Recent Insights into the Potential and Challenges of Sericin as a Drug Delivery Platform for Multiple Biomedical Applications
Abstract
:1. Introduction
2. Properties of Sericin as a Drug Delivery Polymer
2.1. Sericin Applications in Drug Delivery for Antimicrobial Purposes
2.2. Sericin Applications in Drug Delivery for Anticancer Purposes
2.3. Sericin in Drug Delivery for Neurodegenerative Diseases
3. Challenges and Future Perspectives in Sericin-Based Drug Delivery Systems
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef] [PubMed]
- Fazal, T.; Murtaza, B.N.; Shah, M.; Iqbal, S.; Rehman, M.-U.; Jaber, F.; Dera, A.A.; Awwad, N.S.; Ibrahium, H.A. Recent developments in natural biopolymer based drug delivery systems. RSC Adv. 2023, 13, 23087–23121. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.U.D.; Ali, M.; Mehdi, S.; Masoodi, M.H.; Zargar, M.I.; Shakeel, F. A review on chitosan and alginate-based microcapsules: Mechanism and applications in drug delivery systems. Int. J. Biol. Macromol. 2023, 248, 125875. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.H.; Kenchegowda, M.; Angolkar, M.; Meghana, T.; Osmani, R.A.M.; Palaksha, S.; Gangadharappa, H.V. A review of silk fibroin-based drug delivery systems and their applications. Eur. Polym. J. 2024, 216, 113286. [Google Scholar]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar] [CrossRef]
- Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.d.F.C.; Natali, M.R.M. Silkworm sericin: Properties and biomedical applications. BioMed Res. Int. 2016, 2016, 8175701. [Google Scholar] [CrossRef]
- Silva, A.S.; Costa, E.C.; Reis, S.; Spencer, C.; Calhelha, R.C.; Miguel, S.P.; Ribeiro, M.P.; Barros, L.; Vaz, J.A.; Coutinho, P. Silk sericin: A promising sustainable biomaterial for biomedical and pharmaceutical applications. Polymers 2022, 14, 4931. [Google Scholar] [CrossRef]
- Hassan, M.A.; Basha, A.A.; Eraky, M.; Abbas, E.; El-Samad, L.M. Advancements in silk fibroin and silk sericin-based biomaterial applications for cancer therapy and wound dressing formulation: A comprehensive review. Int. J. Pharm. 2024, 662, 124494. [Google Scholar] [CrossRef]
- Hu, D.; Xu, Z.; Hu, Z.; Hu, B.; Yang, M.; Zhu, L. pH-triggered charge-reversal silk sericin-based nanoparticles for enhanced cellular uptake and doxorubicin delivery. ACS Sustain. Chem. Eng. 2017, 5, 1638–1647. [Google Scholar] [CrossRef]
- Wang, K.; Hazra, R.S.; Ma, Q.; Khan, M.R.H.; Al Hoque, A.; Jiang, L.; Quadir, M.; Zhang, Y.; Wang, S.; Han, G. Robust biocompatible bacterial cellulose/silk nonwoven fabric/silk sericin sandwich membrane with strong UV-blocking and antioxidant properties. Cellulose 2023, 30, 3973–3993. [Google Scholar] [CrossRef]
- Meerasri, J.; Kongsin, K.; Chollakup, R.; Sothornvit, R. Characterization and functional properties of novel nanocomposite sericin-based films incorporated with sericin nanoparticles. Chem. Eng. J. Adv. 2023, 16, 100542. [Google Scholar] [CrossRef]
- Chu, W.; Wang, P.; Ma, Z.; Peng, L.; Guo, C.; Fu, Y.; Ding, L. Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. Int. J. Biol. Macromol. 2023, 243, 125310. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, W.; Zhang, Y.; Song, H.; Yu, Y.; Chen, X.; Yong, N.; Li, X.; Yin, Y.; Fan, Q. Enhanced silk fibroin/sericin composite film: Preparation, mechanical properties and mineralization activity. Polymers 2022, 14, 2466. [Google Scholar] [CrossRef] [PubMed]
- Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef]
- Satchanska, G.; Davidova, S.; Petrov, P.D. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers 2024, 16, 1159. [Google Scholar] [CrossRef]
- Meghana, M.; Nandhini, C.; Benny, L.; George, L.; Varghese, A. A road map on synthetic strategies and applications of biodegradable polymers. Polym. Bull. 2023, 80, 11507–11556. [Google Scholar] [CrossRef]
- Zhang, W.; Mehta, A.; Tong, Z.; Esser, L.; Voelcker, N.H. Development of polymeric nanoparticles for blood–brain barrier transfer—Strategies and challenges. Adv. Sci. 2021, 8, 2003937. [Google Scholar] [CrossRef]
- Le, T.M.D.; Yoon, A.-R.; Thambi, T.; Yun, C.-O. Polymeric systems for cancer immunotherapy: A review. Front. Immunol. 2022, 13, 826876. [Google Scholar] [CrossRef]
- Deb, D.; Khatun, B.; Khan, M.R.; Sen Sarma, N.; Sankaranarayanan, K. Utilizing Silk Sericin as a Biomaterial for Drug Encapsulation in a Hydrogel Matrix with Polycaprolactone: Formulation and Evaluation of Antibacterial Activity. ACS Omega 2024, 9, 32706–32716. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, H.; Nakajima, K.-i.; Takabayashi, C. Chemical modification of silk sericin in lithium chloride/dimethyl sulfoxide solvent with 4-cyanophenyl isocyanate. Biomacromolecules 2004, 5, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Baptista-Silva, S.; Borges, S.; Costa-Pinto, A.R.; Costa, R.; Amorim, M.; Dias, J.R.; Ramos, O.; Alves, P.; Granja, P.L.; Soares, R. In situ forming silk sericin-based hydrogel: A novel wound healing biomaterial. ACS Biomater. Sci. Eng. 2021, 7, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, Ł.; Rybka, M.; Jurak, J.; Frankowski, J.; Konop, M. Silk Sericin and Its Effect on Skin Wound Healing: A State of the Art. Macromol. Biosci. 2024, 24, 2400145. [Google Scholar] [CrossRef]
- Shaw, J.; Smith, S. Amino-acids of silk sericin. Nature 1951, 168, 745. [Google Scholar] [CrossRef]
- Hu, D.; Li, T.; Wang, Y.; Feng, M.; Sun, J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. J. Control. Release 2023, 353, 303–316. [Google Scholar] [CrossRef]
- Saad, M.; El-Samad, L.M.; Gomaa, R.A.; Augustyniak, M.; Hassan, M.A. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int. J. Biol. Macromol. 2023, 250, 126067. [Google Scholar] [CrossRef]
- Muindi, M.P.; Lee, J.H.; Kweon, H.; Kasina, M. Effect of Extraction Ingredients on the Conformation and Stability of Silk Sericin (SS). Polymers 2022, 14, 4118. [Google Scholar] [CrossRef]
- Seo, S.-J.; Das, G.; Shin, H.-S.; Patra, J.K. Silk sericin protein materials: Characteristics and applications in food-sector industries. Int. J. Mol. Sci. 2023, 24, 4951. [Google Scholar] [CrossRef]
- Mandal, B.B.; Kundu, S. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. Nanotechnology 2009, 20, 355101. [Google Scholar] [CrossRef]
- Sapru, S.; Ghosh, A.K.; Kundu, S.C. Non-immunogenic, porous and antibacterial chitosan and Antheraea mylitta silk sericin hydrogels as potential dermal substitute. Carbohydr. Polym. 2017, 167, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Ode Boni, B.O.; Bakadia, B.M.; Osi, A.R.; Shi, Z.; Chen, H.; Gauthier, M.; Yang, G. Immune response to silk sericin–fibroin composites: Potential immunogenic elements and alternatives for immunomodulation. Macromol. Biosci. 2022, 22, 2100292. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Z.; Song, Y.; Jin, Y.; Zhang, C.; Peng, D.; Chen, Z.; Chang, P.; Kundu, S.C.; Wang, G.; Wang, Z. In vivo characterizations of the immune properties of sericin: An ancient material with emerging value in biomedical applications. Macromol. Biosci. 2017, 17, 1700229. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Chen, Z.; Gong, X.; Jiang, M.; Chen, G.; Wang, F. Surface grafting of sericin onto thermoplastic polyurethanes to improve cell adhesion and function. J. Biomater. Sci. Polym. Ed. 2023, 34, 1382–1397. [Google Scholar] [CrossRef]
- Kumar, J.P.; Alam, S.; Jain, A.K.; Ansari, K.M.; Mandal, B.B. Protective activity of silk sericin against UV radiation-induced skin damage by downregulating oxidative stress. ACS Appl. Bio Mater. 2018, 1, 2120–2132. [Google Scholar] [CrossRef]
- Huang, L.; Tao, K.; Liu, J.; Qi, C.; Xu, L.; Chang, P.; Gao, J.; Shuai, X.; Wang, G.; Wang, Z. Design and fabrication of multifunctional sericin nanoparticles for tumor targeting and pH-responsive subcellular delivery of cancer chemotherapy drugs. ACS Appl. Mater. Interfaces 2016, 8, 6577–6585. [Google Scholar] [CrossRef]
- Dan, A.K.; Aamna, B.; De, S.; Pereira-Silva, M.; Sahu, R.; Paiva-Santos, A.C.; Parida, S. Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. J. Mol. Liq. 2022, 368, 120717. [Google Scholar]
- Mumtaz, S.; Ali, S.; Kazmi, S.A.R.; Mughal, T.A.; Mumtaz, S.; Tahir, H.M.; Summer, M.; Ara, C.; Rashid, M.I. Analysis of the antimicrobial potential of sericin-coated silver nanoparticles against human pathogens. Microsc. Res. Tech. 2023, 86, 320–330. [Google Scholar] [CrossRef]
- Li, X.; Hou, S.; Chen, J.; He, C.-E.; Gao, Y.-E.; Lu, Y.; Jia, D.; Ma, X.; Xue, P.; Kang, Y. Engineering silk sericin decorated zeolitic imidazolate framework-8 nanoplatform to enhance chemotherapy. Colloids Surf. B Biointerfaces 2021, 200, 111594. [Google Scholar] [CrossRef]
- Shaw, S.; Mondal, R.; Dam, P.; Mandal, A.; Acharya, R.; Manna, S.; Gangopadhyay, D.; Mandal, A.K. Synthesis, characterization and application of silk sericin-based silver nanocomposites for antibacterial and food coating solutions. RSC Adv. 2024, 14, 33068–33079. [Google Scholar] [CrossRef]
- Pandey, A.; Yadav, P.; Mishra, S.; Srivastava, S.; Parashar, P. Biomimetic resveratrol-loaded sericin hydrogel: Augmented antimicrobial and wound healing potential in animal model. J. Drug Deliv. Sci. Technol. 2024, 101, 106145. [Google Scholar] [CrossRef]
- Liu, J.; Yu, J.; Chen, H.; Zou, Y.; Wang, Y.; Zhou, C.; Tong, L.; Wang, P.; Liu, T.; Liang, J. Porous gradient hydrogel promotes skin regeneration by angiogenesis. J. Colloid Interface Sci. 2024, 671, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Tan, H.; Yang, Q.; Wang, R.; Tian, C.; Ji, Y.; Zhao, P.; Xia, Q.; Wang, F. Fabrication of a silk sericin hydrogel system delivering human lactoferrin using genetically engineered silk with improved bioavailability to alleviate chemotherapy-induced immunosuppression. ACS Appl. Mater. Interfaces 2021, 13, 45175–45190. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, A.; Min, X.; Zhang, Q.; Yang, J.; Chen, G.; Zou, M.; Sun, W.; Cheng, G. An ROS-sensitive tegafur-PpIX-heterodimer-loaded in situ injectable thermosensitive hydrogel for photodynamic therapy combined with chemotherapy to enhance the tegafur-based treatment of breast cancer. Biomater. Sci. 2021, 9, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Bhoopathy, J.; Vedakumari Sathyaraj, W.; Yesudhason, B.V.; Rajendran, S.; Dharmalingam, S.; Seetharaman, J.; Muthu, R.; Murugesan, R.; Raghunandhakumar, S.; Anandasadagopan, S.K. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds–preparation, characterisation, and evaluation. Artif. Cells Nanomed. Biotechnol. 2024, 52, 35–45. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Cai, R.; Yang, W.; He, H.; Wang, Y. Rational design of Ag/ZnO hybrid nanoparticles on sericin/agarose composite film for enhanced antimicrobial applications. Int. J. Mol. Sci. 2020, 22, 105. [Google Scholar] [CrossRef]
- Diab, S.E.; Tayea, N.A.; Elwakil, B.H.; Elshewemi, S.S.; Gad, A.A.E.M.; Abdulmalek, S.A.; Ghareeb, D.A.; Olama, Z.A. In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway. Sci. Rep. 2024, 14, 2433. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Xiao, X.; Long, R.; Chen, B.; Lin, Y.; Wang, S.; Liu, Y. Photothermal and Antibacterial PDA@ Ag/SerMA Microneedles for Promoting Diabetic Wound Repair. ACS Appl. Bio Mater. 2024, 7, 6603–6616. [Google Scholar] [CrossRef]
- Guo, W.; Li, Z.; Huang, H.; Xu, Z.; Chen, Z.; Shen, G.; Li, Z.; Ren, Y.; Li, G.; Hu, Y. VB12-Sericin-PBLG-IR780 nanomicelles for programming cell pyroptosis via photothermal (PTT)/Photodynamic (PDT) effect-induced mitochondrial DNA (mitoDNA) oxidative damage. ACS Appl. Mater. Interfaces 2022, 14, 17008–17021. [Google Scholar] [CrossRef]
- Nayak, D.; Thathapudi, N.C.; Ashe, S.; Nayak, B. Bioengineered ethosomes encapsulating AgNPs and Tasar silk sericin proteins for non melanoma skin carcinoma (NMSC) as an alternative therapeutics. Int. J. Pharm. 2021, 596, 120265. [Google Scholar] [CrossRef]
- Dam, P.; Shaw, S.; Mondal, R.; Chakraborty, J.; Bhattacharjee, T.; Sen, I.K.; Manna, S.; Sadat, A.; Suin, S.; Sarkar, H. Multifunctional silver nanoparticle embedded eri silk cocoon scaffolds against burn wounds-associated infection. RSC Adv. 2024, 14, 26723–26737. [Google Scholar] [CrossRef]
- Xiaohalati, X.; Wang, J.; Su, Q.; Wang, Y.; Liu, J.; Li, H.; Wang, Z.; Wang, L. A materiobiology-inspired sericin nerve guidance conduit extensively activates regeneration-associated genes of Schwann cells for long-gap peripheral nerve repair. Chem. Eng. J. 2024, 483, 149235. [Google Scholar] [CrossRef]
- Joshi, M.; Roy, S.; Ayeshvaryaa, T. Polyurethane/halloysite nano tubes/sericin based electrospun nanocomposite for sustained drug release. Adv. Nat. Sci. Nanosci. Nanotechnol. 2023, 14, 025009. [Google Scholar] [CrossRef]
- Gök, Z.G.; Yiğitoğlu, M.; Vargel, İ.; Şahin, Y.; Alçığır, M.E. Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver nanoparticles. Mater. Chem. Phys. 2021, 259, 124043. [Google Scholar]
- Gagliardi, A.; Ambrosio, N.; Voci, S.; Salvatici, M.C.; Fresta, M.; Cosco, D. Easy preparation, characterization and cytotoxic investigation of 5-Fluorouracil-loaded zein/sericin nanoblends. J. Mol. Liq. 2022, 366, 120344. [Google Scholar] [CrossRef]
- Aghaz, F.; Asadi, Z.; Sajadimajd, S.; Kashfi, K.; Arkan, E.; Rahimi, Z. Codelivery of resveratrol melatonin utilizing pH responsive sericin based nanocarriers inhibits the proliferation of breast cancer cell line at the different pH. Sci. Rep. 2023, 13, 11090. [Google Scholar] [CrossRef]
- Abdelgalil, R.M.; Khattab, S.N.; Ebrahim, S.; Elkhodairy, K.A.; Teleb, M.; Bekhit, A.A.; Sallam, M.A.; Elzoghby, A.O. Engineered sericin-tagged layered double hydroxides for combined delivery of pemetrexed and ZnO quantum dots as biocompatible cancer nanotheranostics. ACS Omega 2023, 8, 5655–5671. [Google Scholar] [CrossRef]
- Shirangi, A.; Mottaghitalab, F.; Dinarvand, S.; Atyabi, F. Theranostic silk sericin/SPION nanoparticles for targeted delivery of ROR1 siRNA: Synthesis, characterization, diagnosis and anticancer effect on triple-negative breast cancer. Int. J. Biol. Macromol. 2022, 221, 604–612. [Google Scholar] [CrossRef]
- Jiang, M.; Li, S.; Ming, P.; Guo, Y.; Yuan, L.; Jiang, X.; Liu, Y.; Chen, J.; Xia, D.; He, Y. Rational design of porous structure-based sodium alginate/chitosan sponges loaded with green synthesized hybrid antibacterial agents for infected wound healing. Int. J. Biol. Macromol. 2023, 237, 123944. [Google Scholar] [CrossRef]
- Yao, L.; Li, B.; Wang, X. Channel structure design and biological properties of silk fibroin/sericin sponge nerve scaffolds. Polymer 2024, 306, 127212. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, H.; Qin, S.; Yang, C.; Lv, Q.; Wang, Z.; Wang, L. Antibacterial sericin cryogels promote hemostasis by facilitating the activation of coagulation pathway and platelets. Adv. Healthc. Mater. 2022, 11, 2102717. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Balakumar, C.; Sivakumar, R.; Amruta, T.; Devaki, N. Extraction and application of natural silk protein sericin from Bombyx mori as antimicrobial finish for cotton fabrics. J. Text. Inst. 2012, 103, 458–462. [Google Scholar] [CrossRef]
- Nuchadomrong, S.; Senakoon, W.; Sirimungkararat, S.; Senawong, T.; Kitikoon, P. Antibacterial and antioxidant activities of sericin powder from eri silkworm cocoons correlating to degumming processes. Int. J. Wild Silkmoth Silk 2009, 13, 69–78. [Google Scholar]
- Li, Y.; Huang, Y.; Pan, P.; Che, X.; Zhang, Y.; Zhang, Y.; Amal, A.; Li, X.; Niu, W.; Luo, N. Sericin and sericin-derived peptide alleviate viral pathogenesis in mice though inhibiting lactate production and facilitating antiviral response. Appl. Mater. Today 2021, 25, 101256. [Google Scholar] [CrossRef]
- Jantakee, K.; Prangkio, P.; Panya, A.; Tragoolpua, Y. Anti-herpes simplex virus efficacy of silk cocoon, silkworm pupa and non-sericin extracts. Antibiotics 2021, 10, 1553. [Google Scholar] [CrossRef]
- El-Fakharany, E.M.; Abu-Serie, M.M.; Habashy, N.H.; El-Deeb, N.M.; Abu-Elreesh, G.M.; Zaki, S.; Abd-EL-Haleem, D. Inhibitory Effects of Bacterial Silk-like Biopolymer on Herpes Simplex Virus Type 1, Adenovirus Type 7 and Hepatitis C Virus Infection. J. Funct. Biomater. 2022, 13, 17. [Google Scholar] [CrossRef]
- Saha, J.; Mondal, M.I.H.; Ahmed, F.; Rahman, M. Extraction, characterization and functionality assessment of Aloe vera, Chitosan and silk sericin. Arab. J. Chem. 2023, 16, 105087. [Google Scholar] [CrossRef]
- Noosak, C.; Jantorn, P.; Meesane, J.; Voravuthikunchai, S.; Saeloh, D. Dual-functional bioactive silk sericin for osteoblast responses and osteomyelitis treatment. PLoS ONE 2022, 17, e0264795. [Google Scholar] [CrossRef]
- Fan, J.B.; Wu, L.P.; Chen, L.S.; Mao, X.Y.; Ren, F.Z. Antioxidant activities of silk sericin from silkworm Bombyx mori. J. Food Biochem. 2009, 33, 74–88. [Google Scholar] [CrossRef]
- Kumar, J.P.; Mandal, B.B. Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radic. Biol. Med. 2017, 108, 803–818. [Google Scholar] [CrossRef]
- Bakr, B.A.; Sadek, I.A.; El-Samad, L.M.; El Wakil, A. Switchable hepatic organelles aberrations in DEN-induced mice under the influence of chemically characterized silk sericin. Tissue Cell 2023, 82, 102101. [Google Scholar] [CrossRef] [PubMed]
- Bakr, B.A.; Sadek, I.A.; El-Samad, L.M.; El Wakil, A. Promising growth inhibitory potential of extracted natural silk sericin biopolymer against DEN-induced liver tumor in male mice. J. Appl. Polym. Sci. 2024, 141, e55328. [Google Scholar] [CrossRef]
- Niu, L.; Yang, S.; Zhao, X.; Liu, X.; Si, L.; Wei, M.; Liu, L.; Cheng, L.; Qiao, Y.; Chen, Z. Sericin inhibits MDA-MB-468 cell proliferation via the PI3K/Akt pathway in triple-negative breast cancer. Mol. Med. Rep. 2021, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Ratanabunyong, S.; Siriwaseree, J.; Wanaragthai, P.; Krobthong, S.; Yingchutrakul, Y.; Kuaprasert, B.; Choowongkomon, K.; Aramwit, P. Exploring the apoptotic effects of sericin on HCT116 cells through comprehensive nanostring transcriptomics and proteomics analysis. Sci. Rep. 2024, 14, 2366. [Google Scholar] [CrossRef]
- Mumtaz, S.; Ali, S.; Pervaiz, A.; Qureshi, M.Z.; Kanwal, K.; Saleem, T. Apoptotic and antiproliferative effects of silk protein sericin conjugated-AgNO3 nanoparticles in human breast cancer cells. Saudi J. Biol. Sci. 2023, 30, 103551. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Fu, D.; Yuan, Y.; Li, Q.; Shi, L.; Wang, G.; Wang, Z.; Wang, L. Sericin microparticles enveloped with metal-organic networks as a pulmonary targeting delivery system for intra-tracheally treating metastatic lung cancer. Bioact. Mater. 2021, 6, 273–284. [Google Scholar] [CrossRef]
- Shankar, S.; Murthy, A.N.; Rachitha, P.; Raghavendra, V.B.; Sunayana, N.; Chinnathambi, A.; Alharbi, S.A.; Basavegowda, N.; Brindhadevi, K.; Pugazhendhi, A. Silk sericin conjugated magnesium oxide nanoparticles for its antioxidant, anti-aging, and anti-biofilm activities. Environ. Res. 2023, 223, 115421. [Google Scholar] [CrossRef]
- Gao, Y.-E.; Hou, S.; Cheng, J.; Li, X.; Wu, Y.; Tang, Y.; Li, Y.; Xue, P.; Kang, Y.; Xu, Z. Silk sericin-based nanoparticle as the photosensitizer chlorin e6 carrier for enhanced cancer photodynamic therapy. ACS Sustain. Chem. Eng. 2021, 9, 3213–3222. [Google Scholar] [CrossRef]
- Hou, S.; Gao, Y.-E.; Ma, X.; Lu, Y.; Li, X.; Cheng, J.; Wu, Y.; Xue, P.; Kang, Y.; Guo, M. Tumor microenvironment responsive biomimetic copper peroxide nanoreactors for drug delivery and enhanced chemodynamic therapy. Chem. Eng. J. 2021, 416, 129037. [Google Scholar] [CrossRef]
- Sehgal, I.; Eells, K.; Hudson, I. A comparison of currently approved small interfering RNA (siRNA) medications to alternative treatments by costs, indications, and medicaid coverage. Pharmacy 2024, 12, 58. [Google Scholar] [CrossRef]
- Kara, G.; Malekghasemi, S.; Ozpolat, B.; Denkbas, E.B. Development of novel poly-l-lysine-modified sericin-coated superparamagnetic iron oxide nanoparticles as siRNA carrier. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127622. [Google Scholar] [CrossRef]
- Li, X.; Ye, M.; Huang, R.; Hou, S.; Xu, J.; Qiu, W.; Liang, M.; Gao, Y.; Zhang, H.; Xue, P. An acid-engineered sericin nanoplatform enhances photothermal conversion and chemotherapy outcome for inducing immunogenic cell death. Chem. Eng. J. 2023, 477, 146938. [Google Scholar] [CrossRef]
- Hudiţă, A.; Stanciu, D.I.; Şerban, M.V.; Gălăţeanu, B.; Radu, I.-C.; Tanasă, E.; Zaharia, C.; Burcea-Dragomiroiu, G.-T.-A.; Marineci, C.-D.; Ginghină, O. Pdmaema/Silk Sericin Hybrid Nanocarriers for Efficient Delivery of 5-Fluorouracil and Oxaliplatin to Human Colorectal Adenocarcinoma Tumour Cells. Farmacia 2024, 72, 4. [Google Scholar] [CrossRef]
- Bahremand, K.; Aghaz, F.; Bahrami, K. Enhancing Cisplatin Efficacy with Low Toxicity in Solid Breast Cancer Cells Using pH-Charge-Reversal Sericin-Based Nanocarriers: Development, Characterization, and In Vitro Biological Assessment. ACS Omega 2024, 9, 14017–14032. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, S.; Ali, S.; Pervaiz, A.; Awan, U.A.; Nauroze, T.; Kanwal, L.; Summer, M.; Mumtaz, S.; Mughal, T.A.; Tahir, H.M. Toxicological effects of dimethlybenzeneanthracene in Balb C mice and pharmacological intervention by silk sericin–conjugated silver nanoparticles. Sci. Prog. 2024, 107, 00368504231221670. [Google Scholar] [CrossRef] [PubMed]
- Radu, I.-C.; Zaharia, C.; Hudiță, A.; Tanasă, E.; Ginghină, O.; Marin, M.; Gălățeanu, B.; Costache, M. In vitro interaction of doxorubicin-loaded silk sericin nanocarriers with mcf-7 breast cancer cells leads to DNA damage. Polymers 2021, 13, 2047. [Google Scholar] [CrossRef]
- Jalilian, S.; Bahremand, K.; Arkan, E.; Jaymand, M.; Aghaz, F. A comparative study of sericin and gluten for magnetic nanoparticle-mediated drug delivery to breast cancer cell lines. Sci. Rep. 2024, 14, 18150. [Google Scholar] [CrossRef]
- Zhu, W.; Zhou, Z.; Yang, M.; Chen, X.; Zhu, S.; Yu, M.; Yu, Z.; Wu, W.; Liu, H. Injectable Nanocomposite Immune Hydrogel Dressings: Prevention of Tumor Recurrence and Anti-Infection after Melanoma Resection. Small 2024, 20, 2309476. [Google Scholar] [CrossRef]
- Buabeid, M.; Arafa, E.-S.A.; Yaseen, H.S.; Umar, M.I.; Murtaza, G. Anti-inflammatory effect of simvastatin by impeding TNF-α and interleukin-1ß pathways: Antiangiogenic activity of simvastatin and simvastatin-loaded silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2022, 50, 208–217. [Google Scholar] [CrossRef]
- Dong, X. Current strategies for brain drug delivery. Theranostics 2018, 8, 1481. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Jin, Y.; Luo, Z.; Yang, W.; Xie, H.; Huang, K.; Wang, L. A neuroprotective sericin hydrogel as an effective neuronal cell carrier for the repair of ischemic stroke. ACS Appl. Mater. Interfaces 2015, 7, 24629–24640. [Google Scholar] [CrossRef] [PubMed]
- Vatandoust, S.M.; Mahmoudi, J.; Oryan, S.; Farajdokht, F.; Sadigh-Eteghad, S.; Shotorbani, S.S.; Xu, H.; Esfahani, D.E. Sericin improves memory and sociability impairments evoked by transient global cerebral ischemia through suppression of hippocampal oxidative stress, inflammation, and apoptosis. J. Physiol. Investig. 2023, 66, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Salari, Z.; Ashabi, G.; Fartoosi, A.; Fartoosi, A.; Shariatpanahi, M.; Aghsami, M.; Montazeri, H.; Kheradmand, A. Sericin alleviates motor dysfunction by modulating inflammation and TrkB/BDNF signaling pathway in the rotenone-induced Parkinson’s disease model. BMC Pharmacol. Toxicol. 2023, 24, 60. [Google Scholar] [CrossRef] [PubMed]
- Perteghella, S.; Rassu, G.; Gavini, E.; Obinu, A.; Bari, E.; Mandracchia, D.; Bonferoni, M.C.; Giunchedi, P.; Torre, M.L. Crocetin as new cross-linker for bioactive sericin nanoparticles. Pharmaceutics 2021, 13, 680. [Google Scholar] [CrossRef]
- Zhao, H.; He, L. Fabrication of neuroprotective silk-sericin hydrogel: Potential neuronal carrier for the treatment and care of ischemic stroke. J. Exp. Nanosci. 2022, 17, 362–376. [Google Scholar] [CrossRef]
- Baek, A.; Isaacs, J. Management of “Long” Nerve Gaps. J. Hand Surg. Glob. Online 2024, 6, 685–690. [Google Scholar] [CrossRef]
- Yellamma, K. Silk protein, sericin as a cognitive enhancer in Alzheimer’s disease. J. Alzheimers Dis. Park. 2014, 4, 163. [Google Scholar] [CrossRef]
- Seyedaghamiri, F.; Farajdokht, F.; Vatandoust, S.M.; Mahmoudi, J.; Khabbaz, A.; Sadigh-Eteghad, S. Sericin modulates learning and memory behaviors by tuning of antioxidant, inflammatory, and apoptotic markers in the hippocampus of aged mice. Mol. Biol. Rep. 2021, 48, 1371–1382. [Google Scholar] [CrossRef]
- Peera, K.; Yellamma, K. Sericin as a chlinergic modulator in alzaeimer’s disease induced rat. Int. J. Pharm. Pharm. Sci. 2015, 7, 108–112. [Google Scholar]
- Jeong, E.; Lee, S. Conversion of Biopolymer to UV-Cross-Linkable Conductive Ink with High Conductivity, Biocompatibility, and Biodegradability. Adv. Mater. Technol. 2024, 9, 2302163. [Google Scholar] [CrossRef]
- Siritientong, T.; Bonani, W.; Motta, A.; Migliaresi, C.; Aramwit, P. The effects of Bombyx mori silk strain and extraction time on the molecular and biological characteristics of sericin. Biosci. Biotechnol. Biochem. 2016, 80, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Yakul, K.; Kaewsalud, T.; Techapun, C.; Seesuriyachan, P.; Jantanasakulwong, K.; Watanabe, M.; Takenaka, S.; Chaiyaso, T. Enzymatic valorization process of yellow cocoon waste for production of antioxidative sericin and fibroin film. J. Chem. Technol. Biotechnol. 2021, 96, 953–962. [Google Scholar] [CrossRef]
- Kanoujia, J.; Dubey, R.; Debgharia, S.; Sisodia, P.; Mohanalakshmi, S.; Bhatt, S.; Parashar, P.; Kishore, A. Mini-Review on Analytical Methods Applied for Analysis and Characterization of Sericin. Curr. Anal. Chem. 2023, 19, 119–129. [Google Scholar] [CrossRef]
- Capar, G.; Pilevneli, T.; Yetis, U.; Dilek, F.B. Life cycle assessment of sericin recovery from silk degumming wastewaters. Sustain. Chem. Pharm. 2022, 30, 100889. [Google Scholar] [CrossRef]
- Shanmughan, B.; Kandasubramanian, B. Artificial Intelligence Techniques to Predict the Behavior of Silk Fibroin. In Engineering Natural Silk: Applications and Future Directions; Springer: Berlin/Heidelberg, Germany, 2024; pp. 193–206. [Google Scholar]
- Silva, V.R.; Hamerski, F.; Weschenfelder, T.A.; Ribani, M.; Gimenes, M.L.; Scheer, A.P. Equilibrium, kinetic, and thermodynamic studies on the biosorption of Bordeaux S dye by sericin powder derived from cocoons of the silkworm Bombyx mori. Desalination Water Treat. 2016, 57, 5119–5129. [Google Scholar] [CrossRef]
- Aad, R.; Dragojlov, I.; Vesentini, S. Sericin Protein: Structure, Properties, and Applications. J. Funct. Biomater. 2024, 15, 322. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.-S.; Campos, E.V.R.; Fraceto, L.F.; del Pilar Rodriguez-Torres, M.; Mariano, K.C.F.; de Araujo, D.R.; Fernández-Luqueño, F.; Grillo, R.; Patra, J.K. Sericin based nanoformulations: A comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J. Nanobiotechnology 2021, 19, 30. [Google Scholar] [CrossRef]
- Nazemoroaia, M.; Bagheri, F.; Mirahmadi-Zare, S.Z.; Eslami-Kaliji, F.; Derakhshan, A. Asymmetric natural wound dressing based on porous chitosan-alginate hydrogel/electrospun PCL-silk sericin loaded by 10-HDA for skin wound healing: In vitro and in vivo studies. Int. J. Pharm. 2025, 668, 124976. [Google Scholar] [CrossRef]
- Ahsan, F.; Mahmood, T.; Siddiqui, M.H.; Usmani, S.; Bagga, P.; Shamim, A.; Srivastav, R.K. Diligent profiling of preclinical safety of the silk protein sericin. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 20190272. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, J.; Yang, H.; Yao, S.; He, L.; Liang, H.; Wang, Y.; Chen, H.; Zhao, P.; Qin, G. Safety Assessment of Water-Extract Sericin from Silkworm (Bombyx mori) Cocoons Using Different Model Approaches. BioMed Res. Int. 2020, 2020, 9689386. [Google Scholar] [CrossRef]
- Li, J.; Wen, P.; Qin, G.; Zhang, J.; Zhao, P.; Ye, Y. Toxicological evaluation of water-extract sericin from silkworm (Bombyx mori) in pregnant rats and their fetus during pregnancy. Front. Pharmacol. 2022, 13, 982841. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, H.; Wu, Z.; Wang, T.; Li, W.; Tang, Y.; Liu, G. In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem 2018, 13, 2189–2201. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, D.; Lennernäs, H. Intestinal permeability and drug absorption: Predictive experimental, computational and in vivo approaches. Pharmaceutics 2019, 11, 411. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, N.; Sanjay, A.V.; Al-Ghanim, K.A.; Nicoletti, M.; Baskar, G.; Kumar, R.; Govindarajan, M. Development of Biodegradable Bioplastics with Sericin and Gelatin from Silk Cocoons and Fish Waste. Toxics 2024, 12, 453. [Google Scholar] [CrossRef]
- Capar, G.; Pilevneli, T. Cost-effective process development for sericin recovery from silk degumming wastewater. Sustain. Chem. Pharm. 2024, 37, 101405. [Google Scholar] [CrossRef]
- Sorlini, M.; Menato, S. From Textile to Pharmaceutical and Cosmetic Industry: Circular Economy Applied to Silk Manufacturing Wastes; The Royal Society of Chemistry: London, UK, 2020. [Google Scholar] [CrossRef]
- Yami, H.A.; Tahmoorespur, M.; Javadmanesh, A.; Tazarghi, A.; Sekhavati, M.H. The immunomodulatory effects of lactoferrin and its derived peptides on NF-κB signaling pathway: A systematic review and meta-analysis. Immun. Inflamm. Dis. 2023, 11, e972. [Google Scholar] [CrossRef]
- Jiang, K.; Wen, X.; Pettersson, T.r.; Crouzier, T. Engineering Surfaces with Immune Modulating Properties of Mucin Hydrogels. ACS Appl. Mater. Interfaces 2022, 14, 39727–39735. [Google Scholar] [CrossRef]
- Tan, A.; Xu, F.; Yokoyama, C.; Yano, S.; Konno, H. Design, synthesis, and evaluation of the self-assembled antimicrobial peptides based on the ovalbumin-derived peptide TK913. J. Pept. Sci. 2022, 28, e3375. [Google Scholar] [CrossRef]
- Silva, A.M.V.d.; Machado, T.L.; Nascimento, R.d.S.; Rodrigues, M.P.M.D.; Coelho, F.S.; Tubarão, L.N.; da Rosa, L.C.; Bayma, C.; Rocha, V.P.; Frederico, A.B.T. Immunomodulatory effect of bovine lactoferrin during SARS-CoV-2 infection. Front. Immunol. 2024, 15, 1456634. [Google Scholar] [CrossRef]
- Kuipers, M.E.; Heegsma, J.; Bakker, H.I.; Meijer, D.K.; Swart, P.J.; Frijlink, E.W.; Eissens, A.C.; Vries-Hospers, H.G.d.; JM van den Berg, J. Design and fungicidal activity of mucoadhesive lactoferrin tablets for the treatment of oropharyngeal candidosis. Drug Deliv. 2002, 9, 31–38. [Google Scholar] [CrossRef]
- Bandi, S.P.; Bhatnagar, S.; Venuganti, V.V.K. Advanced materials for drug delivery across mucosal barriers. Acta Biomater. 2021, 119, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Liu, D.; Qin, X.; Zhang, D.; Zhang, P. Mucoadhesive-to-Mucopenetrating Nanoparticles for Mucosal Drug Delivery: A Mini Review. Int. J. Nanomed. 2025, 20, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- FU, J.; Yang, L.; TAN, D.; Liu, L. Iron transport mechanism of lactoferrin and its application in food processing. Food Sci. Technol. 2023, 43, e121122. [Google Scholar] [CrossRef]
- Kell, D.B.; Heyden, E.L.; Pretorius, E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front. Immunol. 2020, 11, 1221. [Google Scholar] [CrossRef]
- Gruden, Š.; Poklar Ulrih, N. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef]
- Ostrówka, M.; Duda-Madej, A.; Pietluch, F.; Mackiewicz, P.; Gagat, P. Testing antimicrobial properties of human lactoferrin-derived fragments. Int. J. Mol. Sci. 2023, 24, 10529. [Google Scholar] [CrossRef]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Arami, M.; Mazaheri, F.; Rahimi, S. Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J. Clean. Prod. 2010, 18, 146–151. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Duan, S.; Chen, L.; Xiang, H.; Dong, Y.; Wang, W. Systematic evaluation of sericin protein as a substitute for fetal bovine serum in cell culture. Sci. Rep. 2016, 6, 31516. [Google Scholar] [CrossRef]
- Koshy, D.S.; Allardyce, B.J.; Dumée, L.F.; Sutti, A.; Rajkhowa, R.; Agrawal, R. Silk industry waste protein-derived Sericin hybrid Nanoflowers for antibiotics remediation via circular economy. ACS Omega 2024, 9, 15768–15780. [Google Scholar] [CrossRef]
- Okeniyi, F.A.; Oghenochuko, O.M.; Olawoye, S.O.; Animashahun, R.A.; Adeyonu, A.G.; Akpor, O.B. Antimicrobial potentials of mucus mucin from different species of giant African land snails on some typed culture pathogenic bacteria. Asian J. Agric. Biol. 2022, 2022, 1–12. [Google Scholar]
- Janicka-Kłos, A.; Czapor-Irzabek, H.; Janek, T. The potential antimicrobial action of human mucin 7 15-mer peptide and its metal complexes. Int. J. Mol. Sci. 2021, 23, 418. [Google Scholar] [CrossRef] [PubMed]
- Réhault-Godbert, S.; Labas, V.; Helloin, E.; Hervé-Grépinet, V.; Slugocki, C.; Berges, M.; Bourin, M.-C.; Brionne, A.; Poirier, J.-C.; Gautron, J. Ovalbumin-related protein X is a heparin-binding ov-serpin exhibiting antimicrobial activities. J. Biol. Chem. 2013, 288, 17285–17295. [Google Scholar] [CrossRef] [PubMed]
- Masters, D.B.; Berg, E.P. Mucoadhesive Drug Delivery Devices and Methods of Making and Using Thereof. U.S. Patent 8,529,939, 10 September 2013. [Google Scholar]
- Pan, S.; Weng, H.; Hu, G.; Wang, S.; Zhao, T.; Yao, X.; Liao, L.; Zhu, X.; Ge, Y. Lactoferrin may inhibit the development of cancer via its immunostimulatory and immunomodulatory activities. Int. J. Oncol. 2021, 59, 85. [Google Scholar] [CrossRef] [PubMed]
- Bruni, N.; Capucchio, M.T.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 2016, 21, 752. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Tsuda, N.; Miyata, T.; Ikenaga, M. Antimicrobial effect and mechanism of bovine lactoferrin against the potato common scab pathogen Streptomyces scabiei. PLoS ONE 2022, 17, e0264094. [Google Scholar] [CrossRef]
- Casadidio, C.; Mayol, L.; Biondi, M.; Scuri, S.; Cortese, M.; Hennink, W.E.; Vermonden, T.; De Rosa, G.; Di Martino, P.; Censi, R. Anionic polysaccharides for stabilization and sustained release of antimicrobial peptides. Int. J. Pharm. 2023, 636, 122798. [Google Scholar] [CrossRef]
- Lim, C.; Hwang, D.S.; Lee, D.W. Intermolecular interactions of chitosan: Degree of acetylation and molecular weight. Carbohydr. Polym. 2021, 259, 117782. [Google Scholar] [CrossRef]
- Della Sala, F.; Longobardo, G.; Fabozzi, A.; di Gennaro, M.; Borzacchiello, A. Hyaluronic acid-based wound dressing with antimicrobial properties for wound healing application. Appl. Sci. 2022, 12, 3091. [Google Scholar] [CrossRef]
- Xie, M.; Lian, L.; Mu, X.; Luo, Z.; Garciamendez-Mijares, C.E.; Zhang, Z.; López, A.; Manríquez, J.; Kuang, X.; Wu, J. Volumetric additive manufacturing of pristine silk-based (bio) inks. Nat. Commun. 2023, 14, 210. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Shi, X.; Qin, S.; Liu, J.; Lv, Q.; Liu, J.; Li, Q.s.; Wang, Z.; Wang, L. Development and Application of an Advanced Biomedical Material-Silk Sericin. Adv. Mater. 2024, 36, 2311593. [Google Scholar] [CrossRef] [PubMed]
- Babaluei, M.; Mojarab, Y.; Mottaghitalab, F.; Saeb, M.R.; Farokhi, M. Conductive hydrogels based on tragacanth and silk fibroin containing dopamine functionalized carboxyl-capped aniline pentamer: Merging hemostasis, antibacterial, and anti-oxidant properties into a multifunctional hydrogel for burn wound healing. Int. J. Biol. Macromol. 2024, 261, 129932. [Google Scholar] [CrossRef] [PubMed]
System Type | Sericin Fabrication/Modification | Key Applications | Examples | References |
---|---|---|---|---|
Nanoparticles | Synthesized via desolvation, self-assembly, or electrostatic interactions | Targeted delivery | Eco-friendly synthesis of sericin/silver nanoparticles (sericin-AgNPs) to enhance antibacterial and wound healing | [38] |
Stabilized with crosslinkers like genipin or glutaraldehyde | Controlled release | Sericin/zeolitic imidazolate framework loaded with doxorubicin as pH-sensitive cancer drug delivery platform | [39] | |
Integrated with metallic particles for added functionality | Antimicrobial agents | Sericin-AgNPs-coated nanofibers for bacterial inhibition in food preservation | [40] | |
Hydrogels | Crosslinked physically, chemically, or enzymatically (e.g., glutaraldehyde, tyrosinase) | Localized delivery | Hydrogel with chitosan and resveratrol as antimicrobial, antioxidant, and wound healing platform | [41] |
Tunable porosity and degradation rates | Tissue engineering | Bilayer scaffold (antimicrobial and pro-angiogenic layers) for enhanced wound healing | [42] | |
Combined with bioactive compounds (e.g., lactoferrin, tannic acid) | Immune recovery after chemotherapy | Sericin-based hydrogel dressing with recombinant lactoferrin for chemotherapy-enhanced immune function recovery | [43] | |
Temperature-sensitive hydrogels for on-demand drug delivery | Breast cancer treatment | ROS-sensitive tegafur/protoporphyrin IX-loaded injectable hydrogels for combined photodynamic and chemotherapy | [44] | |
Films | Created via solvent evaporation or casting | Transdermal systems | Sericin/alginate/aloe vera films with hemostatic, antimicrobial, and wound healing properties | [45] |
Combined with chitosan or silk fibroin for enhanced strength | Wound healing and antimicrobial coatings | Sericin-ZnO/AgNPs films for advanced tissue engineering and antibacterial coatings | [46] | |
Layer-by-layer assembly to incorporate multiple functionalities | Antimicrobial coatings | Sericin/propolis/fluorouracil films for colorectal cancer treatment | [47] | |
Micelles and Conjugates | Exploiting sericin amphiphilic properties for micelle formation | High-efficiency drug loading | Antimicrobial and regenerative PDA@Ag/SerMA microneedles for diabetic foot ulcers | [48] |
Environment-responsive triggers like pH | Tumor targeting | Responsive micelles for pH-triggered drug release in tumor microenvironments | [9] | |
Combined with photosensitizers for photothermal therapies | Multifunctional cancer therapies | Sericin-poly(γ-benzyl-L-glutamate)-IR780 complexes for photothermal and photodynamic therapies | [49] | |
Composite Materials | Hybridized with natural/synthetic polymers to enhance specific properties | Multifunctional systems | Sericin/chitosan composites for superior bioactivity in acidic tumor conditions | [50] |
Incorporating metallic nanoparticles (e.g., silver, zinc oxide) | Antimicrobial and wound management | Eri silk-derived sericin-AgNPs scaffolds for multidrug-resistant burn wound treatments | [51] | |
Combined with metal/organic frameworks for enhanced regenerative properties | Long-gap peripheral nerve regeneration | MOF-SS scaffolds for nerve repair through activation of regeneration-associated genes | [52] | |
Nanofibers | Fabricated via electrospinning with functionalized sericin or composites | Antibacterial wound dressings | Sericin-based polyurethane nanofibers with halloysite nanotubes for controlled drug release | [53] |
Integrated with silver nanoparticles | Advanced tissue regeneration and antibacterial system | Sericin nanofiber scaffolds with superior burn wound healing and antimicrobial efficacy | [54] | |
Biocompatible nanofibers for sustained drug delivery | Antimicrobial therapies | Sericin/zein nanofibers for stable 5-fluorouracil delivery in cancer treatments | [55] | |
Smart Carriers | Stimuli-responsive sericin-based materials (e.g., pH, temperature, light-sensitive systems) | Cancer therapy | Sericin charge-reversal nanoparticles for co-delivery of resveratrol and melatonin, exploiting the tumor microenvironment | [56] |
Incorporating therapeutic nanoparticles | Multimodal therapy and diagnostics | Sericin-layered double hydroxides modified with ZnO quantum dots for breast cancer imaging and therapy | [57] | |
Combined with superparamagnetic iron oxide nanoparticles (SPIONs) | Gene therapy | Sericin-SPION systems for targeted siRNA delivery in breast cancer treatment | [58] | |
3D Scaffolds | Engineered using sericin with biomimetic architectures | Skin and tissue regeneration | 3D sericin/chitosan/alginate sponges with antibacterial and angiogenic properties for infected wound treatment | [59] |
Incorporating bioactive nanoparticles | Peripheral nerve regeneration | Sericin/manganese/organic framework scaffolds for long-gap nerve injury repair | [52] | |
Combining sericin and fibroin in multichannel designs for nerve repair | Neural tissue engineering | Silk fibroin/sericin sponge scaffolds for sciatic nerve regeneration in rat models | [60] |
Property | Sericin | Ovalbumin | Mucin | Lactoferrin |
---|---|---|---|---|
Source | Silk cocoon (by-product) | Egg white | Epithelial secretions | Milk, tears, saliva |
Molecular Weight Range | 10–300 kDa | ~45 kDa | 200–5000 kDa | ~80 kDa |
Bioactivity | Antioxidant, antimicrobial, UV-protective | Immunogenic, antigenic | Mucoadhesive, hydrating | Antimicrobial, anti-inflammatory |
Biocompatibility | High | Moderate | High | High |
DrugEncapsulation | Hydrophilic and hydrophobic drugs | Mostly hydrophilic | Hydrophilic drugs | Hydrophilic drugs |
Biodegradability | High | Moderate | Variable | High |
Challenges | Variability in extraction, stability | Immunogenicity, denaturation | Viscosity, batch variability | Cost, limited availability |
Applications | Controlled release, co-delivery, bioelectronics | Vaccine delivery, antigen carriers | Transmucosal delivery | Infection-targeted therapies, inflammation |
Property | Sericin | Chitosan | Alginate | Hyaluronic Acid |
---|---|---|---|---|
Molecular Weight Range | 10–300 kDa | 50–2000 kDa | 32–250 kDa | 10–1000 kDa |
Bioactivity | Antioxidant, UV- protective, antimicrobial | Antimicrobial, hemostatic | Biocompatible, gelling agent | Hydrating, anti-inflammatory |
DrugEncapsulation | Hydrophilic and hydrophobic drugs | Hydrophilic drugs | Hydrophilic drugs | Hydrophilic drugs |
Biodegradability | High | High | Moderate | High |
Applications | Stimuli-responsive systems, co-delivery of drugs | Wound healing, drug carriers | Tissue scaffolds, drug carriers | Hydrogels, Targeted delivery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Salathia, S.; Gigliobianco, M.R.; Casadidio, C.; Di Martino, P.; Censi, R. Recent Insights into the Potential and Challenges of Sericin as a Drug Delivery Platform for Multiple Biomedical Applications. Pharmaceutics 2025, 17, 695. https://doi.org/10.3390/pharmaceutics17060695
Ma Q, Salathia S, Gigliobianco MR, Casadidio C, Di Martino P, Censi R. Recent Insights into the Potential and Challenges of Sericin as a Drug Delivery Platform for Multiple Biomedical Applications. Pharmaceutics. 2025; 17(6):695. https://doi.org/10.3390/pharmaceutics17060695
Chicago/Turabian StyleMa, Qisan, Saniya Salathia, Maria Rosa Gigliobianco, Cristina Casadidio, Piera Di Martino, and Roberta Censi. 2025. "Recent Insights into the Potential and Challenges of Sericin as a Drug Delivery Platform for Multiple Biomedical Applications" Pharmaceutics 17, no. 6: 695. https://doi.org/10.3390/pharmaceutics17060695
APA StyleMa, Q., Salathia, S., Gigliobianco, M. R., Casadidio, C., Di Martino, P., & Censi, R. (2025). Recent Insights into the Potential and Challenges of Sericin as a Drug Delivery Platform for Multiple Biomedical Applications. Pharmaceutics, 17(6), 695. https://doi.org/10.3390/pharmaceutics17060695