.3. NPs in Modern Medicine
4. MP-Derived Metabolites
4.1. Chemical Diversity of Secondary Metabolites
4.2. Biosynthesis of NPs
4.3. Pharmacological Properties of NPs
4.3.1. Antimicrobial Properties
4.3.2. Antioxidant Properties
4.3.3. Anti-Inflammatory Properties
4.3.4. Anticancer Properties
4.4. Environmental Factors in the Formation of SMs
4.4.1. Biotic Factors
4.4.2. Abiotic Factors
5. NP Drug Discovery and Development
5.1. Discovering NPs from MPs
5.1.1. Plant Selection
5.1.2. MP Authentication
5.1.3. Extraction
5.1.4. Isolation and Purification
5.1.5. Bioassays
5.2. Innovative Technological Approaches in NP Drug Discovery and Development
5.2.1. Network Pharmacology
5.2.2. Computer-Aided MP Drug Discovery
Virtual Screening
Molecular Docking
Molecular Dynamics Simulation
Artificial Intelligence and Machine Learning
5.2.3. Pathway Analysis
5.2.4. Molecular Networking
5.2.5. NP-Based Nanobiotechnology
6. Regulatory Frameworks for NPs
7. Problems in NP-Based Drug Discovery
8. Challenges Associated with NP Drug Discovery
9. Prospects for NPs in Drug Discovery
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ansari, M.K.A.; Iqbal, M.; Chaachouay, N.; Ansari, A.A.; Owens, G. The Concept and Status of Medicinal and Aromatic Plants: History, Pharmacognosy, Ecology, and Conservation. In Plants as Medicine and Aromatics; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Hardy, K. Paleomedicine and the Use of Plant Secondary Compounds in the Paleolithic and Early Neolithic. Evol. Anthropol. Issues News Rev. 2019, 28, 60–71. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Xue, L.; Severino, R.P.; Gao, S.; Niu, J.; Qin, L.-P.; Zhang, D.; Brömme, D. Salvia miltiorrhiza: An Ancient Chinese Herbal Medicine as a Source for Anti-Osteoporotic Drugs. J. Ethnopharmacol. 2014, 155, 1401–1416. [Google Scholar] [CrossRef] [PubMed]
- Leonti, M.; Verpoorte, R. Traditional Mediterranean and European Herbal Medicines. J. Ethnopharmacol. 2017, 199, 161–167. [Google Scholar] [CrossRef]
- Saad, B. Greco-Arab and Islamic Herbal Medicine: A Review. Eur. J. Med. Plants 2014, 4, 249–258. [Google Scholar] [CrossRef]
- Chin, Y.-W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug Discovery from Natural Sources. AAPS J. 2006, 8, E239–E253. [Google Scholar] [CrossRef]
- Raspopin, Y.S.; Shifman, E.M.; Feoktistova, D.A. History and Prospects for the Use of Morphine in Clinical Practice: Literature Review. Reg. Anesth. Acute Pain Manag. 2024, 18, 33–40. [Google Scholar] [CrossRef]
- Khandelwal, D.R.; Vagha, J.D.; Meshram, R.J.; Patel, A. A Comprehensive Review on Unveiling the Journey of Digoxin: Past, Present, and Future Perspectives. Cureus 2024, 16, e56755. [Google Scholar] [CrossRef]
- Kayser, O. (Ed.) Cocaine—From Drug to Local Anesthetic. In From the Maluku to Molecules: How Natural Substances Write History; Springer: Berlin/Heidelberg, Germany, 2024; pp. 37–69. [Google Scholar] [CrossRef]
- Shanks, G.D. Historical Review: Problematic Malaria Prophylaxis with Quinine. Am. J. Trop. Med. Hyg. 2016, 95, 269–272. [Google Scholar] [CrossRef]
- Ernest, T.B.; Elder, D.P.; Martini, L.G.; Roberts, M.; Ford, J.L. Developing Paediatric Medicines: Identifying the Needs and Recognizing the Challenges. J. Pharm. Pharmacol. 2007, 59, 1043–1055. [Google Scholar] [CrossRef]
- Balunas, M.J.; Kinghorn, A.D. Drug Discovery from Medicinal Plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef]
- Mohr, C. Plant Made Pharmaceuticals (PMPs) as Medicinal Products for Human Use–A Review of Current Regulatory Issues and Challenges to Achieve a Marketing Authorisation in the EU. Master’s Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 2015. Available online: https://www.dgra.de/media/masterthesis/1308-master_mohr_c.pdf (accessed on 11 April 2025).
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M. International Natural Product Sciences Taskforce; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Velu, G.; Palanichamy, V.; Rajan, A.P. Phytochemical and Pharmacological Importance of Plant Secondary Metabolites in Modern Medicine. In Bioorganic Phase in Natural Food: An Overview; Roopan, S.M., Madhumitha, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 135–156. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Moloney, M.G. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol. Sci. 2016, 37, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kapralov, M.; Ashton, M. Plant-Derived Compounds as Potential Leads for New Drug Development Targeting COVID-19. Phytother. Res. 2024, 38, 1522–1554. [Google Scholar] [CrossRef] [PubMed]
- Abdelmohsen, U.R.; Sayed, A.M.; Elmaidomy, A.H. Natural Products’ Extraction and Isolation Between Conventional and Modern Techniques. Front. Nat. Prod. 2022, 1, 873808. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Microwave-Assisted Extraction for Recovery of Polyphenolic Antioxidants from Ripe Mango (Mangifera indica L.) Peel Using Lactic Acid/Sodium Acetate Deep Eutectic Mixtures. Food Sci. Technol. Int. 2020, 26, 78–92. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective Extraction of Bioactive Compounds from Plants Using Recent Extraction Techniques: A Review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green Extraction of Natural Products. Origins, Current Status, and Future Challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Putra, N.R.; Yustisia, Y.; Heryanto, R.B.; Asmaliyah, A.; Miswarti, M.; Rizkiyah, D.N.; Yunus, M.A.C.; Irianto, I.; Qomariyah, L.; Rohman, G.A.N. Advancements and Challenges in Green Extraction Techniques for Indonesian Natural Products: A Review. S. Afr. J. Chem. Eng. 2023, 46, 88–98. [Google Scholar] [CrossRef]
- Luo, H.; Chen, S. Progress on the Transcriptome Analysis of Medicinal Plants with Next-Generation Sequencing Technologies. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 1–21. [Google Scholar] [CrossRef]
- Thanh, N.T.; Murthy, H.N.; Yu, K.W.; Hahn, E.J.; Paek, K.Y. Methyl Jasmonate Elicitation Enhanced Synthesis of Ginsenoside by Cell Suspension Cultures of Panax Ginseng in 5-l Balloon Type Bubble Bioreactors. Appl. Microbiol. Biotechnol. 2005, 67, 197–201. [Google Scholar] [CrossRef]
- Engels, B.; Dahm, P.; Jennewein, S. Metabolic Engineering of Taxadiene Biosynthesis in Yeast as a First Step towards Taxol (Paclitaxel) Production. Metab. Eng. 2008, 10, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.N.; Fu, J.; Bian, X.; Wang, H.; Zhang, Y.; Li, A. Recombineering for Genetic Engineering of Natural Product Biosynthetic Pathways. Trends Biotechnol. 2020, 38, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Zou, H.; Qiu, L.; Zheng, Y.; Yang, D.; Wang, Y. Effects of Light on Secondary Metabolite Biosynthesis in Medicinal Plants. Front. Plant Sci. 2021, 12, 781236. [Google Scholar] [CrossRef] [PubMed]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Lee, S.-L.; Taylor, C.; Li, J.; Chan, Y.-M.; Agarwal, R.; Temple, R.; Throckmorton, D.; Tyner, K. Scientific and Regulatory Approach to Botanical Drug Development: A U.S. FDA Perspective. J. Nat. Prod. 2020, 83, 552–562. [Google Scholar] [CrossRef]
- Koehn, F.E.; Carter, G.T. The Evolving Role of Natural Products in Drug Discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef]
- Knowles, J.; Gromo, G. Target Selection in Drug Discovery. Nat. Rev. Drug Discov. 2003, 2, 63–69. [Google Scholar] [CrossRef]
- Lombardino, J.G.; Lowe, J.A. The Role of the Medicinal Chemist in Drug Discovery—Then and Now. Nat. Rev. Drug Discov. 2004, 3, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Parveen, B.; Parveen, R.; Ahmad, S. Challenges and Guidelines for Clinical Trial of Herbal Drugs. J. Pharm. Bioallied Sci. 2015, 7, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Sanidhya, P.; Akshatha, H.; Subbalaxmi, S. A Critical Look at Challenges and Future Scopes of Bioactive Compounds and Their Incorporations in the Food, Energy, and Pharmaceutical Sector. Environ. Sci. Pollut. Res. Int. 2022, 29, 35518–35541. [Google Scholar] [CrossRef]
- Domingo-Fernández, D.; Gadiya, Y.; Preto, A.J.; Krettler, C.A.; Mubeen, S.; Allen, A.; Healey, D.; Colluru, V. Natural Products Have Increased Rates of Clinical Trial Success throughout the Drug Development Process. J. Nat. Prod. 2024, 87, 1844–1851. [Google Scholar] [CrossRef]
- Mawalagedera, S.M.U.P.; Callahan, D.L.; Gaskett, A.C.; Rønsted, N.; Symonds, M.R.E. Combining Evolutionary Inference and Metabolomics to Identify Plants With Medicinal Potential. Front. Ecol. Evol. 2019, 7, 267. [Google Scholar] [CrossRef]
- VanPool, C. Ancient Medicinal Plants of South America. Proc. Natl. Acad. Sci. USA 2019, 116, 11087–11089. [Google Scholar] [CrossRef]
- Hardy, K. Paleomedicine and the Evolutionary Context of Medicinal Plant Use. Rev. Bras. Farmacogn. 2021, 31, 1–15. [Google Scholar] [CrossRef]
- WHO. WHO Traditional Medicine Strategy 2002–2005. Available online: https://www.who.int/publications/i/item/WHO-EDM-TRM-2002.1 (accessed on 11 April 2025).
- Arunachalam, K.; Iniyavan, M.; Parimelazhagan, T. A HPTLC Method for the Identification of Potential Therapeutic Compound of Kaempferol from Ficus Amplissima Smith. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 166–171. [Google Scholar]
- Tesfahuneygn, G.; Gebreegziabher, G. Medicinal Plants Used in Traditional Medicine by Ethiopians: A Review Article. J. Respir. Med. Lung Dis. 2019, 4, 1040. [Google Scholar]
- Ouma, A. Intergenerational Learning Processes of Traditional Medicinal Knowledge and Socio-Spatial Transformation Dynamics. Front. Sociol. 2022, 7, 661992. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Fraga-Corral, M.; Pereira, A.G.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Prieto, M.A.; Simal-Gandara, J. Scientific Basis for the Industrialization of Traditionally Used Plants of the Rosaceae Family. Food Chem. 2020, 330, 127197. [Google Scholar] [CrossRef] [PubMed]
- Jenner, K. Pharmacognosy and Ethnopharmacology of Indigenous Medicinal Flora. J. Pharmacogn. Phytochem. 2023, 11, 005. [Google Scholar]
- Farnsworth, N.R.; Akerele, O.; Bingel, A.S.; Soejarto, D.D.; Guo, Z. Medicinal Plants in Therapy. Bull. World Health Organ. 1985, 63, 965–981. [Google Scholar] [CrossRef]
- Saeidnia, S.; Abdollahi, M. Toxicological and Pharmacological Concerns on Oxidative Stress and Related Diseases. Toxicol. Appl. Pharmacol. 2013, 273, 442–455. [Google Scholar] [CrossRef]
- Bonet, M.A.; Vallès, J. Use of Non-Crop Food Vascular Plants in Montseny Biosphere Reserve (Catalonia, Iberian Peninsula). Int. J. Food Sci. Nutr. 2002, 53, 225–248. [Google Scholar] [CrossRef] [PubMed]
- Bonet, M.A.; Parada, M.; Selga, A.; Vallès, J. Studies on Pharmaceutical Ethnobotany in the Regions of L’Alt Empordà and Les Guilleries (Catalonia, Iberian Peninsula). J. Ethnopharmacol. 1999, 68, 145–168. [Google Scholar] [CrossRef] [PubMed]
- McClatchey, W.C.; Mahady, G.B.; Bennett, B.C.; Shiels, L.; Savo, V. Ethnobotany as a Pharmacological Research Tool and Recent Developments in CNS-Active Natural Products from Ethnobotanical Sources. Pharmacol. Ther. 2009, 123, 239–254. [Google Scholar] [CrossRef]
- Bruhn, J.G.; Rivier, L. Ethnopharmacology—A Journal, a Definition and a Society. J. Ethnopharmacol. 2019, 242, 112005. [Google Scholar] [CrossRef]
- Berlin, B. Ethnobiological Classification: Principles of Categorization of Plants and Animals in Traditional Societies; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Balkrishna, A.; Sharma, N.; Srivastava, D.; Kukreti, A.; Srivastava, S.; Arya, V. Exploring the Safety, Efficacy, and Bioactivity of Herbal Medicines: Bridging Traditional Wisdom and Modern Science in Healthcare. Future Integr. Med. 2024, 3, 35–49. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Mao, J.-W.; Tan, X.-L. Research Progress on the Source, Production, and Anti-Cancer Mechanisms of Paclitaxel. Chin. J. Nat. Med. 2020, 18, 890–897. [Google Scholar] [CrossRef]
- Liu, J.C.-T.; De La Peña, R.; Tocol, C.; Sattely, E.S. Reconstitution of Early Paclitaxel Biosynthetic Network. Nat. Commun. 2024, 15, 1419. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Zhang, Z.; Liao, F.; Jiang, T.; Tu, Y. The Birth of Artemisinin. Pharmacol. Ther. 2020, 216, 107658. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, P.J.; Asua, V.; Bailey, J.A.; Conrad, M.D.; Ishengoma, D.S.; Kamya, M.R.; Rasmussen, C.; Tadesse, F.G.; Uwimana, A.; Fidock, D.A. The Emergence of Artemisinin Partial Resistance in Africa: How Do We Respond? Lancet Infect. Dis. 2024, 24, e591–e600. [Google Scholar] [CrossRef] [PubMed]
- Eldawud, R.; Wagner, A.; Dong, C.; Gupta, N.; Rojanasakul, Y.; O’Doherty, G.; Stueckle, T.A.; Dinu, C.Z. Potential Antitumor Activity of Digitoxin and User-Designed Analog Administered to Human Lung Cancer Cells. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2020, 1864, 129683. [Google Scholar] [CrossRef]
- Bavendiek, U.; Großhennig, A.; Schwab, J.; Berliner, D.; Liu, X.; Maier, L.; Gaspar, T.; Rieth, A.; Philipp, S.; Hambrecht, R.; et al. Simple and Safe Digitoxin Dosing in Heart Failure Based on Data from the DIGIT-HF Trial. Clin. Res. Cardiol. 2023, 112, 1096–1107. [Google Scholar] [CrossRef]
- Liu, H.; Huang, C.; Liu, Z.; Li, Y.; Zhu, Y.; Gao, M.; Chen, J.; Zhang, H.; Xiao, Z.; Zhao, W. Systematic Drug Screening and Target Analysis Identify Digitoxin as a Potential Therapy for Uveal Melanoma. Br. J. Pharmacol. 2025, 182, 1275–1291. [Google Scholar] [CrossRef]
- Treijtel, N.; Groenendaal-van de Meent, D.; Michon, I.; Korstanje, C.; Meijer, J.; Francke, K.; Grossmann, M.; de Vries, M. Pilocarpine-Induced Effects on Salivary Secretion as a Pharmacological Biomarker for Cholinergic Parasympathetic Activation. Clin. Pharmacol. Drug Dev. 2022, 11, 25–33. [Google Scholar] [CrossRef]
- Felberg, S.; Dantas, P.E.C.; Sato, E.H. Oral Pilocarpine for the Treatment of Dry Eye in Patients with Sjögren’s Syndrome. Arq. Bras. Oftalmol. 2021, 85, 269–276. [Google Scholar] [CrossRef]
- Yen, C.-Y.; Chen, C.-C.; Tseng, P.-C. Role of Pilocarpine Use Following Laser Peripheral Iridotomy in Eyes with Refractory Acute Angle Closure Glaucoma: A case Report and Literature Review. Medicine 2022, 101, e29245. [Google Scholar] [CrossRef]
- Cooper, T.E.; Chen, J.; Wiffen, P.J.; Derry, S.; Carr, D.B.; Aldington, D.; Cole, P.; Moore, R.A. Morphine for Chronic Neuropathic Pain in Adults. Cochrane Database Syst. Rev. 2017, 5, CD011669. [Google Scholar] [CrossRef]
- Brook, K.; Bennett, J.; Desai, S.P. The Chemical History of Morphine: An 8000-Year Journey, from Resin to de-Novo Synthesis. J. Anesth. Hist. 2017, 3, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Cairns, R.; Schaffer, A.L.; Brown, J.A.; Pearson, S.-A.; Buckley, N.A. Codeine Use and Harms in Australia: Evaluating the Effects of Re-Scheduling. Addiction 2020, 115, 451–459. [Google Scholar] [CrossRef]
- Singu, B.; Verbeeck, R.K. Should Codeine Still Be Considered a WHO Essential Medicine? J. Pharm. Pharm. Sci. 2021, 24, 329–335. [Google Scholar] [CrossRef]
- Alegbeleye, B.J.; Akpoveso, O.-O.P.; Mohammed, R.K.; Asare, B.Y.-A. Pharmacology, Pharmaceutics and Clinical Use of Aspirin: A Narrative Review. J. Drug Deliv. Ther. 2020, 10, 236–253. [Google Scholar] [CrossRef]
- Di Girolamo, R.; Alameddine, S.; Khalil, A.; Santilli, F.; Rizzo, G.; Maruotti, G.M.; Liberati, M.; D’Antonio, F. Clinical Practice Guidelines on the Use of Aspirin in Pregnancy: Systematic Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 282, 64–71. [Google Scholar] [CrossRef]
- Li, H.; Liu, N.-N.; Peng, Z.-G. Effect of Bicyclol on Blood Biomarkers of NAFLD: A Systematic Review and Meta-Analysis. BMJ Open 2020, 10, e039700. [Google Scholar] [CrossRef]
- Yuan, W.; Jian, F.; Rong, Y. Bifendate Inhibits Autophagy at Multiple Steps and Attenuates Oleic Acid-Induced Lipid Accumulation. Biochem. Biophys. Res. Commun. 2022, 631, 115–123. [Google Scholar] [CrossRef]
- Imazio, M.; Nidorf, M. Colchicine and the Heart. Eur. Heart J. 2021, 42, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, M.; Wang, N.; Xiao, W.; Shi, J. Unleashing the Potential of Camptothecin: Exploring Innovative Strategies for Structural Modification and Therapeutic Advancements. J. Med. Chem. 2024, 67, 3244–3273. [Google Scholar] [CrossRef]
- Behera, A.; Padhi, S. Passive and Active Targeting Strategies for the Delivery of the Camptothecin Anticancer Drug: A Review. Environ. Chem. Lett. 2020, 18, 1557–1567. [Google Scholar] [CrossRef]
- Khaiwa, N.; Maarouf, N.R.; Darwish, M.H.; Alhamad, D.W.M.; Sebastian, A.; Hamad, M.; Omar, H.A.; Orive, G.; Al-Tel, T.H. Camptothecin’s Journey from Discovery to WHO Essential Medicine: Fifty Years of Promise. Eur. J. Med. Chem. 2021, 223, 113639. [Google Scholar] [CrossRef]
- Wang, X.; Zhuang, Y.; Wang, Y.; Jiang, M.; Yao, L. The Recent Developments of Camptothecin and Its Derivatives as Potential Anti-Tumor Agents. Eur. J. Med. Chem. 2023, 260, 115710. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; et al. Anticancer Potential of Alkaloids: A Key Emphasis to Colchicine, Vinblastine, Vincristine, Vindesine, Vinorelbine and Vincamine. Cancer Cell Int. 2022, 22, 206. [Google Scholar] [CrossRef]
- Paul, A.; Acharya, K.; Chakraborty, N. Biosynthesis, extraction, detection and pharmacological attributes of vinblastine and vincristine, two important chemotherapeutic alkaloids of Catharanthus roseus (L.) G. Don: A review. S. Afr. J. Bot. 2023, 161, 365–376. [Google Scholar] [CrossRef]
- Flory, J.; Lipska, K. Metformin in 2019. JAMA 2019, 321, 1926–1927. [Google Scholar] [CrossRef]
- Khezri, M.; Asghari-Zakaria, R.; Zare, N.; Johari-Ahar, M. Enhancement of Galegine Production in Cell Suspension Culture of Galega Officinalis through Elicitation. In Vitro Cell. Dev. Biol.-Plant 2022, 58, 703–715. [Google Scholar] [CrossRef]
- Malabadi, D.R.B. An Age Old Botanical Weapon for Herbal Therapy: Ccmphor Tree, Cinnamomum Camphora. Int. J. Innov. Sci. Res. Rev. 2021, 3, 1518–1523. [Google Scholar]
- Singh, H.; Kumar, R.; Mazumder, A.; Salahuddin; Yadav, R.K.; Chauhan, B.; Abdulah, M.M. Camphor and Menthol as Anticancer Agents: Synthesis, Structure-Activity Relationship and Interaction with Cancer Cell Lines. Anti-Cancer Agents Med. Chem. 2023, 23, 614–623. [Google Scholar] [CrossRef]
- Zhao, S.; Lin, G.; Duan, W.; Zhang, Q.; Huang, Y.; Lei, F. Design, Synthesis, and Antifungal Activity of Novel Longifolene-Derived Diacylhydrazine Compounds. ACS Omega 2021, 6, 9104–9111. [Google Scholar] [CrossRef]
- Lu, P.; Huang, Y.; Huang, L.; Gan, Y.; Lan, H.; Huang, D. ω-Aminomethyl Longifolene Amide Derivatives: Synthesis, Crystal Structure, Hirshfeld Surface, DFT, Antimicrobial, and Molecular Docking Studies. ChemistrySelect 2024, 9, e202402706. [Google Scholar] [CrossRef]
- Miller, H.P.; Bonawitz, S.C.; Ostrovsky, O. The Effects of Delta-9-Tetrahydrocannabinol (THC) on Inflammation: A Review. Cell. Immunol. 2020, 352, 104111. [Google Scholar] [CrossRef] [PubMed]
- Levinsohn, E.A.; Hill, K.P. Clinical Uses of Cannabis and Cannabinoids in the United States. J. Neurol. Sci. 2020, 411, 116717. [Google Scholar] [CrossRef] [PubMed]
- Darwish, W.S.; Ikenaka, Y.; Nakayama, S.; Mizukawa, H.; Thompson, L.A.; Ishizuka, M. β-Carotene and Retinol Reduce Benzo[a]Pyrene-Induced Mutagenicity and Oxidative Stress via Transcriptional Modulation of Xenobiotic Metabolizing Enzymes in Human HepG2 Cell Line. Environ. Sci. Pollut. Res. 2018, 25, 6320–6328. [Google Scholar] [CrossRef]
- Emecen, G.; Ünlü, H. Effect Of α-Tocopherol and Ascorbic Acid on the Genotoxicity by Gamma-Irradiation in Drosophila Melanogaster. Hacet. J. Biol. Chem. 2022, 50, 93–98. [Google Scholar] [CrossRef]
- Mushtaq, S.; Tayyeb, A.; Ali, G.; Bareen, F.E. Antimutagenic Potential of Plants and Natural Products: A Review. In Biotechnologies and Genetics in Plant Mutation Breeding; Apple Academic Press: Palm Bay, FL, USA, 2023. [Google Scholar]
- Golmohammadi, M.; Zamanian, M.Y.; Jalal, S.M.; Noraldeen, S.A.M.; Ramírez-Coronel, A.A.; Oudaha, K.H.; Obaid, R.F.; Almulla, A.F.; Bazmandegan, G.; Kamiab, Z. A Comprehensive Review on Ellagic Acid in Breast Cancer Treatment: From Cellular Effects to Molecular Mechanisms of Action. Food Sci. Nutr. 2023, 11, 7458–7468. [Google Scholar] [CrossRef]
- Čižmáriková, M.; Michalková, R.; Mirossay, L.; Mojžišová, G.; Zigová, M.; Bardelčíková, A.; Mojžiš, J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023, 13, 1653. [Google Scholar] [CrossRef] [PubMed]
- Morales-González, J.A.; Madrigal-Bujaidar, E.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, J.A.; Valadez-Vega, M.d.C.; Álvarez-González, I.; Morales-González, Á.; Madrigal-Santillán, E. Garlic (Allium sativum L.): A Brief Review of Its Antigenotoxic Effects. Foods 2019, 8, 343. [Google Scholar] [CrossRef]
- Enejiyon, S.; Abdulrahman, A.-H.; Adedeji, A.; Abdulsalam, R.; Oyedum, M. Antibacterial Activities of the Extracts of Allium sativum (Garlic) and Allium Cepa (Onion) Against Selected Pathogenic Bacteria. Tanzan. J. Sci. 2020, 46, 914–922. [Google Scholar] [CrossRef]
- Oyawoye, O.M.; Olotu, T.M.; Nzekwe, S.C.; Idowu, J.A.; Abdullahi, T.A.; Babatunde, S.O.; Ridwan, I.A.; Batiha, G.E.; Idowu, N.; Alorabi, M.; et al. Antioxidant Potential and Antibacterial Activities of Allium Cepa (Onion) and Allium sativum (Garlic) against the Multidrug Resistance Bacteria. Bull. Natl. Res. Cent. 2022, 46, 214. [Google Scholar] [CrossRef]
- Sánchez-Gloria, J.L.; Arellano-Buendía, A.S.; Juárez-Rojas, J.G.; García-Arroyo, F.E.; Argüello-García, R.; Sánchez-Muñoz, F.; Sánchez-Lozada, L.G.; Osorio-Alonso, H. Cellular Mechanisms Underlying the Cardioprotective Role of Allicin on Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 9082. [Google Scholar] [CrossRef]
- Vezza, T.; Guillamón, E.; García-García, J.; Baños, A.; Mut-Salud, N.; García-López, J.D.; Gómez-Fernández, G.O.; Rodriguez-Nogales, A.; Gálvez, J.; Fonollá, J. LDL-Cholesterol-Lowering Effects of a Dietary Supplement Containing Onion and Garlic Extract Used in Healthy Volunteers. Nutrients 2024, 16, 2811. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Sharma, P.; Gupta, G.K.; Ntie-Kang, F.; Kumar, D. Structure-Activity-Relationship and Mechanistic Insights for Anti-HIV Natural Products. Molecules 2020, 25, 2070. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.S.; Hussain, T.; Pati, S. Drug-Lead Anti-Tuberculosis Phytochemicals: A Systematic Review. Curr. Top. Med. Chem. 2021, 21, 1832–1868. [Google Scholar] [CrossRef] [PubMed]
- Das, S. Herbal Anti-Tuberculosis Medicaments: Highlighting New Advances in Therapeutics. Int. J. Med Pharm. Sci. 2021, 11, 1–5. [Google Scholar] [CrossRef]
- Kumar, V.; Joshi, H.C.; Pandey, I.P.; Kumar, S. Coumarins as Anti-HIV Agent and Correlation with COVID-19: An Overview. HIV AIDS Rev. 2023, 22, 87–98. [Google Scholar] [CrossRef]
- Yan, Y.-P.; Chen, J.-Y.; Lu, J.-H. Disease-Modifying Activity of Huperzine A on Alzheimer’s Disease: Evidence from Preclinical Studies on Rodent Models. Int. J. Mol. Sci. 2022, 23, 15238. [Google Scholar] [CrossRef]
- Villegas, C.; Perez, R.; Petiz, L.L.; Glaser, T.; Ulrich, H.; Paz, C. Ginkgolides and Huperzine A for Complementary Treatment of Alzheimer’s Disease. IUBMB Life 2022, 74, 763–779. [Google Scholar] [CrossRef]
- Dadlani, V.G.; Pawar, H.A.; Tripathi, P.K. Huperzine-Based Derivatives: Design, Synthesis, and Anti-Alzheimer Activity. In Natural Product-Based Synthetic Drug Molecules in Alzheimer’s Disease: Therapeutic & Theranostic Agents; Sharma, A., Modi, G.P., Eds.; Springer Nature: Singapore, 2023; pp. 213–244. [Google Scholar] [CrossRef]
- Saulino, P.A.; Greenwald, B.D.; Gordon, D.J. The Changing Landscape of the Use of Medical Marijuana after Traumatic Brain Injury: A Narrative Review. Brain Inj. 2021, 35, 1510–1520. [Google Scholar] [CrossRef]
- Er, A.; Çelik, S. The Uses of Cannabinoids in Medicine and Their Spectroscopic Applications. In Medical Cannabis and the Effects of Cannabinoids on Fighting Cancer, Multiple Sclerosis, Epilepsy, Parkinson’s, and Other Neurodegenerative Diseases; IGI Global Scientific Publishing: Hershey, PA, USA, 2023; pp. 235–257. [Google Scholar] [CrossRef]
- Morozova, E.; Abo Qoura, L.; Anufrieva, N.; Koval, V.; Lesnova, E.; Kushch, A.; Kulikova, V.; Revtovich, S.; Pokrovsky, V.S.; Demidkina, T. Daidzein-Directed Methionine γ-Lyase in Enzyme Prodrug Therapy against Breast Cancer. Biochimie 2022, 201, 177–183. [Google Scholar] [CrossRef]
- Cong, Z.; Zhang, X.; Lv, Z.; Jiang, J.; Wang, L.; Li, J.; Wang, J.; Zhao, J. Transcriptome Analysis of the Inhibitory Effects of 20(S)-Protopanaxadiol on NCI-H1299 Non-Small Cell Lung Cancer Cells. Molecules 2023, 28, 5746. [Google Scholar] [CrossRef]
- Lu, R.; Liu, J.; Thakur, K.; Cao, H.; Mejuto, J.C.; Simal Gandara, J.; Zhang, J.-G. Protopanaxadiol Triggers G0/G1 Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells through the PPER Pathway. Food Biosci. 2024, 62, 105388. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, Y.; Luo, T.; Wang, C.; Fu, D.; Wang, X. Daidzein Inhibits Non-Small Cell Lung Cancer Growth by Pyroptosis. Curr. Pharm. Des. 2025, 31, 884–924. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Liu, J.; Thakur, K.; Cao, H.; Mejuto, J.C.; Simal-Gandara, J.; Zhang, J.-G. Multi-Omics Reveal Inhibitory Effects of Protopanaxadiol on Metastasis through PI3K-Akt and MAPK Pathway in Human Cervical Cancer HeLa Cells. Food Biosci. 2025, 63, 105731. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, L.; Huo, Z.; Liu, Y.; Sun, Y.; Song, Z. Systematic Review and Meta-Analysis of 26 Randomized Controlled Clinical Trials of Compound Danshen Dripping Pill for Non-Proliferating Diabetic Retinopathy. Chin. Herb. Med. 2022, 14, 142–153. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Sun, H.; Zhai, J.; Hu, Y. Compound Danshen Dripping Pills vs. Nitrates for Stable Angina Pectoris: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2023, 10, 1168730. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X. Advances of Clinical Trials on Compound Danshen Dripping Pills for Stable Angina Pectoris: A Perspective. Medicine 2025, 104, e42175. [Google Scholar] [CrossRef]
- Rajput, A.; Kasar, A.; Thorat, S.; Kulkarni, M. Borneol: A Plant-Sourced Terpene with a Variety of Promising Pharmacological Effects. Nat. Prod. J. 2003, 13, 13–28. [Google Scholar] [CrossRef]
- Hu, X.; Yan, Y.; Liu, W.; Liu, J.; Fan, T.; Deng, H.; Cai, Y. Advances and Perspectives on Pharmacological Activities and Mechanisms of the Monoterpene Borneol. Phytomedicine 2024, 132, 155848. [Google Scholar] [CrossRef]
- Katz, L.; Baltz, R.H. Natural Product Discovery: Past, Present, and Future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef]
- Mathur, S.; Hoskins, C. Drug Development: Lessons from Nature (Review). Biomed. Rep. 2017, 6, 612–614. [Google Scholar] [CrossRef]
- Pieters, L.; Vlietinck, A.J. Bioguided isolation of pharmacologically active plant components, still a valuable strategy for the finding of new lead compounds? J. Ethnopharmacol. 2005, 100, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H. The Year 2020 in Natural Product Bioinformatics: An Overview of the Latest Tools and Databases. Nat. Prod. Rep. 2021, 38, 301–306. [Google Scholar] [CrossRef]
- Xia, X. Bioinformatics and Drug Discovery. Curr. Top. Med. Chem. 2017, 17, 1709–1726. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hu, H.; Kung, H.; Zou, R.; Dai, Y.; Hu, Y.; Wang, T.; Lv, T.; Yu, J.; Li, F. Organoids: The Current Status and Biomedical Applications. MedComm 2023, 4, e274. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal. Chem. 2020, 92, 150–168. [Google Scholar] [CrossRef]
- Kroymann, J. Natural Diversity and Adaptation in Plant Secondary Metabolism. Curr. Opin. Plant Biol. 2011, 14, 246–251. [Google Scholar] [CrossRef]
- Gaoue, O.G.; Yessoufou, K.; Mankga, L.; Vodouhe, F. Phylogeny Reveals Non-Random Medicinal Plant Organ Selection by Local People in Benin. Plants People Planet 2021, 3, 710–720. [Google Scholar] [CrossRef]
- Memelink, J.; Kijne, J.W.; van der Heijden, R.; Verpoorte, R. Genetic Modification of Plant Secondary Metabolite Pathways Using Transcriptional Regulators. Adv. Biochem. Eng. Biotechnol. 2001, 72, 103–125. [Google Scholar] [CrossRef]
- Tiwari, R.; Rana, C.S. Plant Secondary Metabolites: A Review. Int. J. Eng. Res. Gen. Sci. 2015, 3, 661–670. [Google Scholar]
- Verpoorte, R.; Memelink, J. Engineering Secondary Metabolite Production in Plants. Curr. Opin. Biotechnol. 2002, 13, 181–187. [Google Scholar] [CrossRef]
- Kumari, N.; Prakash, S.; Sharma, N.; Puri, S.; Thakur, M.; Singh, J.; Kumar, M. Medicinal and Aromatic Plants as Potential Sources of Bioactives Along with Health-Promoting Activities. Curr. Food Sci. Technol. Rep. 2024, 2, 359–376. [Google Scholar] [CrossRef]
- Drahl, C.; Cravatt, B.F.; Sorensen, E.J. Protein-Reactive Natural Products. Angew. Chem. Int. Ed. Engl. 2005, 44, 5788–5809. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of Secondary Metabolites of Various Plants: A Review. Int. J. Pharm. Sci. Res. 2019, 10, 494–504. [Google Scholar] [CrossRef]
- Bahar, M.; Deng, Y.; Fletcher, J.N.; Kinghorn, A.D. Plant-Derived Natural Products in Drug Discovery and Development: An Overview. In Selected Topics in the Chemistry of Natural Products; World Scientific Publishing Co.: Singapore, 2007; pp. 11–48. [Google Scholar] [CrossRef]
- Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.J.; Crozier, A. Occurrence of Flavonols in Tomatoes and Tomato-Based Products. J. Agric. Food Chem. 2000, 48, 2663–2669. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Edenharder, R.; von Petersdorff, I.; Rauscher, R. Antimutagenic Effects of Flavoniods, Chalcones and Structurally Related Compounds on the Activity of Ƒ2-Amino-3-Methylinidazo[4,5-ƒ]Quinoline (IQ) and Other Heterocyclic Amine Mutagens from Cooked Food. Mutat. Res. Mol. Mech. Mutagen. 1993, 287, 261–274. [Google Scholar] [CrossRef]
- Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R. Analysis and Biological Activities of Anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef]
- de Souza Farias, S.A.; da Costa, K.S.; Martins, J.B.L. Analysis of Conformational, Structural, Magnetic, and Electronic Properties Related to Antioxidant Activity: Revisiting Flavan, Anthocyanidin, Flavanone, Flavonol, Isoflavone, Flavone, and Flavan-3-Ol. ACS Omega 2021, 6, 8908–8918. [Google Scholar] [CrossRef] [PubMed]
- Sinatra, R.S.; Jahr, J.S.; Watkins-Pitchford, J.M. The Essence of Analgesia and Analgesics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Bagchi, D.; Preuss, H.G. (Eds.) Obesity: Epidemiology, Pathophysiology, and Prevention; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Willcox, M.; Bodeker, G.; Rasoanaivo, P.; Addae-Kyereme, J. (Eds.) Traditional Medicinal Plants and Malaria; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Kittakoop, P.; Mahidol, C.; Ruchirawat, S. Alkaloids as Important Scaffolds in Therapeutic Drugs for the Treatments of Cancer, Tuberculosis, and Smoking Cessation. Curr. Top. Med. Chem. 2014, 14, 239–252. [Google Scholar] [CrossRef]
- EL Hachlafi, N.; Aanniz, T.; El Menyiy, N.; El Baaboua, A.; El Omari, N.; Balahbib, A.; Shariati, M.A.; Zengin, G.; Fikri-Benbrahim, K.; Bouyahya, A. In Vitro and in Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. Food Rev. Int. 2023, 39, 1799–1826. [Google Scholar] [CrossRef]
- Rivas da Silva, A.C.; Lopes, P.M.; Barros de Azevedo, M.M.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of α-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef]
- Elekofehinti, O.O. Saponins: Anti-Diabetic Principles from Medicinal Plants—A Review. Pathophysiology 2015, 22, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Chen, H.; Wang, X.; Hu, Y.; Yun, Y.; Zhong, Q.; Chen, W.; Chen, W. Antimicrobial Activity and Proposed Action Mechanism of 3-Carene against Brochothrix Thermosphacta and Pseudomonas Fluorescens. Molecules 2019, 24, 3246. [Google Scholar] [CrossRef]
- Beniddir, M.A.; Kang, K.B.; Genta-Jouve, G.; Huber, F.; Rogers, S.; van der Hooft, J.J.J. Advances in Decomposing Complex Metabolite Mixtures Using Substructure- and Network-Based Computational Metabolomics Approaches. Nat. Prod. Rep. 2021, 38, 1967–1993. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Hopwood, D.A.; Malpartida, F.; Kieser, H.M.; Ikeda, H.; Duncan, J.; Fujii, I.; Rudd, B.a.M.; Floss, H.G.; Ōmura, S. Production of ‘Hybrid’ Antibiotics by Genetic Engineering. Nature 1985, 314, 642–644. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Flota, F.; Hernández-Domínguez, E.; de Lourdes Miranda-Ham, M.; Monforte-González, M. A Differential Response to Chemical Elicitors in Catharanthus roseus In Vitro Cultures. Biotechnol. Lett. 2009, 31, 591–595. [Google Scholar] [CrossRef]
- Huang, Q.; Roessner, C.A.; Croteau, R.; Scott, A.I. Engineering Escherichia coli for the Synthesis of Taxadiene, a Key Intermediate in the Biosynthesis of Taxol. Bioorganic Med. Chem. 2001, 9, 2237–2242. [Google Scholar] [CrossRef]
- Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; et al. High-Level Semi-Synthetic Production of the Potent Antimalarial Artemisinin. Nature 2013, 496, 528–532. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Thodey, K.; Trenchard, I.; Cravens, A.; Smolke, C.D. Complete Biosynthesis of Noscapine and Halogenated Alkaloids in Yeast. Proc. Natl. Acad. Sci. USA 2018, 115, E3922–E3931. [Google Scholar] [CrossRef]
- Srinivasan, P.; Smolke, C.D. Engineering a Microbial Biosynthesis Platform for de Novo Production of Tropane Alkaloids. Nat. Commun. 2019, 10, 3634. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Du, G.; Ledesma-Amaro, R.; Liu, L. Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol. 2020, 38, 779–796. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Chen, H.; Dong, S.; Zhang, Z.; Luo, H. CRISPR-Cas Gene Editing Technology and Its Application Prospect in Medicinal Plants. Chin. Med. 2022, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Gera, M.; Kim, N.; Ghosh, M.; Sharma, N.; Huynh, D.L.; Chandimali, N.; Koh, H.; Zhang, J.J.; Kang, T.Y.; Park, Y.H.; et al. Synthesis and Evaluation of the Antiproliferative Efficacy of BRM270 Phytocomposite Nanoparticles against Human Hepatoma Cancer Cell Lines. Mater. Sci. Eng. C 2019, 97, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A. Challenges and Opportunities for Traditional Herbal Medicine Today with Special Reference to Its Status in India. Ann. Phytomedicine Int. J. 2020, 9, 97–112. [Google Scholar] [CrossRef]
- Thakkar, S.; Anklam, E.; Xu, A.; Ulberth, F.; Li, J.; Li, B.; Hugas, M.; Sarma, N.; Crerar, S.; Swift, S.; et al. Regulatory Landscape of Dietary Supplements and Herbal Medicines from a Global Perspective. Regul. Toxicol. Pharmacol. 2020, 114, 104647. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of Natural Antimicrobials for Food Preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef]
- Fujita, M.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Mizushima, T.; Tsuchiya, T. Remarkable Synergies Between Baicalein and Tetracycline, and Baicalein and Beta-Lactams Against Methicillin-Resistant Staphylococcus Aureus. Microbiol. Immunol. 2005, 49, 391–396. [Google Scholar] [CrossRef]
- Djeussi, D.E.; Noumedem, J.A.K.; Seukep, J.A.; Fankam, A.G.; Voukeng, I.K.; Tankeo, S.B.; Nkuete, A.H.L.; Kuete, V. Antibacterial Activities of Selected Edible Plants Extracts Against Multidrug-Resistant Gram-Negative Bacteria. BMC Complement. Altern. Med. 2013, 13, 164. [Google Scholar] [CrossRef]
- Thapa, B.; Singh, A.; Tuladhar, R. In Vitro Antibacterial Effect of Medicinal Plants Against Multidrug Resistant Gram Negative Bacteria. Tribhuvan Univ. J. Microbiol. 2018, 5, 25–31. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.I.; Lee, I.; Lee, S.; Hwang, M.-W.; Bae, J.-Y.; Heo, J.; Kim, D.; Han, S.-Z.; Park, M.-S. Aronia Melanocarpa and Its Components Demonstrate Antiviral Activity against Influenza Viruses. Biochem. Biophys. Res. Commun. 2013, 440, 14–19. [Google Scholar] [CrossRef]
- Tolo, F.M.; Rukunga, G.M.; Muli, F.W.; Njagi, E.N.M.; Njue, W.; Kumon, K.; Mungai, G.M.; Muthaura, C.N.; Muli, J.M.; Keter, L.K.; et al. Anti-Viral Activity of the Extracts of a Kenyan Medicinal Plant Carissa Edulis against Herpes Simplex Virus. J. Ethnopharmacol. 2006, 104, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Parsania, M.; Rezaee, M.-B.; Monavari, S.H.; Jaimand, K.; Mousavi-Jazayeri, S.M.; Razazian, M.; Nadjarha, M.H. Antiviral Screening of Four Plant Extracts against Acyclovir Resistant Herpes Simplex Virus Type-1. Pak. J. Pharm. Sci. 2017, 30 (Suppl. S4), 1407–1411. [Google Scholar]
- Shao, J.; Shi, G.; Wang, T.; Wu, D.; Wang, C. Antiproliferation of Berberine in Combination with Fluconazole from the Perspectives of Reactive Oxygen Species, Ergosterol and Drug Efflux in a Fluconazole-Resistant Candida Tropicalis Isolate. Front. Microbiol. 2016, 7, 1516. [Google Scholar] [CrossRef] [PubMed]
- Scalas, D.; Mandras, N.; Roana, J.; Tardugno, R.; Cuffini, A.M.; Ghisetti, V.; Benvenuti, S.; Tullio, V. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) Essential Oils and Their Main Components to Enhance Itraconazole Activity against Azole Susceptible/Not-Susceptible Cryptococcus Neoformans Strains. BMC Complement. Altern. Med. 2018, 18, 143. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Ahmad, I. Antifungal Activity of Essential Oils and Their Synergy with Fluconazole against Drug-Resistant Strains of Aspergillus Fumigatus and Trichophyton Rubrum. Appl. Microbiol. Biotechnol. 2011, 90, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.E.; McElmeel, L.; Wiederhold, N.P. In Vitro Activity of Essential Oils Against Gram-Positive and Gram-Negative Clinical Isolates, Including Carbapenem-Resistant Enterobacteriaceae. Open Forum Infect. Dis. 2019, 6, ofz502. [Google Scholar] [CrossRef]
- Neagu, R.; Popovici, V.; Ionescu, L.-E.; Ordeanu, V.; Biță, A.; Popescu, D.M.; Ozon, E.A.; Gîrd, C.E. Phytochemical Screening and Antibacterial Activity of Commercially Available Essential Oils Combinations with Conventional Antibiotics against Gram-Positive and Gram-Negative Bacteria. Antibiotics 2024, 13, 478. [Google Scholar] [CrossRef]
- Inouye, S.; Yamaguchi, H.; Takizawa, T. Screening of the Antibacterial Effects of a Variety of Essential Oils on Respiratory Tract Pathogens, Using a Modified Dilution Assay Method. J. Infect. Chemother. 2001, 7, 251–254. [Google Scholar] [CrossRef]
- Bergonzelli, G.E.; Donnicola, D.; Porta, N.; Corthésy-Theulaz, I.E. Essential Oils as Components of a Diet-Based Approach to Management of Helicobacter Infection. Antimicrob. Agents Chemother. 2003, 47, 3240–3246. [Google Scholar] [CrossRef]
- Clark, A.M. Natural Products as a Resource for New Drugs. Pharm. Res. 1996, 13, 1133–1141. [Google Scholar] [CrossRef]
- El Sayed, K.A. Natural Products as Antiviral Agents. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Bioactive Natural Products (Part E); Elsevier: Amsterdam, The Netherlands, 2000; Volume 24, pp. 473–572. [Google Scholar] [CrossRef]
- Shu, Y.Z. Recent Natural Products Based Drug Development: A Pharmaceutical Industry Perspective. J. Nat. Prod. 1998, 61, 1053–1071. [Google Scholar] [CrossRef] [PubMed]
- Vlietinck, A.J.; De Bruyne, T.; Vanden Berghe, D.A. Plant Substances As Antiviral Agents. Curr. Org. Chem. 1997, 1, 307–344. [Google Scholar] [CrossRef]
- Asif, M.; Saleem, M.; Saadullah, M.; Yaseen, H.S.; Al Zarzour, R. COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties. Inflammopharmacology 2020, 28, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Dikhoba, P.M.; Mongalo, N.I.; Elgorashi, E.E.; Makhafola, T.J. Antifungal and Anti-Mycotoxigenic Activity of Selected South African Medicinal Plants Species. Heliyon 2019, 5, e02668. [Google Scholar] [CrossRef]
- Abdel-Fattah, S.M.; Badr, A.N.; Abu Seif, F.A.-H.; Mohamed Ali, S.; Ahmed Hassan, R. Antifungal and Anti-Mycotoxigenic Impact of Eco-Friendly Extracts of Wild Stevia. J. Biol. Sci. 2019, 18, 488–499. [Google Scholar] [CrossRef]
- Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, Food Processing and Health. Antioxidants 2021, 10, 433. [Google Scholar] [CrossRef]
- Dimitrios, B. Sources of Natural Phenolic Antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.L. Natural Antioxidants as Food and Feed Additives to Promote Health Benefits and Quality of Meat Products: A Review. Meat. Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef]
- Halvorsen, B.L.; Holte, K.; Myhrstad, M.C.W.; Barikmo, I.; Hvattum, E.; Remberg, S.F.; Wold, A.-B.; Haffner, K.; Baugerød, H.; Andersen, L.F.; et al. A Systematic Screening of Total Antioxidants in Dietary Plants. J. Nutr. 2002, 132, 461–471. [Google Scholar] [CrossRef]
- Yin, J.; Becker, E.M.; Andersen, M.L.; Skibsted, L.H. Green Tea Extract as Food Antioxidant. Synergism and Antagonism with α-Tocopherol in Vegetable Oils and Their Colloidal Systems. Food Chem. 2012, 135, 2195–2202. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [PubMed]
- Embuscado, M.E. Spices and Herbs: Natural Sources of Antioxidants—A Mini Review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Ghasemian, M.; Owlia, S.; Owlia, M.B. Review of Anti-Inflammatory Herbal Medicines. Adv. Pharmacol. Pharm. Sci. 2016, 2016, 9130979. [Google Scholar] [CrossRef]
- Beg, S.; Swain, S.; Hasan, H.; Barkat, M.A.; Hussain, M.S. Systematic Review of Herbals as Potential Anti-Inflammatory Agents: Recent Advances, Current Clinical Status and Future Perspectives. Pharmacogn. Rev. 2011, 5, 120–137. [Google Scholar] [CrossRef]
- Aswad, M.; Rayan, M.; Abu-Lafi, S.; Falah, M.; Raiyn, J.; Abdallah, Z.; Rayan, A. Nature Is the Best Source of Anti-Inflammatory Drugs: Indexing Natural Products for Their Anti-Inflammatory Bioactivity. Inflamm. Res. 2018, 67, 67–75. [Google Scholar] [CrossRef]
- Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; et al. Designing a Broad-Spectrum Integrative Approach for Cancer Prevention and Treatment. Semin. Cancer Biol. 2015, 35, S276–S304. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.-J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Venier, N.A.; Colquhoun, A.J.; Sasaki, H.; Kiss, A.; Sugar, L.; Adomat, H.; Fleshner, N.E.; Klotz, L.H.; Venkateswaran, V. Capsaicin: A Novel Radio-Sensitizing Agent for Prostate Cancer. Prostate 2015, 75, 113–125. [Google Scholar] [CrossRef]
- Bley, K.; Boorman, G.; Mohammad, B.; McKenzie, D.; Babbar, S. A Comprehensive Review of the Carcinogenic and Anticarcinogenic Potential of Capsaicin. Toxicol. Pathol. 2012, 40, 847–873. [Google Scholar] [CrossRef]
- Reygaert, W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. BioMed Res. Int. 2018, 2018, 9105261. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Ray, M.R.; Rao, L.G. Lycopene. Adv. Food Nutr. Res. 2006, 51, 99–164. [Google Scholar] [CrossRef]
- Sarkar, F.H.; Li, Y. Mechanisms of Cancer Chemoprevention by Soy Isoflavone Genistein. Cancer Met. Rev. 2002, 21, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.D.; Dasqupta, P.; et al. Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Holopainen, J.K.; Virjamo, V.; Ghimire, R.P.; Blande, J.D.; Julkunen-Tiitto, R.; Kivimäenpää, M. Climate Change Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere. Front. Plant Sci. 2018, 9, 1445. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Thakur, R.; Sharma, M.; Sharma, A.K.; Sharma, A.K. Changing scenario of medicinal plants diversity in relation to climate change: A review. Plant Arch. 2020, 20, 4389–4400. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Scholes, R.J.; Agard, J.; Archer, E.; Bai, X.; Barnes, D.; Burrows, M.; Chan, L.; Cheung, W.L.; Diamond, S.; et al. IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change; Zenodo: Meyrin, Switzerland, 2021. [Google Scholar] [CrossRef]
- Tsipinana, S.; Husseiny, S.; Alayande, K.A.; Raslan, M.; Amoo, S.; Adeleke, R. Contribution of Endophytes towards Improving Plant Bioactive Metabolites: A Rescue Option against Red-Taping of Medicinal Plants. Front. Plant Sci. 2023, 14, 1248319. [Google Scholar] [CrossRef]
- Bartwal, A.; Mall, R.; Lohani, P.; Guru, S.K.; Arora, S. Role of Secondary Metabolites and Brassinosteroids in Plant Defense Against Environmental Stresses. J. Plant Growth Regul. 2013, 32, 216–232. [Google Scholar] [CrossRef]
- Chen, Y.; Stork, C.; Hirte, S.; Kirchmair, J. NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules. Biomolecules 2019, 9, 43. [Google Scholar] [CrossRef]
- Liu, Z.; Carpenter, S.B.; Constantin, R.J. Camptothecin Production in Camptotheca Acuminata Seedlings in Response to Shading and Flooding. Can. J. Bot. 1997, 75, 368–373. [Google Scholar] [CrossRef]
- Del Rio, D.; Stalmach, A.; Calani, L.; Crozier, A. Bioavailability of Coffee Chlorogenic Acids and Green Tea Flavan-3-Ols. Nutrients 2010, 2, 820–833. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: Therapeutic Potential through Its Antioxidant Property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Benyammi, R.; Paris, C.; Khelifi-Slaoui, M.; Zaoui, D.; Belabbassi, O.; Bakiri, N.; Meriem Aci, M.; Harfi, B.; Malik, S.; Makhzoum, A.; et al. Screening and Kinetic Studies of Catharanthine and Ajmalicine Accumulation and Their Correlation with Growth Biomass in Catharanthus roseus Hairy Roots. Pharm. Biol. 2016, 54, 2033–2043. [Google Scholar] [CrossRef]
- Janas, K.M.; Cvikrová, M.; Pałagiewicz, A.; Szafranska, K.; Posmyk, M.M. Constitutive Elevated Accumulation of Phenylpropanoids in Soybean Roots at Low Temperature. Plant Sci. 2002, 163, 369–373. [Google Scholar] [CrossRef]
- Yang, X.; Nambou, K.; Wei, L.; Hua, Q. Heterologous Production of α-Farnesene in Metabolically Engineered Strains of Yarrowia lipolytica. Bioresour. Technol. 2016, 216, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-C.; Li, W.-M.; Guo, R.; Xu, Y.-W. Salidroside Decreases Atherosclerotic Plaque Formation in Low-Density Lipoprotein Receptor-Deficient Mice. Evid.-Based Complement. Altern. Med. 2012, 2012, 607508. [Google Scholar] [CrossRef]
- Wang, T.; Wang, C.; Wu, Q.; Zheng, K.; Chen, J.; Lan, Y.; Qin, Y.; Mei, W.; Wang, B. Evaluation of Tanshinone IIA Developmental Toxicity in Zebrafish Embryos. Molecules 2017, 22, 660. [Google Scholar] [CrossRef]
- Mayrhofer, S.; Teuber, M.; Zimmer, I.; Louis, S.; Fischbach, R.J.; Schnitzler, J.-P. Diurnal and Seasonal Variation of Isoprene Biosynthesis-Related Genes in Grey Poplar Leaves. Plant Physiol. 2005, 139, 474–484. [Google Scholar] [CrossRef]
- Jamloki, A.; Bhattacharyya, M.; Nautiyal, M.C.; Patni, B. Elucidating the Relevance of High Temperature and Elevated CO2 in Plant Secondary Metabolites (PSMs) Production. Heliyon 2021, 7, e07709. [Google Scholar] [CrossRef]
- Sharma, S.; Walia, S.; Rathore, S.; Kumar, P.; Kumar, R. Combined Effect of Elevated CO2 and Temperature on Growth, Biomass and Secondary Metabolite of Hypericum perforatum L. in a Western Himalayan Region. J. Appl. Res. Med. Aromat. Plants 2020, 16, 100239. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, G.H.; Shimizu, H. Plant Responses to Drought and Rewatering. Plant Signal. Behav. 2010, 5, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Q.; Guo, Q.; Chang, Q.; Zhu, Z.; Liu, L.; Xu, H. Growth, Physiological Characteristics and Total Flavonoid Content of Glechoma Longituba in Response to Water Stress. J. Med. Plants Res. 2012, 6, 1015–1024. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of Various Factors Responsible for Fluctuation in Plant Secondary Metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Arena, M.E.; Postemsky, P.D.; Curvetto, N.R. Changes in the Phenolic Compounds and Antioxidant Capacity of Berberis Microphylla G. Forst. berries in relation to light intensity and fertilization. Sci. Hortic. 2017, 218, 63–71. [Google Scholar] [CrossRef]
- Lahlou, M. The Success of Natural Products in Drug Discovery. Pharmacol. Amp; Pharm. 2013, 4, 17–31. [Google Scholar] [CrossRef]
- Valecha, N.; Looareesuwan, S.; Martensson, A.; Abdulla, S.M.; Krudsood, S.; Tangpukdee, N.; Mohanty, S.; Mishra, S.K.; Tyagi, P.K.; Sharma, S.K.; et al. Arterolane, a New Synthetic Trioxolane for Treatment of Uncomplicated Plasmodium Falciparum Malaria: A Phase II, Multicenter, Randomized, Dose-Finding Clinical Trial. Clin. Infect. Dis. 2010, 51, 684–691. [Google Scholar] [CrossRef]
- Katiyar, C.; Gupta, A.; Kanjilal, S.; Katiyar, S. Drug Discovery from Plant Sources: An Integrated Approach. AYU 2012, 33, 10–19. [Google Scholar] [CrossRef]
- Heinrich, M.; Anagnostou, S. From Pharmacognosia to DNA-Based Medicinal Plant Authentication—Pharmacognosy through the Centuries. Planta Medica 2017, 83, 1110–1116. [Google Scholar] [CrossRef]
- Rathod, R.; Chandak, R.R. Review on “Standardization an Imp Tool for Herbal Drug Development”. J. Drug Deliv. Ther. 2019, 9, 253–257. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Hmidani, A.; Bouhlali, E.D.T.; Khouya, T.; Ramchoun, M.; Filali-zegzouti, Y.; Benlyas, M.; Alem, C. Effect of Extraction Methods on Antioxidant and Anticoagulant Activities of Thymus atlanticus Aerial Part. Sci. Afr. 2019, 5, e00143. [Google Scholar] [CrossRef]
- Vinci, G.; Maddaloni, L.; Prencipe, S.A.; Orlandini, E.; Sambucci, M. Simple and Reliable Eco-Extraction of Bioactive Compounds from Dark Chocolate by Deep Eutectic Solvents. A Sustainable Study. Int. J. Food Sci. Technol. 2023, 58, 4051–4065. [Google Scholar] [CrossRef]
- Azwanida, Ν.Ν. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 196. [Google Scholar] [CrossRef]
- Rodriguez-Solana, R.; Vαzquez-Araϊjo, L.; Salgado, J.M.; Domνnguez, J.M.; Cortιs-Diιguez, S. Optimization of the Process of Aromatic and Medicinal Plant Maceration in Grape Marc Distillates to Obtain Herbal Liqueurs and Spirits. J. Sci. Food Agric. 2016, 96, 4760–4771. [Google Scholar] [CrossRef] [PubMed]
- Rasul, M.G. Conventional Extraction Methods Use in Medicinal Plants, Their Advantages and Disadvantages. Int. J. Basic Sci. Appl. Comput. 2018, 2, 10–14. [Google Scholar]
- Shikov, A.N.; Mikhailovskaya, I.Y.; Narkevich, I.A.; Flisyuk, E.V.; Pozharitskaya, O.N. Chapter 35—Methods of Extraction of Medicinal Plants. In Evidence-Based Validation of Herbal Medicine, 2nd ed.; Mukherjee, P.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 771–796. [Google Scholar] [CrossRef]
- Daswani, P.G.; Ghadge, A.A.; Brijesh, S.; Birdi, T.J. Preparation of Decoction of Medicinal Plants: A Self-Help Measure? J. Altern. Complement. Med. 2011, 17, 1099–1100. [Google Scholar] [CrossRef]
- Kaneria, M.; Kanani, B.; Chanda, S. Assessment of Effect of Hydroalcoholic and Decoction Methods on Extraction of Antioxidants from Selected Indian Medicinal Plants. Asian Pac. J. Trop. Biomed. 2012, 2, 195–202. [Google Scholar] [CrossRef]
- Zhou, X.-J.; Yan, L.-L.; Yin, P.-P.; Shi, L.-L.; Zhang, J.-H.; Liu, Y.-J.; Ma, C. Structural Characterisation and Antioxidant Activity Evaluation of Phenolic Compounds from Cold-Pressed Perilla frutescens Var. Arguta Seed Flour. Food Chem. 2014, 164, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Gavahian, M.; Farhoosh, R.; Farahnaky, A.; Javidnia, K.; Shahidi, F. Comparison of Extraction Parameters and Extracted Essential Oils from Mentha piperita L. Using Hydrodistillation and Steamdistillation. Int. Food Res. J. 2015, 1, 283. [Google Scholar]
- Kant, R.; Kumar, A. Review on Essential Oil Extraction from Aromatic and Medicinal Plants: Techniques, Performance and Economic Analysis. Sustain. Chem. Pharm. 2022, 30, 100829. [Google Scholar] [CrossRef]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Wysokowski, M.; Jesionowski, T.; Ehrlich, H.; Mirsadeghi, S. Supercritical Fluid Extraction of Essential Oils. TrAC Trends Anal. Chem. 2019, 118, 182–193. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Plaza, M.; Marina, M.L. Pressurized Hot Water Extraction of Bioactives. TrAC Trends Anal. Chem. 2019, 116, 236–247. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Vardanega, R.; Santos, D.T.; Meireles, M.A.A. Intensification of Bioactive Compounds Extraction from Medicinal Plants Using Ultrasonic Irradiation. Pharmacogn. Rev. 2014, 8, 88–95. [Google Scholar] [CrossRef]
- Gadjalova, A.V.; Mihaylova, D. Ultrasound-Assisted Extraction of Medicinal Plants and Evaluation of Their Biological Activity. Food Res. 2019, 3, 530–536. [Google Scholar] [CrossRef]
- Streimikyte, P.; Viskelis, P.; Viskelis, J. Enzymes-Assisted Extraction of Plants for Sustainable and Functional Applications. Int. J. Mol. Sci. 2022, 23, 2359. [Google Scholar] [CrossRef] [PubMed]
- Łubek-Nguyen, A.; Ziemichσd, W.; Olech, M. Application of Enzyme-Assisted Extraction for the Recovery of Natural Bioactive Compounds for Nutraceutical and Pharmaceutical Applications. Appl. Sci. 2022, 12, 3232. [Google Scholar] [CrossRef]
- Chaturvedi, A. Extraction of Neutraceuticals from Plants by Microwave Assisted Extraction. Syst. Rev. Pharmacy 2018, 9, 31–35. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef] [PubMed]
- Naliyadhara, N.; Kumar, A.; Girisa, S.; Daimary, U.D.; Hegde, M.; Kunnumakkara, A.B. Pulsed Electric Field (PEF): Avant-Garde Extraction Escalation Technology in Food Industry. Trends Food Sci. Technol. 2022, 122, 238–255. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; et al. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.; Cai, Q.; Jin, H. Effective Methods for Isolation and Purification of Extracellular Vesicles from Plants. J. Integr. Plant Biol. 2021, 63, 2020–2030. [Google Scholar] [CrossRef]
- Claeson, P.; Bohlin, L. Some Aspects of Bioassay Methods in Natural-Product Research Aimed at Drug Lead Discovery. Trends Biotechnol. 1997, 15, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Sabotič, J.; Bayram, E.; Ezra, D.; Gaudęncio, S.P.; Haznedaroğlu, B.Z.; Janež, N.; Ktari, L.; Luganini, A.; Mandalakis, M.; Safarik, I.; et al. A Guide to the Use of Bioassays in Exploration of Natural Resources. Biotechnol. Adv. 2024, 71, 108307. [Google Scholar] [CrossRef]
- Lee, S. Systems Biology—A Pivotal Research Methodology for Understanding the Mechanisms of Traditional Medicine. J. Pharmacopunct. 2015, 18, 11–18. [Google Scholar] [CrossRef]
- Khanal, P.; Zargari, F.; Far, B.F.; Kumar, D.; R, M.; Mahdi, Y.K.; Jubair, N.K.; Saraf, S.K.; Bansal, P.; Singh, R.; et al. Integration of System Biology Tools to Investigate Huperzine A as an Anti-Alzheimer Agent. Front. Pharmacol. 2021, 12, 785964. [Google Scholar] [CrossRef]
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; et al. Impact of High-Throughput Screening in Biomedical Research. Nat. Rev. Drug Discov. 2011, 10, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.; Zhang, S.; Wang, J.; Liu, D.; Xiang, Y.; Ji, X.; Wei, Y. Screening GLP-1 Receptor Ligands from Natural Products in Herbs through High-Content Technique. Comb. Chem. High Throughput Screen. 2019, 22, 445–454. [Google Scholar] [CrossRef]
- Mercx, S.; Smargiasso, N.; Chaumont, F.; De Pauw, E.; Boutry, M.; Navarre, C. Inactivation of the β(1,2)-xylosyltransferase and the α (1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a Multiplex CRISPR/Cas9 Strategy results in Glycoproteins without plant-specific Glycans. Front. Plant Sci. 2017, 8, 403. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Cui, G.; Shen, G.; Zhan, Z.; Huang, L.; Chen, J.; Qi, X. Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza OPEN. Nat. Publ. Gr. 2017, 7, 43320. [Google Scholar] [CrossRef]
- Saito, K. Phytochemical Genomics—A New Trend. Curr. Opin. Plant Biol. 2013, 16, 373–380. [Google Scholar] [CrossRef]
- Chen, J.-T. Phytochemical Omics in Medicinal Plants. Biomolecules 2020, 10, 936. [Google Scholar] [CrossRef]
- Chaudhary, S.; Chaudhary, P.; Patel, S. Genomics, Transcriptomics, Proteomics and Metabolomics Approaches. In Fenugreek: Biology and Applications; Naeem, M., Aftab, T., Khan, M.M.A., Eds.; Springer: Singapore, 2021; pp. 355–373. [Google Scholar] [CrossRef]
- Vijay, A.; Kumar, A.; Radhakrishnan, A.M.; Kumar, S.; Singh, K.; Ramchiary, N.; Swamy, M.K. Emergence of Phytochemical Genomics: Integration of Multi-Omics Approaches for Understanding Genomic Basis of Phytochemicals. In Phytochemical Genomics: Plant Metabolomics and Medicinal Plant Genomics; Swamy, M.K., Kumar, A., Eds.; Springer Nature: Singapore, 2022; pp. 219–261. [Google Scholar] [CrossRef]
- Tugizimana, F.; Piater, L.; Dubery, I. Plant Metabolomics: A New Frontier in Phytochemical Analysis. S. Afr. J. Sci. 2013, 109, 11. [Google Scholar] [CrossRef]
- Pandohee, J.; Kyereh, E.; Kulshrestha, S.; Xu, B.; Mahomoodally, M.F. Review of the Recent Developments in Metabolomics-Based Phytochemical Research. Crit. Rev. Food Sci. Nutr. 2023, 63, 3734–3749. [Google Scholar] [CrossRef]
- Waris, M.; Koçak, E.; Gonulalan, E.M.; Demirezer, L.O.; Kır, S.; Nemutlu, E. Metabolomics Analysis Insight into Medicinal Plant Science. TrAC Trends Anal. Chem. 2022, 157, 116795. [Google Scholar] [CrossRef]
- Hasanpour, M.; Iranshahy, M.; Iranshahi, M. The Application of Metabolomics in Investigating Anti-Diabetic Activity of Medicinal Plants. Biomed. Pharmacother. 2020, 128, 110263. [Google Scholar] [CrossRef]
- Sharma, B.; Yadav, D.K. Metabolomics and Network Pharmacology in the Exploration of the Multi-Targeted Therapeutic Approach of Traditional Medicinal Plants. Plants 2022, 11, 3243. [Google Scholar] [CrossRef]
- Gonulalan, E.M.; Nemutlu, E.; Bayazeid, O.; Koçak, E.; Yalçın, F.N.; Demirezer, L.O. Metabolomics and Proteomics Profiles of Some Medicinal Plants and Correlation with BDNF Activity. Phytomedicine 2020, 74, 152920. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaidi, J.R. Chapter 10—Proteomics Research in Aromatic Plants and Its Contribution to the Nutraceuticals and Pharmaceutical Outcomes. In Medicinal and Aromatic Plants; Aftab, T., Hakeem, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 223–239. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Thomas, T.D.; Ramchiary, N.; Swamy, M.K.; Ahmad, I. Linking Omics Approaches to Medicinal Plants and Human Health. In Natural Bio-Active Compounds: Volume 3: Biotechnology, Bioengineering, and Molecular Approaches; Akhtar, M.S., Swamy, M.K., Eds.; Springer: Singapore, 2019; pp. 31–57. [Google Scholar] [CrossRef]
- Varghese, R.; Shringi, H.; Efferth, T.; Ramamoorthy, S. Artificial Intelligence Driven Approaches in Phytochemical Research: Trends and Prospects. Phytochem. Rev. 2025. [Google Scholar] [CrossRef]
- Zhang, Y.; Bao, X.; Zhu, Y.; Dai, Z.; Shen, Q.; Xue, Y. Advances in Machine Learning Screening of Food Bioactive Compounds. Trends Food Sci. Technol. 2024, 150, 104578. [Google Scholar] [CrossRef]
- Chihomvu, P.; Ganesan, A.; Gibbons, S.; Woollard, K.; Hayes, M.A. Phytochemicals in Drug Discovery—A Confluence of Tradition and Innovation. Int. J. Mol. Sci. 2024, 25, 8792. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.C. Computational Approaches in Drug Development and Phytocompound Analysis. In Plant-Derived Bioactives: Chemistry and Mode of Action; Swamy, M.K., Ed.; Springer: Singapore, 2020; pp. 529–548. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, C.; Zhao, S.; Zhang, S.; Wang, W.; Fu, H.; Li, X.; Zhou, C.; Chen, L.; Lin, Y.; et al. De Novo Transcriptome and Phytochemical Analyses Reveal Differentially Expressed Genes and Characteristic Secondary Metabolites in the Original Oolong Tea (Camellia sinensis) Cultivar ‘Tieguanyin’ Compared with Cultivar ‘Benshan’. BMC Genom. 2019, 20, 265. [Google Scholar] [CrossRef]
- Naveed, M.; Abid, A.; Aziz, T.; Saleem, A.; Hanif, N.; Ali, I.; Alasmari, A.F. Comparative Toxicity Assessment of Fisetin-Aided Artificial Intelligence-Assisted Drug Design Targeting Epibulbar Dermoid through Phytochemicals. Open Chem. 2024, 22, 20230197. [Google Scholar] [CrossRef]
- Enoch, S.J.; Nahar, L.; Sarker, S.D. Chapter 14—Predictive Toxicology of Phytochemicals. In Computational Phytochemistry, 2nd ed.; Sarker, S.D., Nahar, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 439–463. [Google Scholar] [CrossRef]
- Sahoo, H.; Malhotra, M.; Yadav, V.K.; Maurya, V.; Shweta; Kumar, A. Application of CRISPR-Cas Technique in Enhancing the Phytochemicals Production. In Metabolites of Medicinal Plants: Insightful Approaches; Bentham Science Publishers: Sharjah, United Arab Emirates, 2024; pp. 244–264. [Google Scholar]
- Mitra, S.; Anand, U.; Ghorai, M.; Kant, N.; Kumar, M.; Radha; Jha, N.K.; Swamy, M.K.; Proćków, J.; de la Lastra, J.M.P.; et al. Genome Editing Technologies, Mechanisms and Improved Production of Therapeutic Phytochemicals: Opportunities and Prospects. Biotechnol. Bioeng. 2023, 120, 82–94. [Google Scholar] [CrossRef]
- Gao, H.; Pei, X.; Song, X.; Wang, S.; Yang, Z.; Zhu, J.; Lin, Q.; Zhu, Q.; Yang, X. Application and Development of CRISPR Technology in the Secondary Metabolic Pathway of the Active Ingredients of Phytopharmaceuticals. Front. Plant Sci. 2025, 15, 1477894. [Google Scholar] [CrossRef]
- Naik, B.J.; Vasamsetti, B.M.K.; Kim, S.-C.; Gunti, M.; Swamy, M.K.; Mekapogu, M. Genome Editing in Medicinal Plants Using CRISPR/Cas9 Tool. In Phytochemical Genomics: Plant Metabolomics and Medicinal Plant Genomics; Swamy, M.K., Kumar, A., Eds.; Springer Nature: Singapore, 2022; pp. 571–589. [Google Scholar] [CrossRef]
- Eljounaidi, K.; Lichman, B.R. Nature’s Chemists: The Discovery and Engineering of Phytochemical Biosynthesis. Front. Chem. 2020, 8, 596479. [Google Scholar] [CrossRef]
- Kotopka, B.J.; Li, Y.; Smolke, C.D. Synthetic Biology Strategies toward Heterologous Phytochemical Production. Nat. Prod. Rep. 2018, 35, 902–920. [Google Scholar] [CrossRef] [PubMed]
- Holtz, M.; Acevedo-Rocha, C.G.; Jensen, M.K. Combining Enzyme and Metabolic Engineering for Microbial Supply of Therapeutic Phytochemicals. Curr. Opin. Biotechnol. 2024, 87, 103110. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, E.; Temporiti, M.E.E.; Cella, R. Improvement of Phytochemical Production by Plant Cells and Organ Culture and by Genetic Engineering. Plant Cell Rep. 2019, 38, 1199–1215. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Smolke, C.D. Strategies for Microbial Synthesis of High-Value Phytochemicals. Nat. Chem. 2018, 10, 395–404. [Google Scholar] [CrossRef]
- Tiwari, P.; Khare, T.; Shriram, V.; Bae, H.; Kumar, V. Plant Synthetic Biology for Producing Potent Phyto-Antimicrobials to Combat Antimicrobial Resistance. Biotechnol. Adv. 2021, 48, 107729. [Google Scholar] [CrossRef]
- Barone, R.P.; Knittel, D.K.; Ooka, J.K.; Porter, L.N.; Smith, N.T.; Owens, D.K. The Production of Plant Natural Products Beneficial to Humanity by Metabolic Engineering. Curr. Plant Biol. 2020, 24, 100121. [Google Scholar] [CrossRef]
- Ismail, F.M.D.; Nahar, L.; Sarker, S.D. Chapter 7—High Throughput Screening of Phytochemicals: Application of Computational Methods. In Computational Phytochemistry, 2nd ed.; Sarker, S.D., Nahar, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 219–253. [Google Scholar] [CrossRef]
- Patel, M.; Patel, V. High Throughput Screening Techniques in Anticancer Drug Discovery and Development from Botanicals. In Alternative Remedies and Natural Products for Cancer Therapy: An Integrative Approach; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023; pp. 97–121. [Google Scholar]
- Gandhi, M.; Chen, S.-S.; Ray, S.S.; Jaiswal, N.K.; Ranjan, S. Phyto-Nanosensors: Advancement of Phytochemicals as an Electrochemical Platform for Various Biomedical Applications. In Environmental Nanotechnology Volume 5; Dasgupta, N., Ranjan, S., Lichtfouse, E., Mishra, B.N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 311–338. [Google Scholar] [CrossRef]
- Shafiqul Islam, A.K.M.; Krishnan, H.; Ahmad, M.N.; Nadaraja, P.; Uddin, A.B.M.H. A Novel Molecular Imprint Polymer Quartz Crystal Microbalance Nanosensor for the Detection of Andrographolide in the Medicinal Plant Extract. Russ. J. Electrochem. 2021, 57, 671–679. [Google Scholar] [CrossRef]
- Upaganlawar, A.; Polshettiwar, S.; Raut, S.; Tagalpallewar, A.; Pande, V. Effective Cancer Management: Inimitable Role of Phytochemical Based Nano- Formulations. Curr. Drug Metab. 2022, 23, 869–881. [Google Scholar] [CrossRef]
- Heya, M.S.; Torres Hernández, A.D.; Cordero Díaz, A.; García, P.; Pérez Narváez, O.A. Biomedical application of nanoformulated plant. Int. J. Pharm. Sci. Res. 2022, 13, 1000. [Google Scholar] [CrossRef]
- Ani, R.; Deepa, O.S. Graph Convolutional Neural Network-Based Virtual Screening of Phytochemicals and In-Silico Docking Studies of Drug Compounds for Hemochromatosis. IEEE Access 2023, 11, 138687–138698. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, N.H.; Nahar, L.; Sarker, S.D.; Fazal-Ur-Rehman; Htar, T.T. Chapter 13—Unveiling the Power of Phytochemicals: Virtual Screening of Phytochemicals. In Computational Phytochemistry, 2nd ed.; Sarker, S.D., Nahar, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 413–437. [Google Scholar] [CrossRef]
- Banisetti, D.K.; Kosuri, N.P. Ethnobotanical Research in the Digital Age: Harnessing Technology for Data Collection and Analysis. Int. J. Indig. Herbs Drugs 2023, 8, 1–6. [Google Scholar] [CrossRef]
- Axiotis, E.; Kontogiannis, A.; Kalpoutzakis, E.; Giannakopoulos, G. A Personalized Machine-Learning-Enabled Method for Efficient Research in Ethnopharmacology. The Case of the Southern Balkans and the Coastal Zone of Asia Minor. Appl. Sci. 2021, 11, 5826. [Google Scholar] [CrossRef]
- Balkrishna, A.; Yadav, P.; Yadav, P.; Saini, A.; Kumar, B.; Arya, V.P. Big Data Analysis of Medicinal Plants. In Ethnopharmacology and OMICS Advances in Medicinal Plants Volume 2: Revealing the Secrets of Medicinal Plants; Nandave, M., Joshi, R., Upadhyay, J., Eds.; Springer Nature: Singapore, 2024; pp. 363–382. [Google Scholar] [CrossRef]
- Pushpangadan, P.; George, V.; Ijinu, T.P.; Chithra, M.A. Biodiversity, Bioprospecting, Traditional Knowledge, Sustainable Development and Value Added Products: A Review. J. Tradit. Med. Clin. Naturop. 2018, 7, 1. [Google Scholar] [CrossRef]
- Anand, A.; Pandey, M.K.; Srivastava, P.K.; Gupta, A.; Khan, M.L. Integrating Multi-Sensors Data for Species Distribution Mapping Using Deep Learning and Envelope Models. Remote Sens. 2021, 13, 3284. [Google Scholar] [CrossRef]
- Jamba, N.; Kumar, B.M. Medicinal Plants in the Broad-Leaf Mixed Coniferous Forest of Tshothang Chiwog, Bhutan: Floristic Attributes, Vegetation Structure, Ethnobotany, and Socioeconomic Aspects. Front. Environ. Sci. 2018, 5, 96. [Google Scholar] [CrossRef]
- Fan, L.; Feng, S.; Wang, T.; Ding, X.; An, X.; Wang, Z.; Zhou, K.; Wang, M.; Zhai, X.; Li, Y. Chemical Composition and Therapeutic Mechanism of Xuanbai Chengqi Decoction in the Treatment of COVID-19 by Network Pharmacology, Molecular Docking and Molecular Dynamic Analysis. Mol. Divers. 2023, 27, 81–102. [Google Scholar] [CrossRef]
- Yang, H.-Y.; Liu, M.-L.; Luo, P.; Yao, X.-S.; Zhou, H. Network Pharmacology Provides a Systematic Approach to Understanding the Treatment of Ischemic Heart Diseases with Traditional Chinese Medicine. Phytomedicine 2022, 104, 154268. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xu, Z.; Qiu, W.; Xiao, X. MSDSE: Predicting Drug-Side Effects Based on Multi-Scale Features and Deep Multi-Structure Neural Network. Comput. Biol. Med. 2024, 169, 107812. [Google Scholar] [CrossRef]
- Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: In Silico Methods for Drug Design and Discovery. Front. Chem. 2020, 8, 612. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, M.; Kunimura, K.; Suzuki, J.-I.; Kodera, Y. Antimicrobial Properties of Hydrophobic Compounds in Garlic: Allicin, Vinyldithiin, Ajoene and Diallyl Polysulfides. Exp. Ther. Med. 2020, 19, 1550–1553. [Google Scholar] [CrossRef]
- Kimber, T.B.; Chen, Y.; Volkamer, A. Deep Learning in Virtual Screening: Recent Applications and Developments. Int. J. Mol. Sci. 2021, 22, 4435. [Google Scholar] [CrossRef]
- Alanzi, A.R.; Moussa, A.Y.; Alsalhi, M.S.; Nawaz, T.; Ali, I. Integration of Pharmacophore-Based Virtual Screening, Molecular Docking, ADMET Analysis, and MD Simulation for Targeting EGFR: A Comprehensive Drug Discovery Study Using Commercial Databases. PLoS ONE 2024, 19, e0311527. [Google Scholar] [CrossRef]
- Durhan, B.; Yalçın, E.; Çavuşoğlu, K.; Acar, A. Molecular Docking Assisted Biological Functions and Phytochemical Screening of Amaranthus lividus L. Extract. Sci. Rep. 2022, 12, 4308. [Google Scholar] [CrossRef] [PubMed]
- Das, A.P.; Agarwal, S.M. Recent Advances in the Area of Plant-Based Anti-Cancer Drug Discovery Using Computational Approaches. Mol. Divers. 2024, 28, 901–925. [Google Scholar] [CrossRef] [PubMed]
- Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.N.; Kumar, S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024, 12, 201. [Google Scholar] [CrossRef]
- Padhi, A.K.; Janežič, M.; Zhang, K.Y.J. Chapter 26—Molecular Dynamics Simulations: Principles, Methods, and Applications in Protein Conformational Dynamics. In Advances in Protein Molecular and Structural Biology Methods; Tripathi, T., Dubey, V.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 439–454. [Google Scholar] [CrossRef]
- Bag, S.; Burman, M.D.; Bhowmik, S. Structural Insights and Shedding Light on Preferential Interactions of Dietary Flavonoids with G-Quadruplex DNA Structures: A New Horizon. Heliyon 2023, 9, e13959. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Akhtar, J.; Zhang, X.; Sun, L.; Guan, S.; Li, X.; Chen, G.; Liu, J.; Jeon, H.-N.; Kim, M.S.; et al. Comprehensive Strategies of Machine-Learning-Based Quantitative Structure-Activity Relationship Models. iScience 2021, 24, 103052. [Google Scholar] [CrossRef]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial Intelligence in Drug Discovery and Development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef]
- Shin, S.H.; Hur, G.; Kim, N.R.; Park, J.H.Y.; Lee, K.W.; Yang, H. A Machine Learning-Integrated Stepwise Method to Discover Novel Anti-Obesity Phytochemicals That Antagonize the Glucocorticoid Receptor. Food Funct. 2023, 14, 1869–1883. [Google Scholar] [CrossRef]
- Yabuuchi, H.; Hayashi, K.; Shigemoto, A.; Fujiwara, M.; Nomura, Y.; Nakashima, M.; Ogusu, T.; Mori, M.; Tokumoto, S.; Miyai, K. Virtual Screening of Antimicrobial Plant Extracts by Machine-Learning Classification of Chemical Compounds in Semantic Space. PLoS ONE 2023, 18, e0285716. [Google Scholar] [CrossRef]
- Stoney, R.; Robertson, D.L.; Nenadic, G.; Schwartz, J.-M. Mapping Biological Process Relationships and Disease Perturbations within a Pathway Network. NPJ Syst. Biol. Appl. 2018, 4, 22. [Google Scholar] [CrossRef]
- Wieder, C.; Frainay, C.; Poupin, N.; Rodríguez-Mier, P.; Vinson, F.; Cooke, J.; Lai, R.P.; Bundy, J.G.; Jourdan, F.; Ebbels, T. Pathway Analysis in Metabolomics: Recommendations for the Use of over-Representation Analysis. PLOS Comput. Biol. 2021, 17, e1009105. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, M.; Zhou, W.; Ge, G.; Zhang, L.; Ji, G. Metabolomic Analysis Identifies Glycometabolism Pathways as Potential Targets of Qianggan Extract in Hyperglycemia Rats. Front. Pharmacol. 2020, 11, 671. [Google Scholar] [CrossRef] [PubMed]
- Quinn, R.A.; Nothias, L.-F.; Vining, O.; Meehan, M.; Esquenazi, E.; Dorrestein, P.C. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. Trends Pharmacol. Sci. 2017, 38, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Oh, J.-H.; Lee, M.Y.; Lee, S.-G.; Ha, I.J. Molecular Network-Guided Alkaloid Profiling of Aerial Parts of Papaver nudicaule L. Using LC-HRMS. Molecules 2020, 25, 2636, Erratum in Molecules 2021, 26, 339. [Google Scholar] [CrossRef]
- Su, C.H.; Cheng, Y.C.; Chang, Y.C.; Kung, T.H.; Chen, Y.L.; Lai, K.H.; Hsieh, H.L.; Chen, C.Y.; Hwang, T.L.; Yang, Y.L. Untargeted LC-MS/MS-Based Multi-Informative Molecular Networking for Targeting the Antiproliferative Ingredients in Tetradium Ruticarpum Fruit. Molecules 2022, 27, 4462. [Google Scholar] [CrossRef]
- Lee, W.-H.; Loo, C.-Y.; Young, P.M.; Traini, D.; Mason, R.S.; Rohanizadeh, R. Recent Advances in Curcumin Nanoformulation for Cancer Therapy. Expert. Opin. Drug Deliv. 2014, 11, 1183–1201. [Google Scholar] [CrossRef]
- Watkins, R.; Wu, L.; Zhang, C.; Davis, R.M.; Xu, B. Natural Product-Based Nanomedicine: Recent Advances and Issues. Int. J. Nanomed. 2015, 10, 6055–6074. [Google Scholar] [CrossRef]
- Kaddi, C.D.; Phan, J.H.; Wang, M.D. Computational Nanomedicine: Modeling of Nanoparticle-Mediated Hyperthermal Cancer Therapy. Nanomedicine 2013, 8, 1323–1333. [Google Scholar] [CrossRef]
- Minghetti, P.; Franzè, S.; Zaccara, V.; Raso, F.; Morazzoni, P. Innovation in Phytotherapy: Is a New Regulation the Feasible Perspective in Europe? Planta Medica 2016, 82, 591–595. [Google Scholar] [CrossRef]
- Zhang, J.; Wider, B.; Shang, H.; Li, X.; Ernst, E. Quality of Herbal Medicines: Challenges and Solutions. Complement. Ther. Med. 2012, 20, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Ekor, M. The Growing Use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Chan, K.; Shaw, D.; Simmonds, M.S.J.; Leon, C.J.; Xu, Q.; Lu, A.; Sutherland, I.; Ignatova, S.; Zhu, Y.-P.; Verpoorte, R.; et al. Good Practice in Reviewing and Publishing Studies on Herbal Medicine, with Special Emphasis on Traditional Chinese Medicine and Chinese Materia Medica. J. Ethnopharmacol. 2012, 140, 469–475. [Google Scholar] [CrossRef]
- Baldi, A. Good Agricultural Practices: A Prequisite Approach for Enhancing the Quality of Indian Herbal Medicines. Biomed. J. Sci. Tech. Res. 2018, 5, 4. [Google Scholar] [CrossRef]
- Makunga, N.P.; Philander, L.E.; Smith, M. Current Perspectives on an Emerging Formal Natural Products Sector in South Africa. J. Ethnopharmacol. 2008, 119, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J. Problems That Can Occur When Assaying Extracts to Pure Compounds in Biological Systems. Curr. Ther. Res. Clin. Exp. 2021, 95, 100645. [Google Scholar] [CrossRef]
- Upton, R.; David, B.; Gafner, S.; Glasl, S. Botanical Ingredient Identification and Quality Assessment: Strengths and Limitations of Analytical Techniques. Phytochem. Rev. 2020, 19, 1157–1177. [Google Scholar] [CrossRef]
- Zhang, H. Bioactive Natural Products: Detection, Isolation, and Structural Determination, Second Edition, S.M. Colegate, R.J. Molyneus (Eds.), CRS Press, Taylor & Francis Group, Boca Raton, FL (2008), 605pp, US$209.95, Hard Cover, ISBN: 0-8493r-R7258-5. Phytomedicine 2011, 18, 902. [Google Scholar] [CrossRef]
- Schroeder, F.C.; Gronquist, M. Extending the Scope of NMR Spectroscopy with Microcoil Probes. Angew. Chem. Int. Ed. Engl. 2006, 45, 7122–7131. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Zhou, S.-F.; Gao, S.-H.; Yu, Z.-L.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ma, D.-L.; Han, Y.-F.; Fong, W.-F.; et al. New Perspectives on How to Discover Drugs from Herbal Medicines: CAM’s Outstanding Contribution to Modern Therapeutics. Evid. Based Complement. Altern. Med. 2013, 2013, 627375. [Google Scholar] [CrossRef]
- Rodrigues, E.; Barnes, J. Pharmacovigilance of Herbal Medicines: The Potential Contributions of Ethnobotanical and Ethnopharmacological Studies. Drug Saf. 2013, 36, 1–12. [Google Scholar] [CrossRef]
- Schilsky, R.L.; Doroshow, J.H.; LeBlanc, M.; Conley, B.A. Development and Use of Integral Assays in Clinical Trials. Clin. Cancer Res. 2012, 18, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Rates, S.M.K. Plants as Source of Drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Ahamefule, C.S.; Ezeuduji, B.C.; Ogbonna, J.C.; Moneke, A.N.; Ike, A.C.; Wang, B.; Jin, C.; Fang, W. Marine Bioactive Compounds against Aspergillus Fumigatus: Challenges and Future Prospects. Antibiotics 2020, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Leng, L.; Sun, W.; Liu, B.; Feng, X.; Li, X.; Chen, S. Whole-Genome Sequencing in Medicinal Plants: Current Progress and Prospect. Sci. China Life Sci. 2024, 67, 258–273. [Google Scholar] [CrossRef]
- O’Connor, S.E. Engineering of Secondary Metabolism. Annu. Rev. Genet. 2015, 49, 71–94. [Google Scholar] [CrossRef]
- Zheng, S.; Zeng, T.; Li, C.; Chen, B.; Coley, C.W.; Yang, Y.; Wu, R. Deep Learning Driven Biosynthetic Pathways Navigation for Natural Products with BioNavi-NP. Nat. Commun. 2022, 13, 3342. [Google Scholar] [CrossRef]
- Zhang, J.; Petersen, S.D.; Radivojevic, T.; Ramirez, A.; Pérez-Manríquez, A.; Abeliuk, E.; Sánchez, B.J.; Costello, Z.; Chen, Y.; Fero, M.J.; et al. Combining Mechanistic and Machine Learning Models for Predictive Engineering and Optimization of Tryptophan Metabolism. Nat. Commun. 2020, 11, 4880. [Google Scholar] [CrossRef]
Drastic Phytochemical Compound | Chemical Class | Botanical Source | Key Activity: Clinical Indications/ Physiological Activity | References | |
---|---|---|---|---|---|
1 | Paclitaxel | Tetracyclic diterpenoid | Taxus brevifolia | Lung, ovarian, breast cancers | [57,58] |
2 | Artemisinin | Sequiterpene lactone | Artemisia annua | Malaria | [59,60] |
3 | Digitoxin | Cardiac glycoside | Digitalis spp. | Congestive heart failure, Irregular heart rhythm, Anticancer activity in lung cancer and in uveal melanoma | [61,62,63] |
4 | Pilocarpine | Alkaloid | Pilocarpus jaborandi | Stimulates saliva and sweat production, dry eye, glaucoma | [64,65,66] |
5 | Morphine | Opioid alkaloid | Papaver somniferous | Anesthetic and pain-relieving effect | [67,68] |
6 | Codeine | Opioid alkaloid | Papaver somniferous | Analgesic, antitussive | [69,70] |
7 | Aspirin | Acetylsalicylic acid | Salix spp. | Anti-inflammatory, pain-relieving, fever reduction, prevention of cardiovascular diseases, prevention of pre-eclampsia and of fetal growth restriction in pregnancy | [71,72] |
8 | Bifendate, (bicyclol derivative) | Lignan | Schisandrae chinensis | Anti-hepatitis B agent | [73,74] |
9 | Colchicine | Colchicinic acid | Colchicum autumnale | Antitumor, Gout, myocardial infarction | [75,76] |
10 | Camptothecin (topotecan and irinotecan analogues) | Monoterpenoid indole-alkaloid | Camptotheca acuminata | Anticancer | [77,78,79] |
11 | Vinblastine Vincristine | Vinca alkaloids | Catharanthus roseus | Anticancer | [80,81] |
12 | Galegine (derivative metformin) | Isoamylene guanidine | Galega officinalis | Antidiabetic action, myocardial, intestinal epithelium | [82,83] |
13 | Camphor | Terpenoid | Cinnamomum camphora | Topical analgesic, antiseptic, anti-pruritic, contraceptive, anti-inflammatory, Anticancer | [84,85] |
14 | Longifolene | Tricyclic sesquiterpene | Pinus longifolia | Antibacterial, antifungal | [86,87] |
15 | Delta-9-tetrahydrocan-nabinol | Cannabinoid | Cannabis spp. | Anti-inflammatory, post-injury pain, sleeping disorders, depression, multiple sclerosis, Nausea treatment after chemotherapy | [88,89] |
16 | Beta- carotene | Terpenoid (isoprenoid) | Carrots and others | Antimutagenic agents | [90,91,92,93,94] |
17 | Vitamin E | tocopherols, tocotrienols | Seed oils and others | ||
18 | Ellagic acids | Polyphenol | Fruits and vegetables | ||
19 | Organosulfuric compounds | Onion and garlic | Antibacterial activity, Antimutagenic effect, cardiovascular protective effects | [95,96,97,98,99] | |
20 | Calanolide A | Coumarin | Calophylium lanigerum | Anti-HIV, Anti-tuberculosis effects | [100,101,102,103] |
21 | Huperzine (ZT-1 pro drug) | Alkaloid | Huperzia serrata | N-Methyl-aspartate receptor antagonist and acetylcholinesterase neuroprotective inhibitor (under trial for treatment of Alzheimer’s disease | [104,105,106] |
22 | Dexabinol | Cannabinoid | Cannabis spp. | Treatment of brain injuries (under trial, phase III) | [107,108] |
23 | Daidzein | Isoflavone | Glycine max (soybean) | Anticancer agents (under trial) | [109,110,111,112,113] |
24 | Protopanaxiadiol | Tetracyclic triterpene | Panax spp. (ginseng) | ||
25 | Danshen | Salvianolic acid, dihydrotanshinone | Salviae miltiorrhizae | Treatment of diabetic retinopathy and angina pectoris | [114,115,116] |
26 | Borneol | Terpene derivative | Heterothec spp., Artemisia spp., Rosmarinus officinalis and other species | [117,118] |
Category | Class | Example Compounds | Function/Application | Source Plants | Mechanism of Action |
---|---|---|---|---|---|
Primary Metabolites | Carbohydrates | Glucose, Fructose | Energy production, structural functions | All plants | Serve as fuel in cellular respiration; precursors for cell wall components |
Proteins | Enzymes (e.g., Rubisco) | Catalyze biochemical reactions, structural support | All plants | Facilitate and regulate metabolic pathways | |
Nucleic Acids | DNA, RNA | Storage and transmission of genetic information | All living cells | Genetic regulation, protein synthesis | |
Lipids/Fatty Acids | Phospholipids, Oleic acid | Membrane structure, long-term energy storage | All plants | Maintain membrane integrity, participate in signaling pathways | |
Secondary Metabolites | Phenolics—Flavonoids | Quercetin, Luteolin, Naringenin | Antioxidant, anti-inflammatory, antiviral | Green tea, berries, soybeans | Scavenge free radicals, inhibit enzymes, block viral entry |
Phenolics—Polyphenols | Resveratrol, Catechins | Antioxidant, cardioprotective | Grapes, tea | Modulate cellular signaling pathways, inhibit oxidative stress | |
Alkaloids | Quinine, Ephedrine, Homoharringtonine, Morphine | Antimalarial, decongestant, anticancer, analgesic | Cinchona, Ephedra, Cephalotaxus, Papaver somniferum | Interfere with DNA replication, modulate receptors, inhibit protein synthesis | |
Terpenoids | α-Pinene, Limonene, 3-Carene, Saponins | Antimicrobial, anti-inflammatory, antifungal, insecticidal | Pine, citrus, Eremophila, Commiphora | Disrupt microbial membranes, suppress cytokine expression, block viral glycoproteins | |
Essential Oils | Thymol, Menthol, Carvacrol | Antimicrobial, anti-inflammatory, aromatic | Thyme, mint, oregano | Damage bacterial cell walls, inhibit quorum sensing and biofilm formation | |
Stilbenes & Lignans | Resveratrol, Pinoresinol | Antioxidant, cardioprotective | Grapes, flaxseed | Inhibit oxidative stress, modulate signaling pathways | |
Isoflavones | Genistein, Daidzein | Phytoestrogenic, anticancer | Soybeans | Bind estrogen receptors, inhibit tyrosine kinases |
Metabolite Group | Plant Source | Secondary Metabolites | Activity | Reference |
---|---|---|---|---|
Phenolics | ||||
Flavonols | Olive oil, onion, berries red wine, grapefruit | Quercetin, kaempferol, galangin | Antiviral, antimutagenic | [135] |
Flavones | Fruit, red pepper and tomato skin, red wine | Apigenin, luteolin | Antiviral, anti-inflammatory, antimutagenic | [136] |
Flavanones | Citrus fruits, grapefruits | Naringenin, hesperetin | Antibacterial, antimutagenic | [137] |
Anthocyanidins | Strawberry, cherry, ruspberry | Cyanidin, delphinidine | Antioxidant | [138] |
Isoflavones | Soybean | Genistein, daidzein | Antibacterial, antimutagenic | [139] |
Alkaloids | ||||
Papaver Somniferum | Morphine | Analgetic | [140] | |
Ephedra sp. | Ephedrine | Antiasthmatic | [141] | |
Remijia sp. | Quinine | Antimalarial | [142] | |
Cephalotaxus fortunei | Homoharringtonine | Anticancer | [143] | |
Terpenoids | ||||
Ginger, citronella, camphor, thynnus, oregano and sage essential oils | Camphone | Antibacterial, anticancer | [144] | |
Coniferous trees | a-Pinene | Antimicrobial, antioxidant, anticancer, anti-inflammatory | [145] | |
Allium species, oats, spinach, tea, asparagus | Saponins | Ant-diabetic, hypolipidemic, anticancer | [146] | |
Citrus, cannabis, rosemary, basil, pine | 3-Carene | Antimicrobial | [147] |
Plant Species | Natural Products | Mechanism of Action | Pathogens | Reference |
---|---|---|---|---|
Scutellariabaicalensis | Baicalein | Efflux pump inhibition | MRSA | [162] |
Aframomumpolyanthum | Anthocyanin Phenols Polyphenols Saponin | - | MDR E.coli MDR E. aerogene MDR E. cloacae MDR K. pneumonia | [163] |
Cinnamomum tamala | Cinnamal dehyde | Disruption of cell membrane integrity | MDR H. pylori | [164] |
Aroma melanocarpa | Ellagic acid | Inhibition of hemagglutinin protein | Oseltamivir-resistant influenza virus | [165] |
Carissa edulis | Lupeol | - | Acyclovir-resistant HSV-1 | [166] |
Mentha pulegium L. | - | Prevention of synthesis or repression of function of alpha proteins | Acyclovir-resistant HSV-1 | [167] |
Berben’s vulgaris L. | Berberine | Increase ROS efflux transporter inhibition | Fluconazole-resistant C. tropicalis | [168] |
Origanum vulgare L. | Carvacrol | Disruption of cell membrane structure–function | Azole-non susceptible C. neoformans | [169] |
Syzygiumaromaticum L. | Eugenol | Disruption of cell membrane structure–function | Fluconazole-resistant A Fumigates | [170] |
Metabolite Group | Plant Species | Secondary Metabolite | Environmental Factor | Concentration Change | Reference |
---|---|---|---|---|---|
Alkaloids | Camptotheca acuminate | Camptophecin | 27% full sunlight | Increase | [208] |
Phenolics | Vaccinium myrtillus | Chlorogenic acid | Full sunlight | Increase | [209] |
Phenolics | Lactuca sativa | Ferulic acid | Increase red light | Decrease | [210] |
Alkaloids | Catharanthus roseus | Cantharantine | Ultraviolet B radiation | Increase | [211] |
Alkaloids | Papaven somniferum | Morphine | Low temperature | Decrease | [212] |
Terpenoids | Daucus carota | a-farnesene | High temperature | Increase | [213] |
Phenolics | Rhodiola rosea | Salidroside | Soil moisture (55–75%) | Increase | [214] |
Phenolics | Salvia miltiorrhiza | Tanshinone | Severe drought | Increase | [215] |
Method | Principle | Reference | |
---|---|---|---|
Standard methods | Maceration | MP is soaked in an appropriate solvent | [231,232] |
Soxhlet extraction | Continuous solvent extraction after solvent washing the MP, through a cycle of boiling and condensation | [233,234] | |
Decoction | Boiling after slicing the MP | [235,236] | |
Cold pressing | Mechanical force on the MP material | [237,238] | |
Hydrodistilation | MPs boiled with water and after condensation the essential oils and the hydrosols are recovered separately | [239,240] | |
Green extraction methods (eco-extraction methods) | Superficial fluid extraction | Pressurized supercritical solvents flow through a column and dissolve extractable compounds from the solid MP material in the column | [241,242] |
Pressurized hot water extraction | Water at high temperatures shows lower polarizability/polarity and density. Its surface tension and viscosity decrease, and the diffusivity increases allowing faster mass transfer and improve wetting of the MP material. | [243,244] | |
Ultrasound assisted extraction | Cavitation effect creates high pressure and high temperature zones. Also, it increases solvent penetration into the cells. | [245,246] | |
Enzyme assisted extraction | Enzymes with specific hydrolytic properties are used to degrade the MP matrix to extract biodrastic components from cytosolic spaces and cell walls | [247,248] | |
Microwave assisted extraction | Rapid increase of the temperature of the fresh or rehydrated MP material causes cell wall disruption and the release of chemical substances. | [249,250] | |
Pulse electric field assisted extraction | If an external electric field’s strength is much higher than the critical electric value of the cell membrane, then electrical rupture occurs releasing the cell contents. | [251,252] |
Method | Application to MPs and NPs | Reference | |
---|---|---|---|
Omics technologies | Genomics and transcriptomics | Genomics enables researchers to decode the entire genetic blueprint of medicinal plants, which is essential for identifying genes responsible for the biosynthesis of pharmacologically active compounds. Transcriptomics play a complementary role by identifying which genes are actively expressed under specific conditions, revealing biosynthetic pathways and enabling the manipulation of gene expression for enhanced yield. | [264,265,266,267] |
Metabolomics | Metabolomics refer to the large-scale study of small molecules (metabolites) within cells and tissues. With the aid of techniques such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), researchers can study the metabolite composition of plants. This facilitates the rapid identification of bioactive compounds and their precursors, | [268,269,270,271,272] | |
Proteomics | Proteomics focuses on the complete array of proteins produced by a MP. Understanding the protein expression patterns helps to identify the key enzymes as well as the regulatory proteins involved in the production of target compounds. | [273,274,275] | |
Artificial Intelligence and machine learning | Predicting bioactivity | AI models trained on already known bioactive compounds are able to predict the pharmacological potential of newly identified phytochemicals | [276,277,278] |
De novo compound design | Algorithms based on phytochemical molecules can generate entirely new molecular structures with desirable pharmacokinetic properties | [279,280] | |
Toxicity prediction | Early identification of toxicity reduces significantly the failure rate in later development stages | [281,282] | |
CRISPR (Clustered Interspaced Short Palindromic Repeat) and genetic engineering | Gene-editing technologies have extended the potential of plant biotechnology |
| [283,284,285,286,287] |
Synthetic Biology and Metabolic Engineering | An application of engineering for the design and development of new biological parts, systems and devices or for the reconstruction of existing ones. |
| [288,289,290,291,292,293] |
High Throughput Screening (HTS) and Automation | HTS enables the rapid evaluation of -literally-thousands of plant extracts or compounds for biological activity using automated systems. | The relevant HTS platforms integrate robotic handling, miniaturized assays, and real-time data analytics. Thus the identification of “target” candidate compounds that warrant further investigation is being significantly accelerated. | [294,295] |
Nanotechnology and drug delivery innovations | It is used for formulating drugs and for screening and discovery. | Nano-sensors can detect molecular interactions at extremely low concentrations, aiding in the identification of potent phytochemicals. In the development phase, nano -formulations improve the bioavailability, solubility, and targeted delivery of plant-based drugs. | [296,297,298,299] |
Chemoinformatics and Virtual screening | Facilitate the in-silico analysis of MP-derived compounds using molecular docking, quantitative structure–activity relationship (QSAR) modeling, and virtual libraries. | These methods highlight the most promising candidates before physical screening, saving time and resources | [300,301] |
Ethnopharmacology (E/Ph) and Big Data | Contemporary trends combining E/Ph with informatics | When E/Ph is integrated with big data analytics, researchers can systematize and analyze traditional knowledge across cultures. Machine learning methods can analyze ethnobotanical data to predict which plants are most likely to contain bioactive compounds based on usage patterns and taxonomy. | [302,303,304] |
Bioprospecting with Remote Sensing and GIS (Geographical Information Systems) | Satellite imaging and GIS permit researchers to identify and supervise biodiversity-rich regions. | Specific ecosystems or habitats may harbor novel MPs. Hence it becomes possible to predict the distribution of valuable species and plan sustainable collection strategies. | [305,306,307] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaou, N.; Voidarou, C.; Rozos, G.; Saldari, C.; Stavropoulou, E.; Vrioni, G.; Tsakris, A. Unraveling Nature’s Pharmacy: Transforming Medicinal Plants into Modern Therapeutic Agents. Pharmaceutics 2025, 17, 754. https://doi.org/10.3390/pharmaceutics17060754
Vaou N, Voidarou C, Rozos G, Saldari C, Stavropoulou E, Vrioni G, Tsakris A. Unraveling Nature’s Pharmacy: Transforming Medicinal Plants into Modern Therapeutic Agents. Pharmaceutics. 2025; 17(6):754. https://doi.org/10.3390/pharmaceutics17060754
Chicago/Turabian StyleVaou, Natalia, Chrysoula (Chrysa) Voidarou, Georgios Rozos, Chrysa Saldari, Elisavet Stavropoulou, Georgia Vrioni, and Athanasios Tsakris. 2025. "Unraveling Nature’s Pharmacy: Transforming Medicinal Plants into Modern Therapeutic Agents" Pharmaceutics 17, no. 6: 754. https://doi.org/10.3390/pharmaceutics17060754
APA StyleVaou, N., Voidarou, C., Rozos, G., Saldari, C., Stavropoulou, E., Vrioni, G., & Tsakris, A. (2025). Unraveling Nature’s Pharmacy: Transforming Medicinal Plants into Modern Therapeutic Agents. Pharmaceutics, 17(6), 754. https://doi.org/10.3390/pharmaceutics17060754