Application of Solvent Evaporation to Generate Supersaturated Lipid-Based Formulations: Investigation of Drug Load and Formulation Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solubility Studies in Lipid-Based Formulations at Different Temperatures
2.3. Formulation Preparation Using Dichloromethane
2.4. Formulation Characterization
2.4.1. Physical Stability
2.4.2. Determination of the Amount of Residual Dichloromethane
2.5. Analysis
2.5.1. Quantitative Analysis of Solubility Samples
2.5.2. Residual Solvent Measurement Using GC-Headspace
2.5.3. Statistical Analysis
3. Results and Discussion
3.1. Solubility Studies
3.2. Supersaturation Induced with Volatile Organic Solvent and Stability of the Formulations
3.3. Residual Dichloromethane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacobsen, A.-C.; Visentin, S.; Butnarasu, C.; Stein, P.C.; di Cagno, M.P. Commercially Available Cell-Free Permeability Tests for Industrial Drug Development: Increased Sustainability through Reduction of In Vivo Studies. Pharmaceutics 2023, 15, 592. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.T.; Frank, K.J.; Fricker, G.; Brandl, M. Biopharmaceutical classification of poorly soluble drugs with respect to “enabling formulations”. Eur. J. Pharm. Sci. 2013, 50, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Pouton, C.W. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 2006, 29, 278–287. [Google Scholar] [CrossRef]
- Pouton, C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 2000, 11, S93–S98. [Google Scholar] [CrossRef]
- Ilie, A.-R.; Griffin, B.T.; Brandl, M.; Bauer-Brandl, A.; Jacobsen, A.-C.; Vertzoni, M.; Kuentz, M.; Kolakovic, R.; Holm, R. Exploring impact of supersaturated lipid-based drug delivery systems of celecoxib on in vitro permeation across PermeapadⓇ membrane and in vivo absorption. Eur. J. Pharm. Sci. 2020, 152, 105452. [Google Scholar] [CrossRef]
- Ilie, A.-R.; Griffin, B.T.; Kolakovic, R.; Vertzoni, M.; Kuentz, M.; Holm, R. Supersaturated lipid-based drug delivery systems—Exploring impact of lipid composition type and drug properties on supersaturability and physical stability. Drug Dev. Ind. Pharm. 2020, 46, 356–364. [Google Scholar] [CrossRef]
- Ilie, A.-R.; Griffin, B.T.; Vertzoni, M.; Kuentz, M.; Kolakovic, R.; Prudic-Paus, A.; Malash, A.; Bohets, H.; Herman, J.; Holm, R. Exploring precipitation inhibitors to improve in vivo absorption of cinnarizine from supersaturated lipid-based drug delivery systems. Eur. J. Pharm. Sci. 2021, 159, 105691. [Google Scholar] [CrossRef] [PubMed]
- Koehl, N.J.; Henze, L.J.; Kuentz, M.; Holm, R.; Griffin, B.T. Supersaturated Lipid-Based Formulations to Enhance the Oral Bioavailability of Venetoclax. Pharmaceutics 2020, 12, 564. [Google Scholar] [CrossRef]
- Michaelsen, M.H.; Jørgensen, S.D.S.; Abdi, I.M.; Wasan, K.M.; Rades, T.; Müllertz, A. Fenofibrate oral absorption from SNEDDS and super-SNEDDS is not significantly affected by lipase inhibition in rats. Eur. J. Pharm. Biopharm. 2019, 142, 258–264. [Google Scholar] [CrossRef]
- Michaelsen, M.H.; Wasan, K.M.; Sivak, O.; Müllertz, A.; Rades, T. The Effect of Digestion and Drug Load on Halofantrine Absorption from Self-nanoemulsifying Drug Delivery System (SNEDDS). AAPS J. 2016, 18, 180–186. [Google Scholar] [CrossRef]
- Paulus, F.; Bauer-Brandl, A.; Stappaerts, J.; Holm, R. Digestion is a critical element for absorption of cinnarizine from supersaturated lipid-based type I formulations. Eur. J. Pharm. Sci. 2023, 192, 106634. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, S.D.; Müllertz, A.; Gräeser, K.; Kasten, G.; Mu, H.; Rades, T. Influence of drug load and physical form of cinnarizine in new SNEDDS dosing regimens: In vivo and in vitro evaluations. AAPS J. 2017, 19, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.; Holm, R.; Müllertz, A.; Rades, T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J. Control Release 2012, 160, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Schultz, H.B.; Wignall, A.D.; Thomas, N.; Prestidge, C.A. Enhancement of abiraterone acetate oral bioavailability by supersaturated-silica lipid hybrids. Int. J. Pharm. 2020, 582, 119264. [Google Scholar] [CrossRef]
- Schultz, H.B.; Thomas, N.; Rao, S.; Prestidge, C.A. Supersaturated silica-lipid hybrids (super-SLH): An improved solid-state lipid-based oral drug delivery system with enhanced drug loading. Eur. J. Pharm. Biopharm. 2018, 125, 13–20. [Google Scholar] [CrossRef]
- Schultz, H.B.; Kovalainen, M.; Peressin, K.F.; Thomas, N.; Prestidge, C.A. Supersaturated Silica-Lipid Hybrid Oral Drug Delivery Systems: Balancing Drug Loading and In Vivo Performance. J. Pharmacol. Exp. Ther. 2019, 370, 742–750. [Google Scholar] [CrossRef]
- Merchant, J.; Müllertz, A.; Rades, T.; Bannow, J. Functionalized calcium carbonate (FCC) as a novel carrier to solidify supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). Eur. J. Pharm. Biopharm. 2023, 193, 198–207. [Google Scholar] [CrossRef]
- Meola, T.R.; Schultz, H.B.; Peressin, K.F.; Prestidge, C.A. Enhancing the oral bioavailability of simvastatin with silica-lipid hybrid particles: The effect of supersaturation and silica geometry. Eur. J. Pharm. Sci. 2020, 150, 105357. [Google Scholar] [CrossRef]
- Almasri, R.; Joyce, P.; Schultz, H.B.; Thomas, N.; Bremmell, K.E.; Prestidge, C.A. Porous nanostructure, lipid composition, and degree of drug supersaturation modulate in vitro fenofibrate solubilization in silica-lipid hy-brids. Pharmaceutics 2020, 12, 687. [Google Scholar] [CrossRef]
- Bennett-Lenane, H.; O’shea, J.P.; Murray, J.D.; Ilie, A.-R.; Holm, R.; Kuentz, M.; Griffin, B.T. Artificial Neural Networks to Predict the Apparent Degree of Supersaturation in Supersaturated Lipid-Based Formulations: A Pilot Study. Pharmaceutics 2021, 13, 1398. [Google Scholar] [CrossRef]
- Holm, R.; Kuentz, M.; Ilie-Spiridon, A.-R.; Griffin, B.T. Lipid based formulations as supersaturating oral delivery systems: From current to future industrial applications. Eur. J. Pharm. Sci. 2023, 189, 106556. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.; Holm, R.; Garmer, M.; Karlsson, J.J.; Müllertz, A.; Rades, T. Supersaturated Self-Nanoemulsifying Drug Delivery Systems (Super-SNEDDS) Enhance the Bioavailability of the Poorly Water-Soluble Drug Simvastatin in Dogs. AAPS J. 2013, 15, 219–227. [Google Scholar] [CrossRef]
- Cilurzo, F.; Casiraghi, A.; Selmin, F.; Minghetti, P. Supersaturation as a Tool For Skin Penetration Enhancement. Curr. Pharm. Des. 2015, 21, 2733–2744. [Google Scholar] [CrossRef]
- Peng, R.; Huang, J.; He, L.; Zhao, L.; Wang, C.; Wei, W.; Xia, T.; Mao, Y.; Wen, Y.; Wang, L.; et al. Polymer/lipid interplay in altering in vitro supersaturation and plasma concentration of a model poorly soluble drug. Eur. J. Pharm. Sci. 2020, 146, 105262. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Hwang, I.C.; Kweon, D.K.; Park, H.J. Enhanced payload of lipid nanocarriers using supersaturated solution prepared by solvent-mediated method. J. Microencapsul. 2013, 30, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Quan, G.; Niu, B.; Singh, V.; Zhou, Y.; Wu, C.-Y.; Pan, X.; Wu, C. Supersaturable solid self-microemulsifying drug delivery system: Precipitation inhibition and bioavailability enhancement. Int. J. Nanomed. 2017, 12, 8801–8811. [Google Scholar] [CrossRef] [PubMed]
- Witschi, C.; Doelker, E. Residual solvents in pharmaceutical products: Acceptable limits, influences on physicochemical properties, analytical methods and documented values. Eur. J. Pharm. Biopharm. 1997, 43, 215–242. [Google Scholar] [CrossRef]
- ICH Expert Working Group. ICH Guideline Q3C (R8) on Impurities: Guideline for Residual Solvents Step 5, International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) 2021. ICH Q3C (R8) Residual Solvents—Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-q3c-r8-residual-solvents-scientific-guideline (accessed on 24 November 2023).
- Dikpati, A.; Mohammadi, F.; Greffard, K.; Quéant, C.; Arnaud, P.; Bastiat, G.; Rudkowska, I.; Bertrand, N. Residual Solvents in Nanomedicine and Lipid-Based Drug Delivery Systems: A Case Study to Better Understand Processes. Pharm. Res. 2020, 37, 1–11. [Google Scholar] [CrossRef]
- Grüne, L.; Bunjes, H. Solubility of Poorly Soluble Drugs in Phosphatidylcholine-Based Drug Delivery Systems: Comparison of the Loading Capacity in the Bulk Formulation and Its Dispersed State. Pharmaceuticals 2024, 17, 400. [Google Scholar] [CrossRef]
- Lennernäs, H. Ethanol−Drug Absorption Interaction: Potential for a Significant Effect on the Plasma Pharmacokinetics of Ethanol Vulnerable Formulations. Mol. Pharm. 2009, 6, 1429–1440. [Google Scholar] [CrossRef]
- Dekant, W.; Jean, P.; Arts, J. Evaluation of the carcinogenicity of dichloromethane in rats, mice, hamsters and humans. Regul. Toxicol. Pharmacol. 2021, 120, 104858. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Rivnay, B.; Avery, K.; Myung, J.H.; Kozak, D.; Landrau, N.; Nivorozhkin, A.; Ashraf, M.; Yoon, S. Optimization of the manufacturing process of a complex amphotericin B liposomal formulation using quality by design approach. Int. J. Pharm. 2020, 585, 119473. [Google Scholar] [CrossRef] [PubMed]
- Bhujbal, S.V.; Mitra, B.; Jain, U.; Gong, Y.; Agrawal, A.; Karki, S.; Taylor, L.S.; Kumar, S.; Zhou, Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B 2021, 11, 2505–2536. [Google Scholar] [CrossRef] [PubMed]
- Salim, M.; Fraser-Miller, S.J.; Bērziņš, K.; Sutton, J.J.; Gordon, K.C.; Boyd, B.J. In Situ Monitoring of Drug Precipitation from Digesting Lipid Formulations Using Low-Frequency Raman Scattering Spectroscopy. Pharmaceutics 2023, 15, 1968. [Google Scholar] [CrossRef]
Celecoxib | Fenofibrate | |||
---|---|---|---|---|
Temperature [°C] | Solubility MCT [mg/mL] | Solubility LCM [mg/mL] | Solubility MCT [mg/mL] | Solubility LCM [mg/mL] |
Ambient temperature | 7.72 ± 0.16 | 10.34 ± 0.08 | 72.42 ± 0.15 | 44.04 ± 0.97 |
37 °C | 11.30 ± 0.05 | 15.57 ± 0.09 | 144.07 ± 0.55 | 95.78 ± 2.09 |
60 °C | 14.32 ± 0.25 | 24.56 ± 0.36 | 166.51 ± 1.39 | 122.64 ± 4.13 |
Ratio of solubility 60 °C/Ambient temperature | 1.85 ± 0.03 | 2.38 ± 0.04 | 2.30 ± 0.02 | 2.78 ± 0.11 |
Lipid-Based System | Compound Load Relative to Solubility at 60 °C [%] | Compound Load Relative to Solubility at Ambient Temperature [%] | Dilution with DCM | Repetition | Stability [Days] |
---|---|---|---|---|---|
MCT | 100 | 185 | 1 + 2 | 1 | 14–28 |
2 | >28 | ||||
1 + 4 | 1 | >28 | |||
2 | >28 | ||||
150 | 278 | 1 + 2 | 1 | 14–28 | |
2 | 14–28 | ||||
1 + 4 | 1 | 14–28 | |||
2 | 7–14 | ||||
200 | 371 | 1 + 2 | 1 | 7–14 | |
2 | <1 * | ||||
1 + 4 | 1 | 1–4 | |||
2 | 7–14 | ||||
250 | 464 | 1 + 2 | 1 | <1 * | |
2 | 1–4 | ||||
1 + 4 | 1 | 1–4 | |||
2 | 1–4 | ||||
LCM | 100 | 238 | 1 + 2 | 1 | >28 |
2 | >28 | ||||
1 + 4 | 1 | >28 | |||
2 | >28 | ||||
150 | 356 | 1 + 2 | 1 | 7–14 | |
2 | 7–14 | ||||
1 + 4 | 1 | 7–14 | |||
200 | 475 | 1 + 2 | 1 | 1–4 | |
2 | 1–4 | ||||
1 + 4 | 1 | 1–4 | |||
2 | 1–4 |
Lipid-Based System | Compound Load Relative to Solubility at 60 °C [%] | Compound Load Relative to Solubility at Ambient Temperature [%] | Dilution with DCM | Repetition | Stability [Days] |
---|---|---|---|---|---|
MCT | 100 | 230 | 1 + 2 | 1 | 14–28 |
2 | 14–28 | ||||
1 + 4 | 1 | 14–28 | |||
2 | 14–28 | ||||
150 | 345 | 1 + 2 | 1 | 7–14 | |
2 | 7–14 | ||||
1 + 4 | 1 | 7–14 | |||
2 | 14–28 | ||||
200 | 460 | 1 + 2 | 1 | <1 * | |
2 | <1 * | ||||
1 + 4 | 1 | <1 * | |||
2 | <1 * | ||||
250 | 575 | 1 + 2 | 1 | <1 * | |
2 | <1 * | ||||
1 + 4 | 1 | <1 * | |||
2 | <1 * | ||||
LCM | 100 | 278 | 1 + 2 | 1 | >28 |
2 | >28 | ||||
1 + 4 | 1 | >28 | |||
2 | >28 | ||||
150 | 418 | 1 + 2 | 1 | 14–28 | |
2 | <1 | ||||
1 + 4 | 1 | <1 | |||
2 | 1–4 | ||||
200 | 557 | 1 + 2 | 1 | 4–7 | |
2 | 1–4 | ||||
1 + 4 | 1 | <1 |
Drug Compound | Lipid Matrix | Compound Load Relative to Solubility at Ambient Temperature [%] | Dilution | Residual DCM after Evaporation (ppm) | Residual DCM (% of DCM-Content Before Evaporation) |
---|---|---|---|---|---|
Celecoxib | MCT | 185 | 1 + 2 | 2113 | 0.32 |
1 + 4 | 3950 | 0.49 | |||
278 | 1 + 2 | 2452 | 0.37 | ||
1 + 4 | 4980 | 0.62 | |||
LCM | 238 | 1 + 2 | 13,000 | 1.95 | |
1 + 4 | 15,384 | 1.92 | |||
356 | 1 + 2 | 13,771 | 2.07 | ||
1 + 4 | 13,808 | 1.73 | |||
Fenofibrate | MCT | 230 | 1 + 2 | 5494 | 0.82 |
1 + 4 | 9333 | 1.17 | |||
345 | 1 + 2 | 12,385 | 1.86 | ||
1 + 4 | 19,652 | 2.46 | |||
LCM | 278 | 1 + 2 | 18,136 | 2.72 | |
1 + 4 | 21,883 | 2.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulus, F.; Stappaerts, J.; Bauer-Brandl, A.; Lauwers, D.; Smet, L.; Hermans, E.; Holm, R. Application of Solvent Evaporation to Generate Supersaturated Lipid-Based Formulations: Investigation of Drug Load and Formulation Quality. Pharmaceutics 2025, 17, 702. https://doi.org/10.3390/pharmaceutics17060702
Paulus F, Stappaerts J, Bauer-Brandl A, Lauwers D, Smet L, Hermans E, Holm R. Application of Solvent Evaporation to Generate Supersaturated Lipid-Based Formulations: Investigation of Drug Load and Formulation Quality. Pharmaceutics. 2025; 17(6):702. https://doi.org/10.3390/pharmaceutics17060702
Chicago/Turabian StylePaulus, Felix, Jef Stappaerts, Annette Bauer-Brandl, Dirk Lauwers, Liesbet Smet, Eline Hermans, and René Holm. 2025. "Application of Solvent Evaporation to Generate Supersaturated Lipid-Based Formulations: Investigation of Drug Load and Formulation Quality" Pharmaceutics 17, no. 6: 702. https://doi.org/10.3390/pharmaceutics17060702
APA StylePaulus, F., Stappaerts, J., Bauer-Brandl, A., Lauwers, D., Smet, L., Hermans, E., & Holm, R. (2025). Application of Solvent Evaporation to Generate Supersaturated Lipid-Based Formulations: Investigation of Drug Load and Formulation Quality. Pharmaceutics, 17(6), 702. https://doi.org/10.3390/pharmaceutics17060702